Cache

Haitao Wei

(All these slides were from

Daniel Orozco)

Computer Architecture and
University of Delaware Parallel Systems
http://www.udel.edu Laboratory

http://www.capsl.udel.edu
- SITYor |

& Y JEIAWARE. ‘:L“JF{;EJLL‘

Cache: A short review

Cache: A small, fast memory

frequently used. | |

that holds values that are

Cache 1 = Cache 2 =
Data Locality: A property of Fast Memory | Fast Memory
a program: Memory
accesses are close.
Temporal Locality: Close in MR MR (/o)
time.

Spatial Locality: Close in
address.

3/1/2011 Daniel Orozco, Guang Gao - Cache

Cache Line

The idea of Cache: Put
things in the fast local
memory to make them
run fast.

To simplify the design of
the machine, the
minimum unit of

transfer to a cache is a
cache line.

The processor can read or

write less than one line.

c Array
lo]z]2]s]
|)

!

Cache Line

Memory

Writing to c[1] has the
same memory effect as
writing to the whole line.

Cache Hierachy

Faster Memory: More F F F F
L;l L'il L;l L'il

expensive, more power,

harder to make.
L2 L2

Architects use multiple

levels of cache to go

from very fast (L1 3

cache) to slow (L3 cache
and memory).

Memory

3/1/2011 Daniel Orozco, Guang Gao - Cache

Cache: A short review

Processors that do not
share cache suffer from

many cache conflicts Cache 1 = Cache 7 =
when trying to access Fast Memory | Fast Memory
the same variable.

Cache Invalidation: You Al ety [Hlos)
have a copy of the x=0

variable in your cache
and another processor
writes to it.

3/1/2011 Daniel Orozco, Guang Gao - Cache

CACHE PROPERTIES

3/1/2011 Daniel Orozco, Guang Gao - Cache

Cache Hierarchy

Faster Memory: More F F F F
L;l L'il L;l L'il

expensive, more power,

harder to make.
L2 L2

Architects use multiple

levels of cache to go

from very fast (L1 3

cache) to slow (L3 cache
and memory).

Memory

3/1/2011 Daniel Orozco, Guang Gao - Cache

Cache Associativity

What line does x and y go?

This is the cache
Associativity concept:
How many different lines
can receive a particular
value.

Usually, Cache Associativity
=4 or 8.

When Cache Associativity =
infinite we say “A fully
associative cache”

X: Address 0x3956
y: Address 0x4956

Cache Line

Cache Coherence

- -

x=0 X="?

The property of having a correct value in the cache is called “Cache
Coherency”. The definition of correct is given by the memory model.

Cache Coherency is one of the big challenges of computer
architecture.

3/1/2011 Daniel Orozco, Guang Gao - Cache

CACHE COHERENCE PROTOCOLS

3/1/2011 Daniel Orozco, Guang Gao - Cache

The Cache Coherence Definition

The memory model should specify what
happens when multiple processors execute
several writes and reads.

The Sequential Consistency rules imply:

A processor writing and reading from his cache
observes its effect.

A read or a write to a memory location should
see the last write to that memory location.

3/1/2011

Cache Coherence

The Coherence Problem (under Sequential Consistency)

— A processor should have exclusive access to a shared
variable when writing and should get the “most recent”
value when reading.

Solution

— When writing

* (1) Invalidate all copies

* (2) Broadcast to everyone the new copy
— When reading

* Find the most recent copy
— Can be tricky

Daniel Orozco, Guang Gao - Cache

12

Write Update V.S Write Invalidate

X
| |

|

X

|
X

Shared Memory

Bus
Cache

Processors

Shared Memory

@

Bus
Cache

Processors

Shared Memory

S8
@ -

3/1/2011

Bus
Cache

Processors

Daniel Orozco, Guang Gao - Cache

X is a shared variable that
has a copy in all caches.
Then a write occurred

For Write Invalidate all
the cache copies are
marked as “invalid” except
the most recent one

For Write Update all the
cache copies are updated
with the most recent
value

Assume a write through cache protocol

13

3/1/2011

Coherence Protocols: Snooping

All caches can “Observe” the memory operations of all
processors to:
— Keep values updated.
— Know the values are invalid

Higher levels of cache can rely on lower levels of cache
to get correct values.

Shared Memory

| ' Bus

XI

| | |
|
X’

X’ Cache

Processors

Daniel Orozco, Guang Gao - Cache

14

Snooping Example

- L1 ->1L2->L3 request for

P1 P4
When P4 writes X=3: F F F F
X=0 L1 L1 L1
| | | |

X

- Write to L1 (X=3)
- L1 notifies L2: Invalid

X=0 L2

- May also update L2:X=3

- L2 notifies L3: Invalid
- May also update L3:X=3

- May also update
memory. M:X=3

P1 can get the value from X=0
the L2 bus.

3/1/2011

Snooping is not very scalable

The problem with snooping is that it requires a
bus.

Bus: A shared medium:

— Only one processor can use it in one cycle
— Tricks can be used
— No tricks for 10000 processors &

In general, not practical for more than 32
pProcessors.

Daniel Orozco, Guang Gao - Cache 16

3/1/2011

Snooping Protocol

Write Invalidate
— Writing Processor sends an invalidation signal

— Caches that are listening to the bus will invalidate their
copy of such variable

— The writing processor writes to the variable

* Memory is updated according to which cache protocol policy you
have

— Write through, Write Back

Write Update

— Writing processor will broadcast the new value to all
caches

Daniel Orozco, Guang Gao - Cache

17

Directory Based Protocols

Reason

— Bus based protocols may generate too much
traffic

— Multi level Interconnection Network may not have
efficient broadcasting capabilities as a system bus

Directory Based system
— A directory with an entry per memory location
— Central vs Distributed

3/1/2011 Daniel Orozco, Guang Gao - Cache 18

3/1/2011

Cache Protocols: Directory Based

Who has cached X? This is a parallel
A directory is kept! implementation that
scales with the size of the

Typically, the directory is
kept in main memory
next to the block of
memory.

system.

A directory is usually simple:
An array with information v
of ownership from each To Other Nodes and Caches
processor.

Daniel Orozco, Guang Gao - Cache

19

Directory Based Protocols

Information about Messages can be, for
ownership: example:
— A bit indicating user, — Request for block
— A bit indicating state — Acquire
Messages are — Invalidate

interchanged between
processors to control
ownership.

3/1/2011 Daniel Orozco, Guang Gao - Cache

20

Ensuring Coherence May be
Complicated.

What happens when two processors try to write
to the same memory block?

Example: IT

M

Read

D Directory: P1 reads.

3/1/2011 Daniel Orozco, Guang Gao - Cache

Ensuring Coherency May be
Complicated.

What happens when two processors try to write
to the same memory block?

‘ P1 P2

M Invalidate M
Write
What happens if P1 writes

(or reads again) the

Example:

Directory:
memory during the time P1 invalidates.
the message travels the M P2 owns.

network?

3/1/2011 Daniel Orozco, Guang Gao - Cache

3/1/2011

Cache Coherence Protocol

Directory Based:
e The info about one block of physical memory is kept in a single location
e The directory itself can be distributed

e Advantages

e Scalable

e Proportional to Main Memory Size

Bus Based Snooping
e Use the shared memory bus
e Every cache that has a copy of the data is responsible to maintain coherence about it

e Advantages

* Easily add on to existent busses

e Proportional to cache size

Daniel Orozco, Guang Gao - Cache

23

AN INTRO TO THE “MSI” FAMILY

3/1/2011 Daniel Orozco, Guang Gao - Cache

Requirement for Implementation

Stores to each memory location occurs in
program order

All processing elements see such order if they
access the same memory location

Only one processor has the write privilege at a
time.

3/1/2011 Daniel Orozco, Guang Gao - Cache 25

Implementation

If Read(X)

— Hit: Just copy

— Miss: Find the location residence of X
* Memory, other cache, others
* Receive a legal copy

If Write(X)
— Acquire Ownership and / or Exclusivity

Note: Assume a Write Back — Write Invalidate
Cache Protocol

Finite Automata for Cache Protocols

State Transactions
— Read Misses
— Write Hits
— Write Misses

Type of Outputs
— Bus Signals and CPU actions

CPU

«<— CPUsignals

Bus signals
Cache

Daniel Orozco, Guang Gao - Cache

Cache Protocols as Finite Automata

Finite Automata
— A graph in which vertex are states and edges are transitions

— Usually, a transition (an edge) will be labeled with a 2-tuplea /b
where a is the input action that produced the state change and b is an
action that will result from this state change.

* The input action may be, in fact, many actions, the same goes to the
output action

Finite Automata as cache protocols
— A vertex is the state of a given cache line

— The transitions may be produced by
* Processor actions
* Bus signals

3/1/2011 Daniel Orozco, Guang Gao - Cache 28

The MSI Protocol

Similar to the protocol used by Sillicon Graphics 4D
series of multiprocessors machines

Three states to differentiate between clean or dirty
— Modified, Shared and Invalid

Two types of Processor actions and Three types of
bus’s signals
— Processor Writes and Reads
— Bus Read, Bus Read Exclusive and Bus Write Back

3/1/2011

MSI States

Modified
— The cached copy is the only valid copy in the system.
— Memory is stale.

Shared

— The cached copy is valid and it may or may not be shared by
other caches.

* |nitial state after first loaded.
— Memory is up to date.

Invalid

— The cached copy is not valid: An invalidation signal was
received..

Daniel Orozco, Guang Gao - Cache

30

MSI Protocol State Machine

Promotion

PrWr / BusRdX

PrWr / BusRdX

PrRd / BusRd

BusRdX / Flush

Demotion

Input / Output

PrWr Processor Write

PrRd Processor Read

BusRd Bus Read

BusRdX Read to own

Flush Flush to memory

No Action

MSI Example

Process |State State State Bus Data

or Action | P1 P2 P3 Action |Supplied
by

P1 loads u S . . BusRd Mem

P3 loads u S _ S BusRd Mem

P3 storesu || _ M BusRdX Mem

P1 loads u S . S BusRd P3 cache

P2 loads u S S S BusRd Mem

3/1/2011

Daniel Orozco, Guang Gao - Cache

32

The MESI Protocol

States:
— Modified, Exclusive, Shared and Invalid

Due to Goodman [ISCA’93]

State transitions are due to:
— Processor actions: This being Write or Reads
— Bus operations caused by the former

Implemented in Intel Pentium Pro (in some
modes)

MESI States

Modified
— Main Memory’s value is stale
— No other cache possesses a copy

Exclusive
— Main Memory’s value is up to date
— No other cache possesses a copy

Shared

— Main Memory’s value is up to date
— Other caches have a copy of the variable

Invalid
— This cache have a stale copy of the variable

MESI States

B A : B
Valid Data I X E | Valid Data |
Mem Mem
Invalid Data Valid Data
B B
Valid Data S | Valid Data | X ?
Mem Mem

Valid Data

3/1/2011

Example: Two Processor System

Cache 1 Cache 2 Memory Transfer
Bus State Bus State
| | Load into Cache 1
|2 E [
Cache 1 Cache 2 Memory Transfer
Bus State Bus State
E | Load into Cache 2
Rd Hit E=>S =S
Cache 1 Cache 2 Memory Transfer
Bus State Bus State
S S
S=>M Inv [
Cache 1 Cache 2 Memory Transfer
Bus State Bus State
M l Store from Cache 1
M I Load into Cache 2
Rd Hit M=2>S I
S | =S

Daniel Orozco, Guang Gao - Cache

P1 =>» Load

P2 =» Load

P1 =» Store

P2 =» Load (first abort and then
try again)

MESI Protocol State Machine

Extracted from “Parallel Computer Architecture: A Hardware & Software Approach” by Culler & Singh. Page 301

=

PrRd, Prwr /

Demotion

BusRdX / Flush

-
-

-

X = Read or Write from Processor
Y - A Signal to the Bus

3/1/2011

" BusRd / Flush-,
~ BusRdX/ Flush °

PrWr / BusRdX

X - Signal from the Bus

~~

-7 = ~
b e ~
- -~ ~
>~

PrRd / BusRd(S’)

PrWr / BusRdX

-

PrRd / BusRd(S)

EREN
~a

Promotion

<

Daniel Orozco, Guang Gao - Cache

~o N
Y

Y = Changes to Memory

N

0N

N
\

\
»
AR
XS
vl

AR
\

Xis the input

X / Y Y is the Output

Inputs and Outputs

PrRd A Processor Read
PrWr A Processor Write
BusRdX

A Bus Read Exclusive. Request the
data to be exclusive to this cache or
demote it to a shared state

BusRd(S)

A Bus Read when the element is
shared by another processor

BusRd(S’)

A Bus Read when the element is not
shared by another processor

Flush

Flush to either memory or a
requesting processor (according to
what sharing scheme is used)
Flush’

Flush to either memory or a
requesting processor (only that
processor)

No action or signal produced
37

The MOESI Protocol

Reset Read Hit
INVD, WBINVD

Probe Write Hit

The Five state protocol
based on MESI

Implemented in AMD64
line of multi core
personal computers and
servers.

.| Exclusive

Read Miss, Exclusive

Modified

Read Hit
Probe Read Hit

Read Hit
Write Hit

Read Hit
Probe Read Hit

Picture Courtesy of “AMD64 Architecture Programmer’s
Manual Volume 2: System Programming.” AMD64 Technology.
September 2006

3/1/2011 Daniel Orozco, Guang Gao - Cache

38

3/1/2011

MOESI States

Modify
— This line has the only valid copy
— Memory is stale

Owned

— 'Id'his line has the valid copy. Other caches may have a “shared” copy of the
ata

— Memory is stale

Exclusive
— This line has a valid copy and no other cache have one
— Memory is up to date

Shared
— Data is replicated across many caches and memory

— Note: They may be many shared copies but only one (or zero) owned

Invalid

Daniel Orozco, Guang Gao - Cache

39

The Extra States Rationale

Exclusive (MSI to MESI)

— Reduce the number of busses transactions when a
value is read exclusively and it may be modified in
the future

Owned (MESI to MOESI)

— Reduce the number of busses transactions by
delaying the update to the memory

3/1/2011 Daniel Orozco, Guang Gao - Cache 40

Bibliography

Mosberger, David. “Memory Consistency Models.” Department of Computer
Science. University of Arizona. November 1993.

Adve, Sarita; Gharachorloo, Kourosh. “Shared Memory Consistency Models: A
Tutorial.” Rice University and DEC. IEEE Transactiona on Computers. 1996

Lamport, Leslie. “How to Make a Multiprocessor Computer That Correctly
Executes Multiprocess Programs.” IEEE Transactions on Computers,
September 1979, pp.690-691

“AMDG64 Architecture Programmer’s Manual Volume 2: System
Programming.” AMD64 Technology. September 2006

Lenoski, et. Al. “The Stanford DASH Multiprocessor.” IEEE Computrer, 25(3):
63 — 69, March 1992

