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Uniform vs. Non-Uniform Memory Consistency Models I
Overview

Uniform Memory Models

I No differentiation between memory operations, except for the
LOAD/STORE distinction.

I Works well as long as everyone always reads everything from
memory. . .

I Sequential Consistency (SC), Cache Consistency (Coherence),
Pipelined RAM (P-RAM), and Processor Consistency (PC) are
examples of uniform models
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Uniform vs. Non-Uniform Memory Consistency Models II
Overview

Non-Uniform Memory Models

I Differentiate between ordinary and synchronizing memory operations

I Ordinary operations:

I From the viewpoint of the issuing processor, the operations it issued
follow the program order, at least from a dependence point of view.

I Other processors’ ordinary operations can be seen in any order.

I Synchronization operations follow sequential consistency w.r.t. each
other.

I In other words: there is a total order between sync ops.

I Note: there may be authorized overlapping between ordinary and
synchronizing operations.
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The SPARC Processor Architecture

Origins

I Processor designed by Sun Microsystems (now Oracle)

I Started in the mid 80’s

I RISC processor

SPARC Nowadays

I Used in the K-Computer: #4 in the Top500 supercomputer ranking

I See http://www.top500.org

I 705,024 cores based on SPARC64 VIIIfx micro-architecture
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Total Store Ordering (TSO)
Used in SPARC v8, full compatibility in SPARC v9

I Operations: Store, FLUSH, atomic loads & stores

I Appears to be executed serially in a single order called the memory
order

I The order of memory operations is identical to their issuing order (for a
given processor)

I Sequentially consistent (SC) for Store, FLUSH, and atomic load/store
operations
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Total Store Ordering (TSO)
Model of Memory
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Total Store Ordering (TSO)
P-RAM vs.TSO

Recap: P-RAM

I P-RAM is achieved if

I All memory operations follow program order (w.r.t. process P)
I All memory writes appear in some order to all processors of the system,

but all memory writes issued by the same process P are in-order.

Recap: TSO

I Total order on Store, FLUSH, and atomic load/store operations

I Appear to be executed serially in a single order called the memory order
I The order of memory operations is identical to their issuing order (for a

given processor)

Fotouhi, Zuckerman CPEG852 – Fall ’15 – Memory Consistency Models 11 / 54



Total Store Ordering (TSO)
P-RAM vs.TSO

Recap: P-RAM

I P-RAM is achieved if

I All memory operations follow program order (w.r.t. process P)
I All memory writes appear in some order to all processors of the system,

but all memory writes issued by the same process P are in-order.

Recap: TSO

I Total order on Store, FLUSH, and atomic load/store operations

I Appear to be executed serially in a single order called the memory order
I The order of memory operations is identical to their issuing order (for a

given processor)

Fotouhi, Zuckerman CPEG852 – Fall ’15 – Memory Consistency Models 11 / 54



Total Store Ordering (TSO)
P-RAM vs.TSO

Recap: P-RAM

I P-RAM is achieved if

I All memory operations follow program order (w.r.t. process P)
I All memory writes appear in some order to all processors of the system,

but all memory writes issued by the same process P are in-order.

Recap: TSO

I Total order on Store, FLUSH, and atomic load/store operations

I Appear to be executed serially in a single order called the memory order
I The order of memory operations is identical to their issuing order (for a

given processor)

Fotouhi, Zuckerman CPEG852 – Fall ’15 – Memory Consistency Models 12 / 54



Total Store Ordering (TSO)
P-RAM vs.TSO

Recap: P-RAM

I P-RAM is achieved if

I All memory operations follow program order (w.r.t. process P)
I All memory writes appear in some order to all processors of the system,

but all memory writes issued by the same process P are in-order.

Recap: TSO

I Total order on Store, FLUSH, and atomic load/store operations

I Appear to be executed serially in a single order called the memory order
I The order of memory operations is identical to their issuing order (for a

given processor)

Fotouhi, Zuckerman CPEG852 – Fall ’15 – Memory Consistency Models 13 / 54



Total Store Ordering (TSO)
P-RAM vs.TSO

I TSO may look similar to P-RAM, but TSO enforces a total order on
writes

I Not clear yet?! Let’s see an example. . .
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Total Store Ordering (TSO)
Example 0

Note:
Initial values are equal to zero unless stated otherwise.
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Total Store Ordering (TSO)
Example 0

Thread 0 Thread 1 Thread 2 Thread 3
x ← 1 · · · ← x , x = 1 · · · ← x , x = 1 · · · ← x , x = 2

x ← 2 · · · ← x , x = 2 · · · ← x , x = 1

Table: Initially, x = y = 0. Can this program trace be P-RAM?

Yes!

T2 · · · , x ← 1, x ← 2

T3 · · · , x ← 2, x ← 1
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Partial Store Ordering (PSO)
Used in SPARC v8, full compatibility in SPARC v9

I Operations: Store, FLUSH, atomic loads & stores

I Appears to be executed serially in a single order called the memory
order

I The order of memory operations is not necessarily identical to their
issuing order (for a given processor)

I Sequentially consistent (SC) for Store, FLUSH, and atomic load/store
operations
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Partial Store Ordering (PSO)
Model of Memory
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Example 1
Total Store Ordering (TSO)

Thread 0 Thread 1 Thread 2
x ← 1 r0 ← y r1 ← z
y ← 1 z ← r0 r2 ← x

Table: Initially, x = y = 0. Can this program trace yield r1 = 1 ∧ r2 = 0 under
TSO?

No!
There is no total order on stores to be found.
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Example 1
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Example 2
Total Store Ordering (TSO)

Thread 0 Thread 1
x ← 1 r1 ← y
r0 ← x r2 ← x
y ← r0

Table: Initially, x = y = 0. Can this program trace yield r1 = 1 ∧ r2 = 0 under
TSO?

No!
There is no total order on stores to be found.
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Relaxed Memory Ordering (RMO)
Used in SPARC v9

A system complies with RMO if:

Conditions to Follow RMO

I A processor’s memory operations follow self-consistency

I No specific ordering for load-stores otherwise

I To enforce a specific order, the user/programmer must use MEMBAR
operations

I MEMBAR StoreLoad (available in TSO)
I MEMBAR StoreStore (implied in TSO, available in PSO)
I MEMBAR LoadStore (implied in TSO and PSO)
I MEMBAR LoadLoad (implied in TSO and PSO)

Definition: Self-Consistency

A self-consistent execution trace is one that generates precisely
the same results as those produced by a program order execution
trace.
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TSO, PSO, and RMO

PSORMO TSO SC
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Example 3

Thread 0 Thread 1 Thread 2
x ← 1 r0 ← x r2 ← y
y ← 1 r1 ← y r3 ← x

Table: Initially, x = y = 0. Can this program trace yield
r0 = 1 ∧ r1 = 1 ∧ r2 = 1 ∧ r3 = 1 under TSO? PSO? RMO?

TSO:Yes! PSO:Yes! RMO:Yes!

x ← 1 ⇒ y ← 1 ⇒ r0 ← x ⇒ r1 ← y ⇒ r2 ← y ⇒ r3 ← x

r0 = 1 r1 = 1 r2 = 1 r3 = 1
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Outline

1 A Short Recap: Uniform vs. Non-Uniform Memory Consistency
Models

2 Memory Consistency Models of Current Shared-Memory Systems
SPARC Processors Memory Models
x86 Processors Memory Model

3 Towards Scalable Memory Models for Extreme-Scale Systems
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The x86 Family of Processors

I Invented by Intel

I Complex Instruction Set Computer (CISC)

I Now, more like “CRISC:” Instruction set is CISC but. . .
I Front-end: CISC; after decoding (rest of pipeline): RISC/VLIW

µ-architecture

I ISA cloned and extended by multiple vendors: AMD, Cyrix, VIA, etc.

I Most popular processor family for mainstream computing (and very
popular for HPC)
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The x86-TSO Memory Model
Description

A Programmer’s Model

I Clarifies allowable behavior

I Does not precisely describes the internal structure of the
micro-processor

I From generation to generation, and from vendor to vendor, the exact
memory model varies too much

Two Ways to Define the Model

I An abstract machine

I An axiomatic model
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x86-TSO Memory Model
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x86-TSO
Basic Memory Components and Instructions

I Store buffers

I FIFO
I Reading memory location X returns the most recent buffered write to

X

I If there is no most recent X , read from shared memory

I MFENCE

I Flushes the store buffer of the thread which issued MFENCE

I LOCK’d instructions

I Obtain lock on memory location
I Flushes its store buffer
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Example 4
x86-TSO

Thread 0 Thread 1
x ← 1 r0 ← y
y ← 1 r1 ← x

Table: Initially, x = y = 0. Can we have r0 = 1 ∧ r1 = 0 under x86-TSO?

No!
Stores cannot be reordered with other stores
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Example 5
x86-TSO

Thread 0 Thread 1
r0 ← y r1 ← x
x ← 1 y ← 1

Table: Initially, x = y = 0. Can we have r0 = 1 ∧ r1 = 1 under x86-TSO?

No!
Stores cannot be reordered with older loads
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Example 6
x86-TSO

Thread 0 Thread 1
x ← 1 y ← 1
r0 ← y r1 ← x

Table: Initially, x = y = 0. Can we have r0 = 0 ∧ r1 = 0 under x86-TSO?

Yes!
Loads may be reordered with older stores
r0 ← y ⇒ r1 ← x ⇒ x ← 1⇒ y ← 1
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Example 7
x86-TSO

Thread 0
x ← 1
r0 ← x

Table: Initially, x = y = 0. Can we have r0 = 0 under x86-TSO?

No!
Loads cannot be reordered with older stores to the same location
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Example 8
x86-TSO

Thread 0 Thread 1 Thread 2
x ← 1 r0 ← x r1 ← y

y ← 1 r2 ← x

Table: Initially, x = y = 0. Can we have r0 = 1∧ r1 = 1∧ r2 = 0 under x86-TSO?

No!
Stores are transitively visible.
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Example 8
x86-TSO
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Example 9
x86-TSO

Thread 1 Thread 2
XCHG(x) ← r0 XCHG(y) ← r2
r1 ← x r3 ← y

Table: Initially, x = y = 0; r1 = r2 = 1. Can we have r1 = 0 ∧ r3 = 0 under
x86-TSO?

No!
Loads cannot be reordered with locks.
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The Future of Parallel Computing Systems I

I Future many-core systems will probably feature network-on-chip
(NoC) technologies

I NoC can provide static or dynamic routes

I Static routes require very small headers and low-overhead if a given
NoC router is not contended

I Dynamic routes allow a NoC to adapt to congested routers at runtime,
thus handling more gracefully heavy loads.

I Future many-core chips: hundreds or even thousands of cores on a
single general-purpose chip

I GPUs are not quite general purpose, but already propose thousands of
threads (streams) on a board

I Intel’s Xeon Phi features 61 cores (244 hyperthreads) which leverage
modified a Pentium (P54C) micro-architecture

I Other available chips:

I Tilera’s Tile processors (32, 36, 64 cores, and soon 100 cores on a
chip),
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The Future of Parallel Computing Systems II

I Kalaray’s MPPA-256: “heavy” cores run regular operating systems and
handle I/Os; “lightweight” cores perform the computation, using a
dataflow approach to know where to write the results in small on-chip
memories.

I Adapteva’s Epiphany III (16 cores) and IV (64 cores) for low-power
embedded computing: each core has a 32KB scratchpad, accessible
from other cores.

I What will the memory model of future many-core chips look like?
How can we ensure it is scalable?
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A Few Open Questions About Memory Models

Q0 The “regular” consistency question: what happens when two memory
operations reach the same memory location, and at least one is a
write?
I In other words, what rules govern data races?

Q1 Should the hardware allow more than one path from a given processor
to reach a given memory location?
I In other words:

Q2 If we assume it is possible that Q1’s answer is yes, if a processor P
issues two memory operations to the same memory location X , can
these operations be performed out-of-order?

Q3 Can we get rid of the coherence assumption?
I Most “hardware-oriented” memory consistency models assume

coherence (i.e., all accesses to a given memory location X are
serialized)

Q4 Should a memory consistency model preserve the notion of causality?

I Honestly, if we throw causality out of the window, I don’t really see
how we can get correct programs. . .
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Location Consistency (LC): Philosophy
(GaoSar95; GaoSar00)

I If you wish to share data and make sure their value are consistent
across threads/processors, you should explicitly say so

I Every other value that was produced by at least one processor/thread
is fair game in all the other cases.
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Location Consistency (LC): Principles I
(GaoSar95; GaoSar00)

Location Consistency (LC) is a rather different way to look at memory
compared to other memory models.

Definition: Partially Ordered Multi-Sets (POMSETs)

I { 1, 5, 3 } is a set

I { 1, 5, 3, 5 } is a multi-set (values can be repeated)

I { {1, 5} {3, 5}, {1} } is a partially ordered multi-set
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Location Consistency (LC): Principles II
(GaoSar95; GaoSar00)

LC: an Informal Description

We consider a memory location X for the remainder of these explanations.

I Each time X is written using an ordinary operation, the new value is
added to its associated POMSET

I If a X is consistently accessed using acquire-release pairs, its
POMSET always remains a singleton (i.e., a single value)

I What happens if a programmer mixes up ordinary and synchronized
accesses to X?

I The processor using the acquire-release pair will reduce its own set of values w.r.t.
X , but

I The other writes to X from other processors are still within its POMSET: when
reading the next value from X , the “dirty” values may be returned at any time
instead of the “clean” one.

I LC proposes various synchronizing operations which help processors
to reduce the POMSET of X to a singleton.

I Most important ones: acquire, release, sync.
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Location Consistency (LC)
A Code Example

With No Synchronization

Thread 0 [T0] Thread 1 [T1] Thread 2 [T2]
x ← 0
y ← 0 · · · ← y

x ← 1 · · · ← x
· · · ← x

Table: Initially, x = y = 0. What are the possible values in LC?

T0 x = {{0}, {1}}; y = {{0}, {0}}
T1 x = {{0}, {1}}; y = {{0}, {0}}
T2 x = {{0}, {1}}; y = {{0}, {0}}
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Location Consistency (LC)
A Code Example — With Synchronization I

First Case

Thread 0 [T0] Thread 1 [T1] Thread 2 [T2]
x ← 0
acq(y); y ← 0 rel(y); acq(y); · · · ← y rel(y);

x ← 1 · · · ← x
· · · ← x

Table: Initially, x = y = 0. What are the possible values in LC?

T0 x = {{0}, {1}}; y = {{0}}
T1 x = {{0}, {1}}; y = {{0}}
T2 x = {{0}, {1}}; y = {{0}}
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Location Consistency (LC)
A Code Example — With Synchronization II

Second Case

Thread 0 [T0] Thread 1 [T1] Thread 2 [T2]
acq(x); x ← 0 rel(x);
acq(y); y ← 0 rel(y); acq(y); · · · ← y rel(y);

acq(x); x ← 1 rel(x); acq(x); · · · ← x rel(x);
acq(x); · · · ← x rel(x);

Table: Initially, x = y = 0. What are the possible values in LC?

T0 x = {{0}} or {{1}}; y = {{0}}
T1 x = {{0}} or {{1}}; y = {{0}}
T2 x = {{0}} or {{1}}; y = {{0}}
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Location Consistency (LC)
A Code Example — With Synchronization II

Second Case

Thread 0 [T0] Thread 1 [T1] Thread 2 [T2]
acq(x); x ← 0 rel(x);
acq(y); y ← 0 rel(y); acq(y); · · · ← y rel(y);

acq(x); x ← 1 rel(x); acq(x); · · · ← x rel(x);
acq(x); · · · ← x rel(x);

Table: Initially, x = y = 0. What are the possible values in LC?

T0 x = {{0}} or {{1}}; y = {{0}}
T1 x = {{0}} or {{1}}; y = {{0}}
T2 x = {{0}} or {{1}}; y = {{0}}
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Location Consistency (LC)
A Code Example — With Synchronization III

Second Case – Variant

Thread 0 [T0] Thread 1 [T1] Thread 2 [T2]
acq(x,y); x ← 0
y ← 0 rel(x,y); acq(x,y); · · · ← y

x ← 1 rel(x,y); acq(x); · · · ← x rel(x);
acq(x); · · · ← x rel(x);

Table: Initially, x = y = 0. What are the possible values in LC?

T0 x = {{0}} or {{1}}; y = {{0}}
T1 x = {{0}} or {{1}}; y = {{0}}
T2 x = {{0}} or {{1}}; y = {{0}}
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Location Consistency (LC)
A Code Example — With Synchronization IV

Second Case – Variant

Thread 0 [T0] Thread 1 [T1] Thread 2 [T2]
x ← 0
y ← 0 · · · ← y
syncT0,T1(x , y) syncT0,T1(x , y)

x ← 1 · · · ← x
· · · ← x

Table: Initially, x = y = 0. What are the possible values in LC?

T0 x = {{0}}; y = {{0}}
T1 x = {{1}}; y = {{0}}
T2 x = {{0}, {1}}; y = {{0}}
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Location Consistency (LC)
A Code Example — With Synchronization IV

Second Case – Variant
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Example 10
SPARC (TSO, PSO, RMO)

Thread 1 Thread 2
x ← 1 y ← 1

MEMBAR #StoreLoad MEMBAR #StoreLoad

r0 ← y r1 ← x

Table: Initially, x = y = 0. Can we have r0 = 0 ∧ r1 = 0 under TSO? PSO?
RMO?

TSO: Yes! PSO: Yes! RMO: Yes!
Loads (reads) can be reordered with the stores

. . . Unless we insert a
MEMBAR #StoreLoad operation.
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Example 11
x86-TSO

Thread 1 Thread 2
x ← 1 y ← 1

MFENCE MFENCE

r0 ← y r1 ← x

Table: Initially, x = y = 0. Can we have r0 = 0 ∧ r1 = 0 under x86-TSO?

TSO: Yes!
Loads (reads) can be reordered with the stores

. . . Unless we insert a
MFENCE operation.
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