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Outline

 Will talk about

— Motivation: There 1s no motivation just math.
— A very brief introduction to Markov chains

— Weather model as an example.

— Sampling the Markov chain from traces.

 Will not talk about

— Chapman-Kolmogorov equations, classification of
states, asymptotic analysis (limiting probabilities),...

(The slides content are based on [2-7])
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Motivation [1]

SIAM Rev., 48(3), 569-581. (13 pages)

The $25,000,000,000 Eigenvector: The Linear Algebra behind Google

Kurt Bryan and Tanya Leise Related Database
Web of Science

Google's success derives in large part from its PageRank algorithm, which ranks the L
9 4 'n large pa ' 9 9 ' You must be logged in wit!

importance of web pages according to an eigenvector of a weighted link matrix. Analysis of active subscription to view
the PageRank formula provides a wonderful applied topic for a linear algebra course. S
Instructors may assign this article as a project to more advanced students or spend one or Article Data

two lectures presenting the material with assigned homework from the exercises. This

Histo
material also complements the discussion of Markov chains in matrix algebra. Maple and . L4 .
Mathematica files supporting this material can be found at www.rose-hulman.edu/~bryan. lT(ubInsherz online: 03 Augu
eywords
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™ Intro to Markov chains [2, 3, 6 /%23

Def: A stochastic process {X;,t € T} is a collection of random vari-
ables Xy, t € T. It is determined by

(i). State space S, i.e. the range of possible value of X;.

(ii). index set T which can be discrete (finite or countable) or con-
tinuous.

(iii). dependency relations between variables.

Def: A stochastic process {X,,n=0,1,2---} is a Markov Chain if
S={0,1,2,---} and
P(Xn‘l'l :j|Xn:i7X’n—l :in—la"' 7XO :ZO) :P’L

for all ig,21,--- ,%—1,%,7 € S and n > 0.
e X,, =1 means that the process is in the state : € S at the time n.
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CAPSL

Intro to Markov chains

(X . )n>1 1s said to be a Markov chain if and only if:

YV 1 i i P{Xn =i /ﬁl{xk =i, }} =P{X, =i /X =i}
k=1

This relation 1s known as the Markov property.
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CAPSL

Intro to Markov chains

If we associate a time scale to the sequence of trials,

1% trial 5% trial n™ trial

L] |1 >
1 2 3 4 5 n-2 n-1 n time

n corresponds to the future
n-1 corresponds to the present
1 to( n-2) corresponds to the past

Then, the Markov property can be stated as follows:

P{F uture/Present and Past}= P{F uture/ Present}
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Intro to Markov chains

Furthermore (X )

|, 1s homogeneous if and only if:

Vn,j,i P{Xn =j/X = i} does not depend on n.

So we can denote p,; = P{Xn =Jj/ X, = i}
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Intro to Markov chains LAOL

These conditional probabilities p; are called transition probabilities. If the number of states is

finite (for instance n, ), they can be arranged in a transition probability matrix T so that the

first subscript (i) stands for row and the second (j) for column. T is a square matrix (n, xn,)

with non negative elements and unit row sums.

Vi,j O=sp, =<1 and Vi Epii:l
7=l

E; - P11
E» P21
T =
Eno Pno1
N
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Example [2, 6]

Rain or no rain, two states Markov Chain.

. a 11—«
P‘<6 1—5)
0.7 0.3
P:[m 0.6]

Graph sketch

seq: SRRRRRRRRRRRSRRS
RRRRRRSRRSSSSSS...
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Sampling the Markov chain from traces [4, 5, 7]

Let’s do this! Use the following equations to estimate:

C. .
T, = L i=LLN (1.3)
C. N N
a,=-—"— iLj=LN > >c=L-1 (14
! Ye, A

J=

Training sequence:

SRRRRRRRRRRRSRRSRRRRRRSRRSSSSSS
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