
CPEG 852 — Advanced Topics in Computing
Systems

Memory Models
A Survey of Memory Consistency Models

Stéphane Zuckerman

Computer Architecture & Parallel Systems Laboratory
Electrical & Computer Engineering Dept.

University of Delaware
140 Evans Hall Newark,DE 19716, United States

szuckerm@udel.edu

September 29, 2015

S.Zuckerman CPEG852 – Fall ’15 – Memory Consistency Models 1 / 45



Outline

1 A Short Recap: Introduction to Memory Models
Overview

2 Addressing Mode

3 Memory Consistency Models
A Motivating Example
Uniform Memory Consistency Models

Strongest MCMs
Weaker Uniform MCMs

Non-Uniform Memory Consistency Models
Hardware-Oriented MCMs
Software- and Programmer-Oriented MCMs

Conclusion On MCMs

S.Zuckerman CPEG852 – Fall ’15 – Memory Consistency Models 2 / 45



Outline

1 A Short Recap: Introduction to Memory Models
Overview

2 Addressing Mode

3 Memory Consistency Models
A Motivating Example
Uniform Memory Consistency Models

Strongest MCMs
Weaker Uniform MCMs

Non-Uniform Memory Consistency Models
Hardware-Oriented MCMs
Software- and Programmer-Oriented MCMs

Conclusion On MCMs

S.Zuckerman CPEG852 – Fall ’15 – Memory Consistency Models 3 / 45



Outline

1 A Short Recap: Introduction to Memory Models
Overview

2 Addressing Mode

3 Memory Consistency Models
A Motivating Example
Uniform Memory Consistency Models

Strongest MCMs
Weaker Uniform MCMs

Non-Uniform Memory Consistency Models
Hardware-Oriented MCMs
Software- and Programmer-Oriented MCMs

Conclusion On MCMs

S.Zuckerman CPEG852 – Fall ’15 – Memory Consistency Models 4 / 45



Components of a Memory Model

Traditionally, a memory model is described through two components:

I The addressing mode

I The memory consistency model

S.Zuckerman CPEG852 – Fall ’15 – Memory Consistency Models 5 / 45



A Representative Picture of a (Distributed) Shared-Memory System

S.Zuckerman CPEG852 – Fall ’15 – Memory Consistency Models 6 / 45



Outline

1 A Short Recap: Introduction to Memory Models
Overview

2 Addressing Mode

3 Memory Consistency Models
A Motivating Example
Uniform Memory Consistency Models

Strongest MCMs
Weaker Uniform MCMs

Non-Uniform Memory Consistency Models
Hardware-Oriented MCMs
Software- and Programmer-Oriented MCMs

Conclusion On MCMs

S.Zuckerman CPEG852 – Fall ’15 – Memory Consistency Models 7 / 45



Memory Models I
Addressing Modes

Two major addressing modes dominate the landscape:

I Physical (Flat) Memory Addressing

I Often used in embedded systems (single-application-per-device)
I Usually: no hardware help to deal with memory isolation (e.g., no TLB,

etc.)
I Advantages:

I Simple
I When you know what you are doing, probably leads to the most

efficient memory/resource usage

I Shortcomings:

I Makes it difficult to run more than one application at a time
I The system software is in charge of ensuring processes and threads do

not overlap when they are not collaborating

I Virtual Memory Addressing

S.Zuckerman CPEG852 – Fall ’15 – Memory Consistency Models 8 / 45



Memory Models II
Addressing Modes

I The physical (real) memory space is usually not contiguous, and is
decomposed in segments and/or pages

I From the program/process’ perspective, it is given a unique contiguous
memory space

I Processes access virtual addresses, which are mapped to their physical
counterpart

I The hardware and system software collaborate: use of TLBs

I Features:

I Processes’ memory spaces are isolated from each other (cannot access
another process’ memory space)

I Allows for swapping if the main memory is not big enough (but this is
very slow)

I Advantages:

I Transparent to the user/programmer: no need to specify memory
ranges at link time

I Enhances portability: no need to know what is “under the hood”

S.Zuckerman CPEG852 – Fall ’15 – Memory Consistency Models 9 / 45



Memory Models III
Addressing Modes

I Shortcomings:

I Address translation is not free (OS overhead for managing
physical/virtual address mapping)

I Hardware assistance is required for efficient execution — and even
then, a TLB miss incurs a high penalty

I Memory management using paging means managing physical memory
fragmentation

S.Zuckerman CPEG852 – Fall ’15 – Memory Consistency Models 10 / 45



Addressing Physically Distributed Memory

Distributed Memory

I Fully distributed memory:

I Different compute nodes have separate address spaces
I Communications are explicit

I Distributed Shared Memory

I Provides the illusion that memory is shared across physically separated
nodes

I The system software (compiler, runtime) implements a communication
layer to transparently send data across nodes

S.Zuckerman CPEG852 – Fall ’15 – Memory Consistency Models 11 / 45



Outline

1 A Short Recap: Introduction to Memory Models
Overview

2 Addressing Mode

3 Memory Consistency Models
A Motivating Example
Uniform Memory Consistency Models

Strongest MCMs
Weaker Uniform MCMs

Non-Uniform Memory Consistency Models
Hardware-Oriented MCMs
Software- and Programmer-Oriented MCMs

Conclusion On MCMs

S.Zuckerman CPEG852 – Fall ’15 – Memory Consistency Models 12 / 45



Advantages of Shared-Memory Systems

I No need to perform special operations to access memory locations

I State can be passed to multiple threads of execution implicitly

I Reduced overhead when read from/writing to memory

S.Zuckerman CPEG852 – Fall ’15 – Memory Consistency Models 13 / 45



Outline

1 A Short Recap: Introduction to Memory Models
Overview

2 Addressing Mode

3 Memory Consistency Models
A Motivating Example
Uniform Memory Consistency Models

Strongest MCMs
Weaker Uniform MCMs

Non-Uniform Memory Consistency Models
Hardware-Oriented MCMs
Software- and Programmer-Oriented MCMs

Conclusion On MCMs

S.Zuckerman CPEG852 – Fall ’15 – Memory Consistency Models 14 / 45



A Motivating Example

Thread 0 Thread 1

x ← 1

y ← 1

r1← y

r2← x

Table: Initially, x = y = 0. Is it possible to have r1 = r2 = 0 ?

S.Zuckerman CPEG852 – Fall ’15 – Memory Consistency Models 15 / 45



A Motivating Example

Thread 0 Thread 1
x ← 1

y ← 1

r1← y

r2← x

Table: Initially, x = y = 0. Is it possible to have r1 = r2 = 0 ?

S.Zuckerman CPEG852 – Fall ’15 – Memory Consistency Models 15 / 45



A Motivating Example

Thread 0 Thread 1
x ← 1 y ← 1
r1← y r2← x

Table: Initially, x = y = 0. Is it possible to have r1 = r2 = 0 ?

S.Zuckerman CPEG852 – Fall ’15 – Memory Consistency Models 15 / 45



What Memory Consistency is All About

Q What happens when at least two concurrent memory operations
arrive at the same memory location x?

→ What happens when a data-race (i.e. at least one of the two memory
operations is a write) occurs at some memory location x?

I Memory Consistency Models try to answer that question.

S.Zuckerman CPEG852 – Fall ’15 – Memory Consistency Models 16 / 45



What Memory Consistency is All About

Q What happens when at least two concurrent memory operations
arrive at the same memory location x?

→ What happens when a data-race (i.e. at least one of the two memory
operations is a write) occurs at some memory location x?

I Memory Consistency Models try to answer that question.

S.Zuckerman CPEG852 – Fall ’15 – Memory Consistency Models 16 / 45



What Memory Consistency is All About

Q What happens when at least two concurrent memory operations
arrive at the same memory location x?

→ What happens when a data-race (i.e. at least one of the two memory
operations is a write) occurs at some memory location x?

I Memory Consistency Models try to answer that question.

S.Zuckerman CPEG852 – Fall ’15 – Memory Consistency Models 16 / 45



What Memory Consistency is All About

Q What happens when at least two concurrent memory operations
arrive at the same memory location x?

→ What happens when a data-race (i.e. at least one of the two memory
operations is a write) occurs at some memory location x?

I Memory Consistency Models try to answer that question.

S.Zuckerman CPEG852 – Fall ’15 – Memory Consistency Models 16 / 45



Outline

1 A Short Recap: Introduction to Memory Models
Overview

2 Addressing Mode

3 Memory Consistency Models
A Motivating Example
Uniform Memory Consistency Models

Strongest MCMs
Weaker Uniform MCMs

Non-Uniform Memory Consistency Models
Hardware-Oriented MCMs
Software- and Programmer-Oriented MCMs

Conclusion On MCMs

S.Zuckerman CPEG852 – Fall ’15 – Memory Consistency Models 17 / 45



Atomic Consistency (L. Lamport, 1986)

A system is AC if

I All memory operations are issued and performed in some total order

→ Real time constraint: time slots are allocated, and mem ops must be
performed according to them.

I Memory operations must follow program order

I Strongest MCM that was conceived

→ Never implemented

S.Zuckerman CPEG852 – Fall ’15 – Memory Consistency Models 18 / 45



Atomic Consistency (L. Lamport, 1986)

A system is AC if

I All memory operations are issued and performed in some total order

→ Real time constraint: time slots are allocated, and mem ops must be
performed according to them.

I Memory operations must follow program order

I Strongest MCM that was conceived

→ Never implemented

S.Zuckerman CPEG852 – Fall ’15 – Memory Consistency Models 18 / 45



Sequential Consistency (Leslie Lamport, 1978)

A system is SC if

I All memory operations appear to follow some total order

I Memory operations (appear to) follow program order

Definition: Sequential Consistency

A system is sequentially consistent if

. . . the result of any execution is the same as if the operations of
all the processors were executed in some sequential order, and
the operations of each individual processor appear in this
sequence in the order specified by its program.

S.Zuckerman CPEG852 – Fall ’15 – Memory Consistency Models 19 / 45



Back to our Example

Thread 0 Thread 1
x ← 1 y ← 1
r1← y r2← x

Table: Initially, x = y = 0.

Is it possible to have r1 = r2 = 0 ?

NO −→ There is no total linear order which allows both Thread 0 and
Thread 1 to see memory operations happening in the same order such that
r1 = r2 = 0

S.Zuckerman CPEG852 – Fall ’15 – Memory Consistency Models 20 / 45



Back to our Example

Thread 0 Thread 1
x ← 1 y ← 1
r1← y r2← x

Table: Initially, x = y = 0.

Is it possible to have r1 = r2 = 0 ?

NO −→ There is no total linear order which allows both Thread 0 and
Thread 1 to see memory operations happening in the same order such that
r1 = r2 = 0

S.Zuckerman CPEG852 – Fall ’15 – Memory Consistency Models 20 / 45



Sequential Consistency and its Popularity

I It behaves pretty much as one would expect in the context of a
uniprocessor-multithread execution

−→ It is considered very intuitive

I It offers strong guarantees: a modification to memory must be seen
by all other threads in a given program

S.Zuckerman CPEG852 – Fall ’15 – Memory Consistency Models 21 / 45



The Drawbacks of Sequential Consistency

It offers strong guarantees: a modification to memory must be seen
by all other threads in a given program

−→ How complicated is it to implement such a system in hardware ?

→ What about caches? Write buffers? etc.

−→ How scalable is it ?

−→ How expensive is it to implement that kind of consistency model?

S.Zuckerman CPEG852 – Fall ’15 – Memory Consistency Models 22 / 45



Coherence (Cache Consistency)
(Kourosh Gharachorloo et al., 1990)

Coherence is achieved if

I for each memory location x , there is a total order of all the memory
operations dealing with x

I Memory operations on x follow the program order

S.Zuckerman CPEG852 – Fall ’15 – Memory Consistency Models 23 / 45



Is our First Example Coherent?

Thread 0 Thread 1
x ← 1 y ← 1
r1← y r2← x

Table: Initially, x = y = 0

Is it possible to get r1 = r2 = 0?

YES!

=⇒ r1← y , y ← 1, r2← x , x ← 1

S.Zuckerman CPEG852 – Fall ’15 – Memory Consistency Models 24 / 45



Is our First Example Coherent?

Thread 0 Thread 1
x ← 1 y ← 1
r1← y r2← x

Table: Initially, x = y = 0

Is it possible to get r1 = r2 = 0?

YES!

=⇒ r1← y , y ← 1, r2← x , x ← 1

S.Zuckerman CPEG852 – Fall ’15 – Memory Consistency Models 24 / 45



Pipelined RAM (P-RAM)

P-RAM is achieved if

I all memory operations follow program order (w.r.t. process P), and

I all memory writes appear in some order to all processors of the
system, but all memory writes issued by the same process P are
in-order.

→ Each process Pi must issue memory operations w.r.t. its program
order, and sees other processes’ writes in any interleaved order (but all the
memory writes issued by a given process Pj , i 6= j are seen in-order).

S.Zuckerman CPEG852 – Fall ’15 – Memory Consistency Models 25 / 45



Is our First Example P-RAM?

Thread 0 Thread 1
x ← 1 y ← 1
r1← y r2← x

Table: Initially, x = y = 0

Is it possible to get r1 = r2 = 0?

YES!

T0 x ← 1, r1← y , y ← 1

T1 y ← 1, r2← x , x ← 1

S.Zuckerman CPEG852 – Fall ’15 – Memory Consistency Models 26 / 45



Is our First Example P-RAM?

Thread 0 Thread 1
x ← 1 y ← 1
r1← y r2← x

Table: Initially, x = y = 0

Is it possible to get r1 = r2 = 0?

YES!

T0 x ← 1, r1← y , y ← 1

T1 y ← 1, r2← x , x ← 1

S.Zuckerman CPEG852 – Fall ’15 – Memory Consistency Models 26 / 45



Is P-RAM Weaker than Coherence (or vice-versa)?

Thread 0 Thread 1
x ← 0 y ← 0
x ← 1 y ← 1
· · · ← y , y = 0 · · · ← x , x = 0

Table: Initially, x = y = 0. Is this program history SC? Coherent? P-RAM?

Not SC, but it is P-RAM and Coherent.

S.Zuckerman CPEG852 – Fall ’15 – Memory Consistency Models 27 / 45



Is P-RAM Weaker than Coherence (or vice-versa)?

Thread 0 Thread 1
x ← 0 y ← 0
x ← 1 y ← 1
· · · ← y , y = 0 · · · ← x , x = 0

Table: Initially, x = y = 0. Is this program history SC? Coherent? P-RAM?

Not SC, but it is P-RAM and Coherent.

S.Zuckerman CPEG852 – Fall ’15 – Memory Consistency Models 27 / 45



Is P-RAM Weaker than Coherence (or vice-versa)?

Thread 0 Thread 1
x ← 0
x ← 1
y ← 2 · · · ← y , y = 2

· · · ← x , x = 0

Table: Initially, x = y = 0. Is this program history SC? Coherent? P-RAM?

Not SC, not P-RAM.

S.Zuckerman CPEG852 – Fall ’15 – Memory Consistency Models 28 / 45



Is P-RAM Weaker than Coherence (or vice-versa)?

Thread 0 Thread 1
x ← 0
x ← 1
y ← 2 · · · ← y , y = 2

· · · ← x , x = 0

Table: Initially, x = y = 0. Is this program history SC? Coherent? P-RAM?

Not SC, not P-RAM.

S.Zuckerman CPEG852 – Fall ’15 – Memory Consistency Models 28 / 45



Is P-RAM Weaker than Coherence (or vice-versa)?

Thread 0 Thread 1
x ← 0 x ← 1
· · · ← x , x = 1 · · · ← x , x = 0

Table: Initially, x = y = 0. Is this program history SC? Coherent? P-RAM?

Not SC, not coherent.

S.Zuckerman CPEG852 – Fall ’15 – Memory Consistency Models 29 / 45



Is P-RAM Weaker than Coherence (or vice-versa)?

Thread 0 Thread 1
x ← 0 x ← 1
· · · ← x , x = 1 · · · ← x , x = 0

Table: Initially, x = y = 0. Is this program history SC? Coherent? P-RAM?

Not SC, not coherent.

S.Zuckerman CPEG852 – Fall ’15 – Memory Consistency Models 29 / 45



Processor Consistency
(Goodman, 1989; Ahamad et al., 1993)

A system is PC if

I it is coherent

I it is P-RAM

I Both conditions must be true simultaneously

PC is supposedly easier to implement than SC

S.Zuckerman CPEG852 – Fall ’15 – Memory Consistency Models 30 / 45



Another Example

Thread 0 Thread 1 Thread 2
x ← 0
y ← 0 · · · ← y , y = 0

x ← 1 · · · ← x , x = 1
· · · ← x , x = 0

Table: Initially, x = y = 0. Is this program history SC? Coherent? P-RAM? PC?

Not SC, not PC, but P-RAM or coherent.

S.Zuckerman CPEG852 – Fall ’15 – Memory Consistency Models 31 / 45



Another Example

Thread 0 Thread 1 Thread 2
x ← 0
y ← 0 · · · ← y , y = 0

x ← 1 · · · ← x , x = 1
· · · ← x , x = 0

Table: Initially, x = y = 0. Is this program history SC? Coherent? P-RAM? PC?

Not SC, not PC, but P-RAM or coherent.

S.Zuckerman CPEG852 – Fall ’15 – Memory Consistency Models 31 / 45



Outline

1 A Short Recap: Introduction to Memory Models
Overview

2 Addressing Mode

3 Memory Consistency Models
A Motivating Example
Uniform Memory Consistency Models

Strongest MCMs
Weaker Uniform MCMs

Non-Uniform Memory Consistency Models
Hardware-Oriented MCMs
Software- and Programmer-Oriented MCMs

Conclusion On MCMs

S.Zuckerman CPEG852 – Fall ’15 – Memory Consistency Models 32 / 45



The Difference with Previous Models

I Previous models tried to define an order for memory operations,
regardless of their role in a program whatsoever

I Non-uniform MCMs make a difference between synchronizing memory
operations and ordinary ones

S.Zuckerman CPEG852 – Fall ’15 – Memory Consistency Models 33 / 45



Weak Consistency (Dubois, Scheurich, and Briggs, 1986)
Weak Ordering (S. V. Adve and Hill, n.d.)

A system is WC/WO if

I all synchronizing accesses have performed before any ordinary access
(load or store) is allowed to perform, and

I all ordinary accesses (load or store) have performed before any
synchronizing access is allowed to perform

I synchronizing accesses are SC

S.Zuckerman CPEG852 – Fall ’15 – Memory Consistency Models 34 / 45



Yet Another Example

Thread 0 Thread 1
y ← 2 x ← 1

z
sync← 3 z

sync← 4
· · · ← x , x = 0 · · · ← y , y = 2

Table: Initially, x = y = 0. Is this WC?

No.

S.Zuckerman CPEG852 – Fall ’15 – Memory Consistency Models 35 / 45



Yet Another Example

Thread 0 Thread 1
y ← 2 x ← 1

z
sync← 3 z

sync← 4
· · · ← x , x = 0 · · · ← y , y = 2

Table: Initially, x = y = 0. Is this WC? No.

S.Zuckerman CPEG852 – Fall ’15 – Memory Consistency Models 35 / 45



Release Consistency (Kourosh Gharachorloo et al., 1990)

RC refines synchronizing accesses into two types: acquire and release.
They are used to label instructions (Gharachorloo speaks about properly
labeled programs). A system is RC if:

I Ordinary operations issued before an acquire operation can bypass it
and perform (or complete) after it. Ordinary operations that were
issued after an acquire must also perform after .

I Ordinary operations issued before a release operation must perform
(or complete) before it does. Ordinary operations that were issued
after a release can perform before it does.

I Synchronizing accesses (acquire or release) are SC

S.Zuckerman CPEG852 – Fall ’15 – Memory Consistency Models 36 / 45



More Examples
See (S. Adve, Pai, and Ranganathan, 1999)

Thread 0 Thread 1
Data1 = 64 while(Flag != 1) ;

Data2 = 55 reg1 = Data1

Flag = 1 reg2 = Data2

Table: Ex1: What are the legal values in SC? PC? WC? RC?

Solution

SC,PC reg1 = 64 ; reg2 = 55

WC,RC reg1 = 64 or 0 ; reg2 = 55 or 0

S.Zuckerman CPEG852 – Fall ’15 – Memory Consistency Models 37 / 45



More Examples
See (S. Adve, Pai, and Ranganathan, 1999)

Thread 0 Thread 1
Data1 = 64 while(Flag != 1) ;

Data2 = 55 reg1 = Data1

Flag = 1 reg2 = Data2

Table: Ex1: What are the legal values in SC? PC? WC? RC?

Solution

SC,PC reg1 = 64 ; reg2 = 55

WC,RC reg1 = 64 or 0 ; reg2 = 55 or 0

S.Zuckerman CPEG852 – Fall ’15 – Memory Consistency Models 37 / 45



More Examples
See (S. Adve and K. Gharachorloo, 1996)

Thread 0 Thread 1
Flag1 = 1 Flag2 = 1

reg1 = Flag2 reg2 = Flag1

if reg1 == 0 if reg2 == 0

critical section critical section

Table: Ex2: What are the legal values in SC? PC? WC? RC?

Solution

SC Both reg1 and reg2 cannot be 0 (at the same time)

PC,WC,RC reg1 = 0 or 1 ; reg2 = 0 or 1

S.Zuckerman CPEG852 – Fall ’15 – Memory Consistency Models 38 / 45



More Examples
See (S. Adve and K. Gharachorloo, 1996)

Thread 0 Thread 1
Flag1 = 1 Flag2 = 1

reg1 = Flag2 reg2 = Flag1

if reg1 == 0 if reg2 == 0

critical section critical section

Table: Ex2: What are the legal values in SC? PC? WC? RC?

Solution

SC Both reg1 and reg2 cannot be 0 (at the same time)

PC,WC,RC reg1 = 0 or 1 ; reg2 = 0 or 1

S.Zuckerman CPEG852 – Fall ’15 – Memory Consistency Models 38 / 45



The C++ Memory Model

Very easy to understand:

I Synchronizing accesses (through the atomic keyword) are SC

I any incorrectly synchronized behavior implies an undefined behavior,

I . . . which really means by issuing a data-race you can have initiated a
new TCP connection in order to order 20 elephants to be delivered by
next Saturday

S.Zuckerman CPEG852 – Fall ’15 – Memory Consistency Models 39 / 45



The C++ Memory Model

Very easy to understand:

I Synchronizing accesses (through the atomic keyword) are SC

I any incorrectly synchronized behavior implies an undefined behavior,

I . . . which really means by issuing a data-race you can have initiated a
new TCP connection in order to order 20 elephants to be delivered by
next Saturday

S.Zuckerman CPEG852 – Fall ’15 – Memory Consistency Models 39 / 45



Outline

1 A Short Recap: Introduction to Memory Models
Overview

2 Addressing Mode

3 Memory Consistency Models
A Motivating Example
Uniform Memory Consistency Models

Strongest MCMs
Weaker Uniform MCMs

Non-Uniform Memory Consistency Models
Hardware-Oriented MCMs
Software- and Programmer-Oriented MCMs

Conclusion On MCMs

S.Zuckerman CPEG852 – Fall ’15 – Memory Consistency Models 40 / 45



A Brief Recap

S.Zuckerman CPEG852 – Fall ’15 – Memory Consistency Models 41 / 45



What to take home

I A memory consistency model defines which memory operations are
allowed, in which order

I It concerns both hardware and software points of view

I The weaker the MCM,

I the more optimizations can be performed
I the more scalable it is
I the heavier it is on a programmer’s shoulders (or the more clever the

compiler and runtime systems must be)

S.Zuckerman CPEG852 – Fall ’15 – Memory Consistency Models 42 / 45



If You Want to Know More. . .

I S.V. Adve and K. Gharachorloo (1996). “Shared memory consistency
models: a tutorial”. In: Computer 29.12, pp. 66–76. issn:
0018-9162. doi: 10.1109/2.546611

I David Mosberger (1993). “Memory consistency models”. In:
SIGOPS Oper. Syst. Rev. 27 (1), pp. 18–26. issn: 0163-5980. doi:
http://doi.acm.org/10.1145/160551.160553. url:
http://doi.acm.org/10.1145/160551.160553

I John L Hennessy and David A Patterson (2011). Computer
Architecture: A Quantitative Approach. Morgan Kaufmann. isbn:
9780123838728

S.Zuckerman CPEG852 – Fall ’15 – Memory Consistency Models 43 / 45

http://dx.doi.org/10.1109/2.546611
http://dx.doi.org/http://doi.acm.org/10.1145/160551.160553
http://doi.acm.org/10.1145/160551.160553


References I

I S.V. Adve and K. Gharachorloo (1996). “Shared memory consistency models: a tutorial”.
In: Computer 29.12, pp. 66–76. issn: 0018-9162. doi: 10.1109/2.546611

I David Mosberger (1993). “Memory consistency models”. In: SIGOPS Oper. Syst. Rev.
27 (1), pp. 18–26. issn: 0163-5980. doi:
http://doi.acm.org/10.1145/160551.160553. url:
http://doi.acm.org/10.1145/160551.160553

I Jeremy Manson, William Pugh, and Sarita V. Adve (2005). “The Java memory model”.
In: SIGPLAN Not. 40 (1), pp. 378–391. issn: 0362-1340. doi:
http://doi.acm.org/10.1145/1047659.1040336. url:
http://doi.acm.org/10.1145/1047659.1040336

I Hans-J. Boehm and Sarita V. Adve (2008). “Foundations of the C++ concurrency
memory model”. In: Proceedings of the 2008 ACM SIGPLAN conference on
Programming language design and implementation. PLDI ’08. Tucson, AZ, USA: ACM,
pp. 68–78. isbn: 978-1-59593-860-2. doi:
http://doi.acm.org/10.1145/1375581.1375591. url:
http://doi.acm.org/10.1145/1375581.1375591

I Phillip W. Hutto and Mustaque Ahamad (1990). “Slow Memory: Weakening Consistency
to Enchance Concurrency in Distributed Shared Memories”. In: ICDCS, pp. 302–309

I Guang R. Gao and Vivek Sarkar (1995). “Location Consistency: Stepping Beyond the
Memory Coherence Barrier”. In: ICPP (2), pp. 73–76

S.Zuckerman CPEG852 – Fall ’15 – Memory Consistency Models 44 / 45

http://dx.doi.org/10.1109/2.546611
http://dx.doi.org/http://doi.acm.org/10.1145/160551.160553
http://doi.acm.org/10.1145/160551.160553
http://dx.doi.org/http://doi.acm.org/10.1145/1047659.1040336
http://doi.acm.org/10.1145/1047659.1040336
http://dx.doi.org/http://doi.acm.org/10.1145/1375581.1375591
http://doi.acm.org/10.1145/1375581.1375591


References II

I Guang R. Gao and Vivek Sarkar (1997). “On the Importance of an End-To-End View of
Memory Consistency in Future Computer Systems”. In: Proceedings of the International
Symposium on High Performance Computing. London, UK: Springer-Verlag, pp. 30–41.
isbn: 3-540-63766-4. url: http://portal.acm.org/citation.cfm?id=646346.690059

I Guang R. Gao and Vivek Sarkar (2000). “Location Consistency-A New Memory Model
and Cache Consistency Protocol”. In: IEEE Trans. Comput. 49 (8), pp. 798–813. issn:
0018-9340. doi: 10.1109/12.868026. url:
http://portal.acm.org/citation.cfm?id=354862.354865

I Chen Chen et al. (2010). “A Study of a Software Cache Implementation of the OpenMP
Memory Model for Multicore and Manycore Architectures”. In: Euro-Par (2),
pp. 341–352

S.Zuckerman CPEG852 – Fall ’15 – Memory Consistency Models 45 / 45

http://portal.acm.org/citation.cfm?id=646346.690059
http://dx.doi.org/10.1109/12.868026
http://portal.acm.org/citation.cfm?id=354862.354865

	A Short Recap: Introduction to Memory Models
	Overview

	Addressing Mode
	Memory Consistency Models
	A Motivating Example
	Uniform Memory Consistency Models
	Non-Uniform Memory Consistency Models
	Conclusion On MCMs


