
CPEG 852 — Advanced Topics in Computing
Systems

Introduction to Transactional Memory

Stéphane Zuckerman

Computer Architecture & Parallel Systems Laboratory
Electrical & Computer Engineering Dept.

University of Delaware
140 Evans Hall Newark,DE 19716, United States

szuckerm@udel.edu

December 1, 2015

S.Zuckerman CPEG852 – Transactional Memory 1 / 76

Outline

1 The Trouble With Critical Sections
Why Do We Need Critical Sections?
Locking and Critical Sections to Access Complex Objects

2 Transactional Memory
Overview
Transactions
Transactional Memory: Instructions
Implementation Details

3 Software Transactional Memory
Introduction to Software Transactional Memory
STM in Details
Is STM Just a Research Toy?

4 Hardware Implementations of Transactional Memory

5 Summary

S.Zuckerman CPEG852 – Transactional Memory 2 / 76

Outline

1 The Trouble With Critical Sections
Why Do We Need Critical Sections?
Locking and Critical Sections to Access Complex Objects

2 Transactional Memory
Overview
Transactions
Transactional Memory: Instructions
Implementation Details

3 Software Transactional Memory
Introduction to Software Transactional Memory
STM in Details
Is STM Just a Research Toy?

4 Hardware Implementations of Transactional Memory

5 Summary

S.Zuckerman CPEG852 – Transactional Memory 3 / 76

A Simple Motivating Example

Insert pseudo-code here

S.Zuckerman CPEG852 – Transactional Memory 4 / 76

A Simple Example
A C Implementation

/∗
∗ D e s c r i p t i o n : a t o m i c a l l y adds an uns igned long
∗ v a l u e to an uns igned long word i n memory
∗ I n p u t s :
∗ addr : a d d r e s s where to add the new v a l u e
∗ mutex : l o c k to use to guarantee a c c e s s to the memory word
∗ to modify
∗ v a l u e : a read−o n l y v a l u e to add to the memory word
∗ Output :
∗ The p r e v i o u s v a l u e c o n t a i n e d i n the uns igned long memory word
∗/

uns igned long
atomic_add_ul(uns igned long * addr , pthread mutex t * mutex ,

const uns igned long value)

{

uns igned long old_val = *addr;

p t h r e a d m u t e x l o c k (mutex); // Enter c r i t i c a l s e c t i o n
*addr += value; // I n c r i t i c a l s e c t i o n
pth read mut ex un l ock (mutex); // Leave c r i t i c a l s e c t i o n
r e t u r n old_val;

}

S.Zuckerman CPEG852 – Transactional Memory 5 / 76

A Simple Example
A C Implementation – Busy Waiting

uns igned long
atomic_add_ul_busywait(uns igned long * addr , v o l a t i l e u i n t 6 4 t * lock ,

const uns igned long value)

{

// Enter c r i t i c a l s e c t i o n
w h i l e (s y n c b o o l c o m p a r e a n d s w a p (addr , 0UL, 1UL) == f a l s e)

; // do no th in g

// I n the c r i t i c a l s e c t i o n
uns igned long old_val = *addr;

*addr += value;

*lock = 0; // Leave the c r i t i c a l s e c t i o n

r e t u r n old_val;

}

S.Zuckerman CPEG852 – Transactional Memory 6 / 76

A Simple Example
Busy Waiting + Exponential Backoff

#i n c l u d e <unistd.h> // f o r u s l e e p (3)
#d e f i n e EXP_BACKOFF_INIT_VAL 2

uns igned long
atomic_add_ul_exp_backoff(uns igned long * addr ,

v o l a t i l e u i n t 6 4 t * lock , const uns igned long value)

{

// Enter the c r i t i c a l s e c t i o n
u s e c o n d s t backoff = EXP_BACKOFF_INIT_VAL;

w h i l e (s y n c b o o l c o m p a r e a n d s w a p (addr , 0UL, 1UL) == f a l s e) {

usleep (backoff); // do n oth in g f o r ” b a c k o f f ” microseconds
backoff *= 2; // double s l e e p i n g time f o r next attempt

}

// I n the c r i t i c a l s e c t i o n
uns igned long old_val = *addr;

*addr += value;

*lock = 0; // Leave c r i t i c a l s e c t i o n

r e t u r n old_val;

}
S.Zuckerman CPEG852 – Transactional Memory 7 / 76

A Simple Example
How It Should Be Really Done in this Case

uns igned long
atomic_add_ul_instr

(

uns igned long * addr ,

const uns igned long value

)

{

r e t u r n s y n c f e t c h a n d a d d (addr ,value);

}

S.Zuckerman CPEG852 – Transactional Memory 8 / 76

Abstracting Locks Into Critical Sections

I Critical sections using locks follow a rather similar pattern:
1 Lock region (i.e., prevent other threads from entering the region)
2 Modify shared memory locations
3 Unlock region (i.e., allow other threads to enter the region)

I It should be possible to create a semantic construct that enables the
programmer to express that only a single thread is allowed in a
specific code region

I However, there are still many challenges to overcome:

I Should the implementation of the critical section use a single global
lock?

I If not, how many locks should be used?
I Do we need locks at all?

S.Zuckerman CPEG852 – Transactional Memory 9 / 76

Critical Sections in Java
synchronized in a block of code

p u b l i c c l a s s AtomicCounter

{

p u b l i c s t a t i c v o i d
atomicAdd(SomeClassWithAnIntegerInside scwai , i n t value)

{

s y n c h r o n i z e d (scwaii)

{

scwai.setInteger(scwai.getInteger () + value);

}

}

}

S.Zuckerman CPEG852 – Transactional Memory 10 / 76

Critical Sections in Java
synchronized to Qualify a Method

p u b l i c c l a s s AtomicCounter

{

p u b l i c s t a t i c s y n c h r o n i z e d v o i d
atomicAdd(SomeClassWithAnIntegerInside scwai , i n t value)

{

scwai.setInteger(scwai.getInteger () + value);

}

}

S.Zuckerman CPEG852 – Transactional Memory 11 / 76

Critical Sections in OpenMP
Anonymous Regions

uns igned long
atomic_add_ul_omp(uns igned long * addr , const uns igned long value)

{

pragma omp c r i t i c a l
{ // Enter c r i t i c a l r e g i o n

*addr += value; // I n c r i t i c a l r e g i o n
} // Leave c r i t i c a l r e g i o n

}

S.Zuckerman CPEG852 – Transactional Memory 12 / 76

Critical Sections in OpenMP
Named Regions

uns igned long
atomic_add_ul_omp_named(uns igned long * addr , const uns igned long value)

{

pragma omp c r i t i c a l XADD

{ // Enter c r i t i c a l r e g i o n named ”XADD”
*addr += value; // I n c r i t i c a l r e g i o n named ”XADD”

} // Leave c r i t i c a l r e g i o n named ”XADD”
}

S.Zuckerman CPEG852 – Transactional Memory 13 / 76

Atomic Operations in OpenMP

uns igned long
atomic_add_ul_omp_atomic(uns igned long * addr , const uns igned long value)

{

pragma omp atomic
*addr += value;

}

S.Zuckerman CPEG852 – Transactional Memory 14 / 76

Locking Complex Data Structures

Let’s assume we are accessing an array of integer values. The array can be
modified as follows.

v o i d
access_array(i n t * array , s i z e t idx)

{

array[idx] = (array[idx -1] + array[idx] + array[idx+1]) / 3;

}

S.Zuckerman CPEG852 – Transactional Memory 15 / 76

Locking Complex Data Structures

In a concurrent environment, there is a need to protect the cells while they
are being used (i.e., we want to avoid data races).

v o i d
access_array(i n t * array , s i z e t idx , pthread mutex t * m)

{

p t h r e a d m u t e x l o c k (m);

array[idx] = (array[idx -1] + array[idx] + array[idx+1]) / 3;

pth read mut ex un l ock (m);

}

. . . But now we must lock the whole array to access only three elements!

S.Zuckerman CPEG852 – Transactional Memory 16 / 76

Locking Complex Data Structures

In a concurrent environment, there is a need to protect the cells while they
are being used (i.e., we want to avoid data races).

v o i d
access_array(i n t * array , s i z e t idx , pthread mutex t * m)

{

p t h r e a d m u t e x l o c k (m);

array[idx] = (array[idx -1] + array[idx] + array[idx+1]) / 3;

pth read mut ex un l ock (m);

}

. . . But now we must lock the whole array to access only three elements!

S.Zuckerman CPEG852 – Transactional Memory 16 / 76

Locking Complex Data Structures I
Using Fine-Grain Locking

What if we associated each element of the array with a lock? This way, it
would be a simple matter of acquiring only those elements necessary to
update the value of one element.

t y p e d e f s t r u c t {

p t h r e a d t * lock;

i n t array;

} LockedInteger;

#d e f i n e LOCK(m) p t h r e a d m u t e x l o c k ((m)->lock)

#d e f i n e UNLOCK(m) pt hrea d mut ex un l ock ((m)->lock)

v o i d access_array(LockedInteger* array , s i z e t idx) {

LOCK(array[idx -1]); LOCK(array[idx]); LOCK(array[idx +1]);

array[idx]->value = (array[idx -1]->value

+ array[idx]->value

+ array[idx+1]->value) / 3;

UNLOCK(array[idx -1]); UNLOCK(array[idx]); UNLOCK(array[idx +1]);

}

S.Zuckerman CPEG852 – Transactional Memory 17 / 76

Locking Complex Data Structures II
Using Fine-Grain Locking

I Much faster (reduces contention on a single lock, increases
parallelism, . . .)

I . . . But now we must allocate a lot of space just to access small
4-byte words!

I But with more complex/bigger data structures, this becomes less of a
problem

I Still, we do need to check for false-sharing, data alignment, and other
tedious things to speed-up accesses.

I Reduces contention, but now requires to perform three locking
operations! This can become very expensive!

I Can we do better?

S.Zuckerman CPEG852 – Transactional Memory 18 / 76

Locking Complex Data Structures
A Better Fine-Grain Locking Method?

t y p e d e f s t r u c t {

p t h r e a d t * lock;

i n t array;

} LockedInteger;

#d e f i n e LOCK(m) p t h r e a d m u t e x l o c k ((m)->lock)

#d e f i n e UNLOCK(m) pt hrea d mut ex un l ock ((m)->lock)

v o i d access_array(LockedInteger* array , s i z e t idx) {

LOCK(array[idx -1]); LOCK(array[idx +1]);

array[idx]->value = (array[idx -1]->value

+ array[idx]->value

+ array[idx+1]->value) / 3;

UNLOCK(array[idx -1]); UNLOCK(array[idx +1]);

}

This is a false good idea! (Why?)

S.Zuckerman CPEG852 – Transactional Memory 19 / 76

Locking Complex Data Structures
A Better Fine-Grain Locking Method?

t y p e d e f s t r u c t {

p t h r e a d t * lock;

i n t array;

} LockedInteger;

#d e f i n e LOCK(m) p t h r e a d m u t e x l o c k ((m)->lock)

#d e f i n e UNLOCK(m) pt hrea d mut ex un l ock ((m)->lock)

v o i d access_array(LockedInteger* array , s i z e t idx) {

LOCK(array[idx -1]); LOCK(array[idx +1]);

array[idx]->value = (array[idx -1]->value

+ array[idx]->value

+ array[idx+1]->value) / 3;

UNLOCK(array[idx -1]); UNLOCK(array[idx +1]);

}

This is a false good idea! (Why?)

S.Zuckerman CPEG852 – Transactional Memory 19 / 76

Another Example: Linked Lists I
Sequential

t y p e d e f s t r u c t list_elt_s {

s t r u c t list_elt_s* next;

i n t value;

} ListElt;

t y p e d e f s t r u c t linked_list_s {

ListElt* head;

s i z e t n_elts;

} LinkedList;

ListElt g_FIRST_ELT;

LinkedList g_LINKED_LIST = {

.start = &g_FIRST_ELT;

.n_elts = 0;

.lock = g_LIST_LOCK;

};

boo l contains(LinkedList* list , const i n t what) {

boo l found = f a l s e ;

S.Zuckerman CPEG852 – Transactional Memory 20 / 76

Another Example: Linked Lists II
Sequential

f o r (ListElt* cur = list ->head; !found && cur; cur = cur ->next)

i f (cur ->value == what)

found = t r u e ;

r e t u r n found;

}

S.Zuckerman CPEG852 – Transactional Memory 21 / 76

Another Example: Linked Lists I
Coarse-Grain Locking

t y p e d e f s t r u c t list_elt_s {

s t r u c t list_elt_s* next;

i n t value;

} ListElt;

t y p e d e f s t r u c t linked_list_s {

ListElt* head;

s i z e t n_elts;

pthread mutex t * lock;

} LinkedList;

#d e f i n e LOCK(m) p t h r e a d m u t e x l o c k ((m)->lock)

#d e f i n e TRYLOCK(m) pthread_mutex_trylock ((m)->lock)

#d e f i n e UNLOCK(m) pt hrea d mut ex un l ock ((m)->lock)

LinkedElt g_FIRST_ELT;

pthread mutex t g_LIST_LOCK = PTHREAD_MUTEX_INITIALIZER;

LinkedList g_LINKED_LIST = {

.start = &g_FIRST_ELT;

.n_elts = 0;

.lock = g_LIST_LOCK;

S.Zuckerman CPEG852 – Transactional Memory 22 / 76

Another Example: Linked Lists II
Coarse-Grain Locking

};

boo l contains(LinkedList* list , const i n t what) {

boo l found = f a l s e ;

LOCK(list);

f o r (ListElt* cur = list ->head; !found && cur; cur = cur ->next)

i f (cur ->value == what)

found = t r u e ;
UNLOCK(list);

r e t u r n found;

}

S.Zuckerman CPEG852 – Transactional Memory 23 / 76

Another Example: Linked Lists I
Fine-Grain Locking

t y p e d e f s t r u c t list_elt_s {

s t r u c t list_elt_s* next;

i n t value;

pthread mutex t lock;

} ListElt;

t y p e d e f s t r u c t linked_list_s {

ListElt* head;

s i z e t n_elts;

// No need f o r a g l o b a l l o c k anymore . . .
} LinkedList;

#d e f i n e LOCK(m) p t h r e a d m u t e x l o c k ((m)->lock)

#d e f i n e TRYLOCK(m) pthread_mutex_trylock ((m)->lock)

#d e f i n e UNLOCK(m) pt hrea d mut ex un l ock ((m)->lock)

LinkedElt g_FIRST_ELT;

pthread mutex t g_LIST_LOCK = PTHREAD_MUTEX_INITIALIZER;

LinkedList g_LINKED_LIST = {

.start = &g_FIRST_ELT;

.n_elts = 0;

S.Zuckerman CPEG852 – Transactional Memory 24 / 76

Another Example: Linked Lists II
Fine-Grain Locking

// No need f o r a g l o b a l l o c k anymore . . .
};

boo l contains(LinkedList* list , const i n t what) {

boo l found = f a l s e ;

ListElt *cur = NULL ,

*tmp = NULL;

LOCK(list ->head);

f o r (cur = list ->head; !found && cur; cur = tmp) {

found = cur ->value == what;

i f (!found) {

LOCK(cur ->next);

tmp = cur ->next;

UNLOCK(cur);

}

}

UNLOCK(cur);

r e t u r n found;

}

S.Zuckerman CPEG852 – Transactional Memory 25 / 76

Another Example: Linked Lists III
Fine-Grain Locking

S.Zuckerman CPEG852 – Transactional Memory 26 / 76

Implementing Critical Sections With Locks I
A Summary

Locks are a natural solution to deal with thread synchronization when
there is a need to ensure only one thread at a time can affect a set of
shared memory locations.

Coarse-Grain Locking

I Pros:

I Simple to implement
I Does not need language constructs
I Easy to get a correct solution

I Cons:

I Simplistic – each time a complex data structure must be
accessed/modified, there is a need to lock its entirety

I Does not scale very well – if multiple threads try to access the locked
data structure, they are all queued

S.Zuckerman CPEG852 – Transactional Memory 27 / 76

Implementing Critical Sections With Locks II
A Summary

Fine-Grain Locking

I Pros:

I Good scalability: by extending the “lockable surface” threads tend to
compete less often to access complex data structures

I Does not need language constructs

I Cons:
I Complex access patterns require complex locking solutions

I Several locks must be acquired, and a specific order must be respected
at all times to avoid deadlocks

I If too fine-grained, locking can become detrimental in terms of memory
management (locality, total required space, etc.)

S.Zuckerman CPEG852 – Transactional Memory 28 / 76

Implementing Critical Sections With Locks III
A Summary

A Possible Alternative to Locking: Lock-Free Data Structures

A shared data structure is lock-free if it does not require mutual exclusion.

I Lock-free data structures avoid priority inversion problems, convoying,
and deadlocks.

I They rely on the use of atomic operations, e.g., read-modify-write
types of operations which are performed as an uninterruptible
sequence.

I Examples: fetch-and-add, fetch-and-sub, compare-and-swap; etc.

I Lock-free data structures and the algorithms that exploit them
provide strong guarantees, such as forward progress

I At least one thread will make some progress during its execution

S.Zuckerman CPEG852 – Transactional Memory 29 / 76

Outline

1 The Trouble With Critical Sections
Why Do We Need Critical Sections?
Locking and Critical Sections to Access Complex Objects

2 Transactional Memory
Overview
Transactions
Transactional Memory: Instructions
Implementation Details

3 Software Transactional Memory
Introduction to Software Transactional Memory
STM in Details
Is STM Just a Research Toy?

4 Hardware Implementations of Transactional Memory

5 Summary

S.Zuckerman CPEG852 – Transactional Memory 30 / 76

Transactional Memory I
Transactions

All that follows is taken from the original paper M. Herlihy and Moss
1993. In the following, it is assumed threads execute only one transaction
at a time.

Definition: Transaction

A transaction is a finite sequence of machine instructions, executed by a
single thread, satisfying serializability and atomicity.

Definition: Serializability

Transactions appear to execute serially, meaning that the steps of one
transaction never appear to be interleaved with the steps of another.
Committed transactions are never observed by different processors to
execute in different orders.

S.Zuckerman CPEG852 – Transactional Memory 31 / 76

Transactional Memory II
Transactions

Definition: Atomicity

Each transaction makes a sequence of tentative changes to shared
memory. When the transaction completes, it either commits, making its
changes visible to other threads (effectively) instantaneously, or it aborts,
causing its changes to be discarded.

S.Zuckerman CPEG852 – Transactional Memory 32 / 76

Transactional Memory Instruction Set I

Memory Instructions

I Load-transactional (LT) – reads the value of a shared memory
location into a private register.

I Load-transactional (LTX) – reads the value of a shared memory
location into a private register, “hinting” that the location is likely to
be updated.

I Store-transactional (ST) – tentatively writes a value from a private
register to a shared memory location. This new value does not
become visible to other processors until the transaction successfully
commits.

S.Zuckerman CPEG852 – Transactional Memory 33 / 76

Transactional Memory Instruction Set II

Transaction Management Instructions

Commit (COMMIT) – attempts to make the transaction’s tentative changes
permanent.

I If it succeeds, all memory locations contained in the transaction’s
write set are made visible to all other threads. A COMMIT succeeds
only if:

I No other transaction has updated any location in its data set, and
I No other transaction has read any location in its write set.

I If it fails, all changes to the write set are discarded.

Abort (ABORT) discards all updates to the write set.
Validate (VALIDATE) tests the current transaction status.

I Upon success: the transaction has not aborted. It may still fail later.

I Upon failure: the transaction has aborted. All tentative updates are
discarded.

S.Zuckerman CPEG852 – Transactional Memory 34 / 76

Transactional Memory Instruction Set III

Goal: to enable the (low-level) programmer to create read-modify-write
constructs which are not limited to single-word or single-instruction types
of operations.
Question: How should the system react when ordinary and transactional
operations are mixed together?

S.Zuckerman CPEG852 – Transactional Memory 35 / 76

How to Use Transactional Memory Constructs

To help implement lock-free data structures, the following sequence would
typically be, using transactional memory operations:

1 Use LT or LTX to read from a set of locations

2 Use VALIDATE to check that the values read are consistent

3 Use ST to modify a set of locations

4 Use COMMIT to make the changes permanent. If either VALIDATE or
COMMIT fails, return to step (1).

S.Zuckerman CPEG852 – Transactional Memory 36 / 76

Implementing Transactional Memory I

Implementation Overview

Transactional memory “piggy backs” on regular caches, and extends them
a bit.

I Non-transactional (ordinary) operations use the same traditional
caches

I Same cache controllers
I Same coherence protocol

I Need some custom hardware support for transactional operations

I Only “primary” (first-level, or L1) caches need to be modified

I All COMMIT or ABORT operations, and in general transactions-related
operations are kept local to the L1 cache.

I No communication required with other caches

S.Zuckerman CPEG852 – Transactional Memory 37 / 76

Implementing Transactional Memory II

Taking Advantage of Existing Cache Mechanisms

I Exploitation of existing cache protocols, in particular access rights
(e.g., non-exclusive (shared) reads, or exclusive writes). At any time,
a memory location is either

1 Not immediately accessible by any processor – in memory only
2 Accessible non-exclusively by one or more processors
3 Accessible exclusively by a single processor

I If a protocol can detect the previous types of accesses, they can also
detect transactional vs. non-transactional accesses, and if a
transaction should be aborted.

I If a transaction conflict is detected, all transactions that try to revoke
access of a transactional entry from another active transaction

I This assumes that there are timer (or other) interrupts which will abort
a stalled transaction after a fixed duration (Question: Why do we need
this?)

S.Zuckerman CPEG852 – Transactional Memory 38 / 76

Example Implementation
A Snoopy Cache Solution

Cache Architecture Overview

I Use two L1 caches:

I Regular cache: same as found in other processors. Stores memory
locations accessed through non-transactional operations.

I Transactional cache: Stores memory locations accessed through
transactional operations.

I These caches are exclusive: if a memory location is stored in a regular
cache, it cannot be found in the transactional cache, and vice-versa.

I Other (shared) caches can exist beyond L1s.

I The (small) transactional cache holds all tentative writes, without
propagating them to other processors or to main memory unless the
transaction commits.

I If the transaction aborts, the lines holding the tentative writes are
dropped (invalidated)

I If it does commit, the lines may be snooped by other processors,
written back to memory, etc.

S.Zuckerman CPEG852 – Transactional Memory 39 / 76

Example Implementation
A Snoopy Cache Solution

Cache Line States

Name Access Shared? Modified?
INVALID none — —
VALID R Yes No
DIRTY R, W No Yes

RESERVED R, W No No

Name Meaning
EMPTY Contains no data
NORMAL Contains committed data
XCOMMIT Discard on commit
XABORT Discard on abort

I A modified cache line sets it to XABORT

I When a COMMIT operation succeeds:

I All the relevant cache lines transition from XCOMMIT to EMPTY.
I All the relevant cache lines transition from XABORT to NORMAL.

I When a COMMIT fails, or an ABORT operation is issued:

I Entries marked as XABORT transition to EMPTY

I Entries marked as XCOMMIT transition to NORMAL

I EMPTY lines are first to be evicted when new lines must be cached. If there is none to be
found, NORMAL lines are then chosen.

I If an XCOMMIT line is marked as DIRTY, it must be written back.
S.Zuckerman CPEG852 – Transactional Memory 40 / 76

Example Implementation
A Snoopy Cache Solution

Bus Cycles

Uses traditional cache coherence cycles, and adds new cycles.

I T READ, T RFO and T WRITE are the transactional equivalent of READ,
READ-FOR-OWNERSHIP (RFO), and WRITE in cache coherence protocols.

I BUSY is a way to refuse transactional requests. It is useful in case there is a
very contended region.

I When a transaction receives a BUSY signal, it aborts and retries. This
prevents deadlocks or continual mutual aborts.

I Question: What potential problems may arise from this architectural
choice?

Processor Actions

I Each processor maintains two flags: TACTIVE and TSTATUS

I Transaction Active (TACTIVE) indicates if a transaction is in progress
I Transaction Status (TSTATUS) indicates if that transaction is active

(True) or aborted (False)

S.Zuckerman CPEG852 – Transactional Memory 41 / 76

Examples Using Transactional Memory
Shared Counter

#i n c l u d e <unistd.h> // f o r u s l e e p (3)

uns igned long
atomic_add_tm(uns igned long * addr , uns igned long value)

{

u s e c o n d s t backoff = BACKOFF_MIN;

uns igned long wait = 0, old_val;

boo l success = f a l s e ;

w h i l e (! success) {

old_val = LTX(addr);

ST(addr ,old_val+value);

i f (COMMIT()) {

success = t r u e ;
backoff = BACKOFF_MIN;

} e l s e {

usleep (backoff);

backoff *= 2;

}

}

r e t u r n old_val;

}

S.Zuckerman CPEG852 – Transactional Memory 42 / 76

Examples Using Transactional Memory I
Linked List

t y p e d e f s t r u c t list_elt_s {

s t r u c t list_elt_s* next;

i n t value;

} ListElt;

t y p e d e f s t r u c t linked_list_s {

ListElt* head;

s i z e t n_elts;

} LinkedList;

ListElt g_FIRST_ELT;

LinkedList g_LINKED_LIST = {

.start = &g_FIRST_ELT;

.n_elts = 0;

};

boo l contains(LinkedList* list , const i n t what) {

boo l found = f a l s e ,

success = f a l s e ;

u s e c o n d s t backoff = BACKOFF_INIT_VAL;

ListElt* cur = NULL ,

head = list ->head;

S.Zuckerman CPEG852 – Transactional Memory 43 / 76

Examples Using Transactional Memory II
Linked List

f o r (cur = TLX(head); !found && cur != NULL; cur = TLX(cur ->next)) {

w h i l e (! success) {

i f (VALIDATE()) {

i f (cur ->value == what)

found = t r u e ;
success = t r u e ;
backoff = BACKOFF_INIT_VAL;

} e l s e {

usleep(backoff);

backoff *= 2;

}

}

}

r e t u r n found;

}

S.Zuckerman CPEG852 – Transactional Memory 44 / 76

Outline

1 The Trouble With Critical Sections
Why Do We Need Critical Sections?
Locking and Critical Sections to Access Complex Objects

2 Transactional Memory
Overview
Transactions
Transactional Memory: Instructions
Implementation Details

3 Software Transactional Memory
Introduction to Software Transactional Memory
STM in Details
Is STM Just a Research Toy?

4 Hardware Implementations of Transactional Memory

5 Summary

S.Zuckerman CPEG852 – Transactional Memory 45 / 76

Why Implement Transactional Memory in Software?
Shavit and Touitou 1997

I At the end of the 1990’s, it became obvious that long and unknown
latencies were here to stay, both for single and multiple processor
systems.

I As a result, the use of traditional critical sections by means of locks
was deemed unsuitable by Shavit and Touitou.
I Limited parallelism
I Added contention on memory and interconnect
I Increased vulnerability to timing anomalies and processor failures

I To them, “the key to highly concurrent programming is ”. . . by
constructing classes of implementations that are non-blocking.”
I Non-blocking usually means lock-free or wait-free:

I Lock-free (or non-blocking): at least one thread makes forward
progress within a determined number of steps

I Wait-free: all threads make forward progress within a fixed number of
steps

I They are obtained by decreasing the number and size of critical
sections a multiprocessor program uses, sometimes down to no critical
section altogether

S.Zuckerman CPEG852 – Transactional Memory 46 / 76

Introduction to Software Transactional Memory I

Software Transactional Memory

I At the time STMs were proposed, there was no hardware
implementation available in any multi-processor system

I Most atomic operations that were available were of the LL/SC type.

I While STMs still have to rely on fine-grain locking or at least atomic
operations, they still allow a more flexible programming style

I Writing concurrent programs is supposedly easier with STMs

S.Zuckerman CPEG852 – Transactional Memory 47 / 76

Introduction to Software Transactional Memory II

Load-Link / Store-Conditional (LL/SC)

The LL/SC combination was proposed in many high-end processors, such
as the MIPS, DEC’s Alpha, and IBM’s PowerPC processors. They allow a
processor to update a memory location in two steps:

1 Load-Link (LL) loads the content of a memory location in a private
register. It tracks changes made to that location.

2 Store-Conditional attempts to write the content of some private
register at the chosen memory location loaded thanks to LL. It
succeeds only if nobody modified the location between the LL and SC

steps.

3 This allows arbitrary code to be executed between the LL and SC

steps.

4 If the LL/SC sequence is short enough, there is a good chance
conflicts are going to be minimal

5 If SC fails, it is up to the programmer to repeat the LL/SC sequence.

Hence, one of the major goals of software transactional memory is
productivity

S.Zuckerman CPEG852 – Transactional Memory 48 / 76

STM in a Nutshell

I The traditional way to ensure atomicity is by using locks

I Attempt to acquire a certain number of (memory) resources
I If the attempt fails, release all previously acquired resources (and most

often, retry)
I If the attempt succeeds, apply the requested operation Op, then

release the resources.
I Need to ensure there are no deadlocks: need to acquire resources in the

same order all the time

I This helps guarantee liveness
I Question: what if two threads try to acquire two different sets of

resources with overlapping resources?

I Additional liveness guarantee: In a faulty environment, every
transaction completes even if the thread which executes it has been
delayed, swapped out, or crashed.

I Use of helpers to achieve this
I Other transactions trying to acquire the same locations will attempt to

help the “faulty” transaction to complete its job.

S.Zuckerman CPEG852 – Transactional Memory 49 / 76

Sequential-to-non-blocking Translation

The Problem with Herlihy’s Method

I Original TM (Herlihy’s method):
I Use TM to implement a collection of changes to a series of shared

objects

I Effectively implements a multi-word compare-and-swap operation

I “Algorithm:”
1 Copy shared data in a new memory block
2 Apply changes
3 Attempt to switch the old and new data structures using LL/SC.

I It works for small data structures; not so much for bigger ones where
data may be tempered with much more frequently.

I Other methods were proposed to help TM deal with larger data
structures: Alemany and Felten 1992; Barnes 1993; LaMarca 1994;
Turek, Shasha, and Prakash 1992

S.Zuckerman CPEG852 – Transactional Memory 50 / 76

Resource Locking: The Cooperative Method

Definition: Cooperation

Whenever a process needs (depends on) a location already
locked by another process it helps the locking process to
complete its dependency chain.

Cooperation in Practice

Cooperation can work, but it has two major short-comings:

I Cooperation has a recursive structure—it leads to helping disjoint sets
of shared values

I A high percentage of of cooperative k-word compare-and-swap
operations fail but generate contention

STMs propose to use a transactional approach which still relies at times
on helping, but much less often than the cooperation method.

S.Zuckerman CPEG852 – Transactional Memory 51 / 76

Software Transactional Memory I

Transactional Memory: Recap (M. Herlihy and Moss 1993)

I Transaction: finite sequence of local and shared memory operations

I Operations: READ TRANSACTIONAL, WRITE TRANSACTIONAL

I Data set of a transaction: set of shared locations accessed by
transactional operations.

I Any transaction may fail

I If a transaction is successful, the modified shared locations are made
visible atomically

Definition: Software Transactional Memory (Shavit and Touitou 1997)

A software transactional memory (STM) is a shared object which
behaves like a memory that supports multiple changes to its
addresses by means of transactions.

S.Zuckerman CPEG852 – Transactional Memory 52 / 76

Software Transactional Memory II

Definition: Transaction

A transaction is a thread of control that applies a finite sequence
of primitive operations to memory.

A static transaction is a special form of transaction in which the
data set is known in advance.

Most synchronization procedures tend to belong to static transactions.

S.Zuckerman CPEG852 – Transactional Memory 53 / 76

Software Transactional Memory III

Wait-Free & Non-Blocking STMs

An STM is wait-free if any process which repeatedly attempts to
execute a given transaction terminates successfully after a finite
number of machine steps.

An STM is non-blocking if the repeated attempts to execute
some transaction by a process implies that some process (not
necessarily the same pone and with a possibly different
transaction) will terminate successfully after a finite number of
steps in the whole system.

An STM implementation is swap-tolerant if it is non-blocking
and it is assumed it cannot be infinitely swapped out many times.

S.Zuckerman CPEG852 – Transactional Memory 54 / 76

Concurrent System

I Concurrent system: collection of processes.

I Processes communicate through shared data structures: objects.
I Objects have sets of primitive operations which provide the only means

to manipulate that object
I Processes are a sequential thread of control.

I They apply a sequence of operations to objects by issuing an invocation
and receiving an associated response.

I history: Sequence of invocations & responses of some system
execution.
I A−→ B means that an operation A precedes an operation B if A’s

response occurs before B’s invocation as if it happened in real-time.

I Sequential history: all operations are immediately followed by their
associated response

I Two operations are concurrent =⇒ they are unrelated by the
“real-time” order.

I Legal concurrent orderings are defined according to the linearizability
property

S.Zuckerman CPEG852 – Transactional Memory 55 / 76

Linearizability
M. P. Herlihy and Wing 1990

Definition: Linearizability

Every concurrent history is “equivalent” to some legal sequential
history which is consistent with the partial real-time order
induced by the concurrent history.

Linearizable implementations have operations appear to take effect
atomically at some point between their invocation and corresponding
response.
Note: Linearizability is a local property.
Question: How is linearizability different from sequential consistency?

S.Zuckerman CPEG852 – Transactional Memory 56 / 76

How Well Does STM Perform? I

Shavit’s Original Implementation (Shavit and Touitou 1997)

I Outperforms Herlihy’s TM in simulations, BUT

I “[General] STM and other non-blocking techniques are inferior to
standard non-resilient lock-based methods such as
queue-locks Mellor-Crummey and Scott 1991

I Note that when resiliency is involved, STMs offer good/reasonable
performance

S.Zuckerman CPEG852 – Transactional Memory 57 / 76

Is STM Just a Research Toy?
The “Yes” Side (Cascaval et al. 2008)

I It has its uses in designing lock-free data structures: binary trees,
hash tables

I BUT: no large scale application makes use of them
I Conclusions based on the authors’ own optimized STM

implementation
I Major problems with STM systems:

I Overheads: too high overheads—even the most optimized ones.
I In particular, sequential overhead is much higher than their lock-based

systems counterparts
I Semantics: transaction semantics are weakened & complicated ⇒

programmer must be more careful. Consequences:
I Weak Atomicity: semantics of atomicity are weakened to allow

undetected conflicts with non-transactional accesses
I Privatization: not easy or even impossible to perform once data is

accessed transactionally
I Memory Reclamation: regular memory allocation must be replaced

with specific operations
I Legacy Binaries: STM needs to observe all memory operations—but

legacy code is already compiled
S.Zuckerman CPEG852 – Transactional Memory 58 / 76

Is STM Just a Research Toy?
The Answer from the “No” Side (Dragojević et al. 2011)

I Does not deny some of the shortcomings underlined by Cascaval et al.
I Disputes their methodology:

I They used only 8 threads vs. pure sequential executions
I They only evaluated a subset of the STAMP benchmarks (created to

evaluate STM frameworks)

I Produce more results, using a different configuration:
I Used a state-of-the-art STM (SwissTM, different from IBM STM)
I Runs all 10 STAMP benchmarks; also some STMBench benchmarks
I Testbed: SPARC T1 processor (64 HW threads); AMD x86 processor

(16 HW threads).
I Results: as the number of threads increases, STM benefits become

significant
I Manual instrumentation ⇒ best speedups; tedious for programmers

I Dragojević et al. agree that parallel programmers can only truly
benefit from STM if they are handled by an STM-enabled compiler

It is still not clear that STM are truly useful—it is a trade-off between
productivity and effective performance.

S.Zuckerman CPEG852 – Transactional Memory 59 / 76

Outline

1 The Trouble With Critical Sections
Why Do We Need Critical Sections?
Locking and Critical Sections to Access Complex Objects

2 Transactional Memory
Overview
Transactions
Transactional Memory: Instructions
Implementation Details

3 Software Transactional Memory
Introduction to Software Transactional Memory
STM in Details
Is STM Just a Research Toy?

4 Hardware Implementations of Transactional Memory

5 Summary

S.Zuckerman CPEG852 – Transactional Memory 60 / 76

IBM Power 8 I
Le et al. 2015; Cain et al. 2013

Design constraints

I Single transaction per core at a time (not nested transactions)

I No guarantee of success: all transactions must provide a failure
handler

I No requirement of support survival across context switches and/or
paging of transactional data

I Use as much as possible the primitives already available in the
Power ISA. Deviations were allowed only if truly necessary

I Resulting implementation should be decoupled from already available
atomic operations

I No architectural limits on transaction size, but encourage large
transaction support by eliminating causes of transaction failures

S.Zuckerman CPEG852 – Transactional Memory 61 / 76

IBM Power 8 II
Le et al. 2015; Cain et al. 2013

Motivation for Implementing HTM

I Pure hardware implementation of lock elision:
1 Optimistically acquire a lock, and
2 Start executing the critical section without truly locking it
3 Check if the critical section was correctly traversed

I More generally, TM is seen as an enabler for thread speculation

I Also: HW support for TM means easier ways to provide debugging
mechanisms

S.Zuckerman CPEG852 – Transactional Memory 62 / 76

HTM in Power 8 I
ISA & Registers

Transactional Registers

Register Name Role
Transaction Failure Handler Records address following tbegin. Will
Address Register (TFHAR) redirect flow to that address if transaction fails.
Transaction Failure Instruction Records the address of the instruction
Address Register (TFIAR) responsible for the transaction failure
Transaction Exception And Records misc. info w.r.t. status of current
Status Register (TEXASR) or most recently executed transaction

S.Zuckerman CPEG852 – Transactional Memory 63 / 76

HTM in Power 8 II
ISA & Registers

Transactional ISA

Instruction Name Role
tbegin R Transaction begin. R indicates

it is a rollback-only transaction
tend A Transaction end. Commits a transaction.

When set, A forces commit regardless of nesting level
tabort RA Transaction abort. Unconditionally aborts a transaction.

Lower byte of RA is copied into TEXASR.
tabortwc TO, RA, RB Transaction abort conditional. RA and RB
tabortdc TO, RA, RB are compared using operator TO.

Depending on the result, the transaction is aborted.
tabortwci TO, RA, SI Transaction abort conditional immediate.
tabortwdi TO, RA, SI Same as previous, but compare RA and RB

with signed immediate operand
tsr R Transaction suspend or resume. L controls whether

to suspend or resume.
tcheck BF Transaction check. Sets condition register if transaction

has failed.

S.Zuckerman CPEG852 – Transactional Memory 64 / 76

Transaction Failure I

Transaction Failures

I Thread is being suspended (e.g., context-switched)

I Conflict: other transactions are being executed with an overlapping
data set

I Conflict: Transactional vs. non-transactional access

S.Zuckerman CPEG852 – Transactional Memory 65 / 76

Transaction Failure II

Failure Recording

I Records info w.r.t. cause and circumstances of failure in speculatir
registers (SPRs)

I Sets TFIAR

I Sets failure cause bits, current privilege, suspend mode, etc., in
TEXASR

I Also: may set TFIAR valid bit (to know if the register can be trusted)

I Goal: help the programmer determine which transaction caused the
failure

S.Zuckerman CPEG852 – Transactional Memory 66 / 76

Transaction Failure III

Failure Handling

I All updates to memory and SPRs are rolled back

I Control is transferred to failure handler address

I Condition register CR0 is set to indicate a failure occurred

I If thread is in Transactional Mode, failure is recorded and handled
immediately

I IF thread is in Suspended Transactional Mode, recording happens
immediately, but handling happens when resuming Transactional
Mode.

S.Zuckerman CPEG852 – Transactional Memory 67 / 76

Outline

1 The Trouble With Critical Sections
Why Do We Need Critical Sections?
Locking and Critical Sections to Access Complex Objects

2 Transactional Memory
Overview
Transactions
Transactional Memory: Instructions
Implementation Details

3 Software Transactional Memory
Introduction to Software Transactional Memory
STM in Details
Is STM Just a Research Toy?

4 Hardware Implementations of Transactional Memory

5 Summary

S.Zuckerman CPEG852 – Transactional Memory 68 / 76

Transactional Memory I
Summary

Critical Sections and Locking

I Critical sections are usually implemented with locks

I Coarse-grain locking is easy to implement but usually scale poorly

I Fine-grain locking provides much better scalability, but can become
very complex to manage (very bug-prone)

S.Zuckerman CPEG852 – Transactional Memory 69 / 76

Transactional Memory II
Summary

Transactional Memory

I Transactional memory is a novel mechanism that attempts to provide
a programmable set of operations

I Transactional operations are meant to help programmers build
complex concurrent regions without the need for (fine-grain) locking

I Software TMs implement the concept purely in software

I Help with productivity and reliability
I But usually not performant enough
I May become more interesting as the core/thread count increases on

chips

I Hardware TMs are finally arriving (IBM Power 8, Intel Haswell)

I Provide HW instructions to handle transactional operations
I Restrict themselves to a single transaction per core
I Not fully HW for Power 8: need the user to provide failure handler

S.Zuckerman CPEG852 – Transactional Memory 70 / 76

Transactional Memory III
Summary

Hybrid Transactional Memory

I Probably the future of TMs

I Combines (restricted-but-fast) HW-enabled TMs with
(flexible-but-slow) STMs

I Leverage HTMs as much as possible

I If number of HTMs is exhausted, switch to STM.

S.Zuckerman CPEG852 – Transactional Memory 71 / 76

Bibliography I

Alemany, Juan and Edward W. Felten (1992). “Performance Issues in
Non-blocking Synchronization on Shared-memory Multiprocessors”. In:
Proceedings of the Eleventh Annual ACM Symposium on Principles of
Distributed Computing. PODC ’92. Vancouver, British Columbia,
Canada: ACM, pp. 125–134. isbn: 0-89791-495-3. doi:
10.1145/135419.135446. url:
http://doi.acm.org/10.1145/135419.135446.

Barnes, Greg (1993). “A Method for Implementing Lock-free Shared-data
Structures”. In: Proceedings of the Fifth Annual ACM Symposium on
Parallel Algorithms and Architectures. SPAA ’93. Velen, Germany: ACM,
pp. 261–270. isbn: 0-89791-599-2. doi: 10.1145/165231.165265.
url: http://doi.acm.org/10.1145/165231.165265.

S.Zuckerman CPEG852 – Transactional Memory 72 / 76

http://dx.doi.org/10.1145/135419.135446
http://doi.acm.org/10.1145/135419.135446
http://dx.doi.org/10.1145/165231.165265
http://doi.acm.org/10.1145/165231.165265

Bibliography II

Cain, Harold W. et al. (2013). “Robust Architectural Support for
Transactional Memory in the Power Architecture”. In: SIGARCH
Comput. Archit. News 41.3, pp. 225–236. issn: 0163-5964. doi:
10.1145/2508148.2485942. url:
http://doi.acm.org/10.1145/2508148.2485942.

Cascaval, Calin et al. (2008). “Software Transactional Memory: Why Is It
Only a Research Toy?” In: Queue 6.5, 40:46–40:58. issn: 1542-7730.
doi: 10.1145/1454456.1454466. url:
http://doi.acm.org/10.1145/1454456.1454466.

Dragojević, Aleksandar et al. (2011). “Why STM Can Be More Than a
Research Toy”. In: Commun. ACM 54.4, pp. 70–77. issn: 0001-0782.
doi: 10.1145/1924421.1924440. url:
http://doi.acm.org/10.1145/1924421.1924440.

S.Zuckerman CPEG852 – Transactional Memory 73 / 76

http://dx.doi.org/10.1145/2508148.2485942
http://doi.acm.org/10.1145/2508148.2485942
http://dx.doi.org/10.1145/1454456.1454466
http://doi.acm.org/10.1145/1454456.1454466
http://dx.doi.org/10.1145/1924421.1924440
http://doi.acm.org/10.1145/1924421.1924440

Bibliography III

Herlihy, Maurice P. and Jeannette M. Wing (1990). “Linearizability: A
Correctness Condition for Concurrent Objects”. In: ACM Trans.
Program. Lang. Syst. 12.3, pp. 463–492. issn: 0164-0925. doi:
10.1145/78969.78972. url:
http://doi.acm.org/10.1145/78969.78972.

Herlihy, Maurice and J. Eliot B. Moss (1993). “Transactional Memory:
Architectural Support for Lock-free Data Structures”. In: SIGARCH
Comput. Archit. News 21.2, pp. 289–300. issn: 0163-5964. doi:
10.1145/173682.165164. url:
http://doi.acm.org/10.1145/173682.165164.

S.Zuckerman CPEG852 – Transactional Memory 74 / 76

http://dx.doi.org/10.1145/78969.78972
http://doi.acm.org/10.1145/78969.78972
http://dx.doi.org/10.1145/173682.165164
http://doi.acm.org/10.1145/173682.165164

Bibliography IV

LaMarca, Anthony (1994). “A Performance Evaluation of Lock-free
Synchronization Protocols”. In: Proceedings of the Thirteenth Annual
ACM Symposium on Principles of Distributed Computing. PODC ’94.
Los Angeles, California, USA: ACM, pp. 130–140. isbn: 0-89791-654-9.
doi: 10.1145/197917.197975. url:
http://doi.acm.org/10.1145/197917.197975.

Le, H.Q. et al. (2015). “Transactional memory support in the IBM
POWER8 processor”. In: IBM Journal of Research and Development
59.1, 8:1–8:14. issn: 0018-8646. doi: 10.1147/JRD.2014.2380199.

Mellor-Crummey, John M. and Michael L. Scott (1991). “Synchronization
Without Contention”. In: SIGPLAN Not. 26.4, pp. 269–278. issn:
0362-1340. doi: 10.1145/106973.106999. url:
http://doi.acm.org/10.1145/106973.106999.

S.Zuckerman CPEG852 – Transactional Memory 75 / 76

http://dx.doi.org/10.1145/197917.197975
http://doi.acm.org/10.1145/197917.197975
http://dx.doi.org/10.1147/JRD.2014.2380199
http://dx.doi.org/10.1145/106973.106999
http://doi.acm.org/10.1145/106973.106999

Bibliography V

Shavit, Nir and Dan Touitou (1997). “Software transactional memory”.
English. In: Distributed Computing 10.2, pp. 99–116. issn: 0178-2770.
doi: 10.1007/s004460050028. url:
http://dx.doi.org/10.1007/s004460050028.

Turek, John, Dennis Shasha, and Sundeep Prakash (1992). “Locking
Without Blocking: Making Lock Based Concurrent Data Structure
Algorithms Nonblocking”. In: Proceedings of the Eleventh ACM
SIGACT-SIGMOD-SIGART Symposium on Principles of Database
Systems. PODS ’92. San Diego, California, USA: ACM, pp. 212–222.
isbn: 0-89791-519-4. doi: 10.1145/137097.137873. url:
http://doi.acm.org/10.1145/137097.137873.

S.Zuckerman CPEG852 – Transactional Memory 76 / 76

http://dx.doi.org/10.1007/s004460050028
http://dx.doi.org/10.1007/s004460050028
http://dx.doi.org/10.1145/137097.137873
http://doi.acm.org/10.1145/137097.137873

	The Trouble With Critical Sections
	Why Do We Need Critical Sections?
	Locking and Critical Sections to Access Complex Objects

	Transactional Memory
	Overview
	Transactions
	Transactional Memory: Instructions
	Implementation Details

	Software Transactional Memory
	Introduction to Software Transactional Memory
	STM in Details
	Is STM Just a Research Toy?

	Hardware Implementations of Transactional Memory
	Summary

