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Introduction I

Why Distributed Shared Memory?
I To ease the programmer’s task ⇒ productivity
I . . . And that is mostly it, really.

Why Is Productivity Important?
Let’s ask Fred Brooks (Brooks, The Mythical Man-month (Anniversary Ed.) Chap. 8):

IBM OS/360 experience, while not available in the detail of Harr’s data, confirms it.
Productivities in range of 600–800 debugged instructions per man-year were
experienced by control program groups. Productivities in the 2000–3000 debugged
instructions per man-year were achieved by language translator groups. These
include planning done by the group, coding component test, system test, and some
support activities (. . . )
Both Harr’s data and OS/360 data are for assembly language programming. Little
data seem to have been published on system programming productivity using
higher-level languages. Corbatò of MIT’s Project MAC reports, however, a mean
productivity of 1200 lines of debugged PL/I statements per man-year on the
MULTICS system (between 1 and 2 million words). (. . . )
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Introduction II

Why Is Productivity Important? (Cont’d)
Brooks, The Mythical Man-month (Anniversary Ed.) Chap. 8:

This number is very exciting. Like the other projects, MULTICS includes control
programs and language translators. Like the others, it is producing a system
programming product, tested and documented. The data seem to be comparable in
terms of kind of effort included. And the productivity number is a good average
between the control program and translator productivities of other projects. But
Corbatò’s number is lines per man-year, not words! Each statement in his system
corresponds to about three to five words of handwritten code! This suggests two
important conclusions.

I Productivity seems constant in terms of elementary statements, a conclusion
that is reasonable in terms of the thought a statement requires and the errors
it may include.

I Programming productivity may be increased as much as five times when a
suitable high-level language is used
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Introduction III

Why Is Productivity Important? (cont’d)
Brooks, The Mythical Man-month (Anniversary Ed.) Chap. 12:

The chief reasons for using a high-level language are
productivity and debugging speed (. . . ) There is not a lot of
numerical evidence [in the 1960s. . . ], but what there is
suggests improvement by integral factors, not just incremental
percentages. (. . . ) For me, these productivity and debugging
reasons are overwhelming. I cannot easily conceive of a
programming system I would build in assembly language.

So really, productivity solves two major problems: Time-to-solution
(i.e., software is produced faster), and how to produce bug-free code

Zuckerman et al. PGAS 5 / 22



Introduction IV

Different Ways of Implementing DSMs
I Hardware
I Software
I Hardware-software hybrids
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Uniform Memory Access Systems I

Uniform Memory Access
I SMP systems used to propose a uniform access to memory banks

⇒ Example: for x86, a single front-side bus (FSB) to access DRAM
I Advantages:

I For the hardware, easier to design and implement
I For the programmer, guarantees on latency

I Drawbacks:
I To guarantee uniform access, throughput is somewhat slowed down
I In general, UMA architectures do not scale beyond a single

compute node.
I Even on a single compute node, UMA systems saturate easily
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Non-Uniform Memory Access Systems I

Non-Uniform Memory Access Systems
I Hardware can be designed so memory banks are directly

attached to a given (set of) socket(s)
I To maintain a single address space, an interconnection system

must be implemented
I In theory NUMA systems need not be coherent
I In practice all NUMA systems currently available are really Cache

Coherent NUMA (ccNUMA)
I Examples: x86-based multi-processor compute nodes provide an

interconnection network:
I AMD Opteron-based systems use HyperTransport
I Intel Xeon-based systems use QuickPath Interconnect (QPI)
I SGI proposed the Altix multiprocessor NUMA system (based on

Intel Itanium2 processors) where an unmodified Linux OS could
access up to 1024 processors (so up to 2048 cores)
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Non-Uniform Memory Access Systems II

Limits of (cc-)NUMA
I Even in the case of large-scale NUMA like Altix systems,

scalability remains an issue:
I At the hardware level: producing hardware for large-scale ccNUMA

requires it to be tightly coupled with the processors
I At the software level: ensuring data locality becomes a bigger

problem
I At the operating system level: a choice must be made (by the

user):
I Let the OS follow a “first-touch” page allocation policy ⇒ best for

when the software can easily be optimized for locality
I Require the OS to allocate pages in a random or round-robin way

(when data access is truly random-ish).

I For very large scale computations, an additional software layer
must be implemented to help access the fast network devices
(e.g., Infiniband, Quadrics, etc.).
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Introduction to Global Partition Address Space Systems

Basic Concepts
I Maintain a programmer-centric global address space
I “Automagically” partition arrays and other shared data structures

across compute nodes
I Provide means to handle locality: if an object is supposed to be

available locally, there should be a way to inform the system
I When shared data structures are accessed, the software

automatically knows where to issue the request

How to Implement PGAS
I Using a library (e.g., Gasnet)
I Using a programming language (e.g., X10, Chapel, Titanium, . . . )
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PGAS Languages

A Very Brief History
DARPA’s High Productivity Computing Systems (HPCS) program was
launched in 2002 with five teams, each led by a hardware vendor:
Cray Inc., Hewlett-Packard, IBM, SGI, and Sun Microsystems.

Examples of PGAS Languages
Several languages are following a PGAS approach: IBM’s X10, Cray’s
Chapel, HP and Berkeley’s Unified Parallel C (UPC), etc.
They all propose constructs to express parallelism in a more or less
implicit way. Most of these languages are either developed as an Open
Source package or propose an open implementationa

aThis is important: languages get popular thanks to their availability or
because they are the only ones on their “market segments!”
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Chapel I
Overview

Chapel
I Official web site: http://chapel.cray.com
I Open Source (https://github.com/chapel-lang)
I Targets “general parallelism” (i.e. any algorithm should be

expressible as a Chapel program)
I Separates parallelism and locality: concurrent regions of code vs.

data placement.
I Multi-resolution parallelism: either use implicit parallelism, or if

parallel expert, use direct parallel constructs to drive parallel
execution

I Targets productivity (type inference, iterator functions, OOP,
various array types)

I Data-centric
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Chapel II
Overview

Task Parallelism Constructs
I begin{...}: Creates an anonymous task using the code

between braces
I cobegin{...}: Fine-grain way to task creation – Creates a task

for each statement in the block

Data Parallelism Constructs
I forall elem in Range do ...: Creates a coarse-grain

parallel loop – akin to OpenMP’s #pragma omp for

I coforall elem in Collection do ...: Creates a
fine-grain parallel loop – each iteration is a task
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Chapel III
Overview

Synchronization
I sync{statement;}: Creates a synchronization point for all tasks

created within a parallel region. Akin to a barrier (coarse-grain
synchronization)

I var variableName sync type;: Creates a (set of)
synchronization variable(s) which acts as a full/empty bit (set of)
location(s).

I var variableName atomic type;: Creates a (set of)
variable(s) that are accessed atomically (accesses are
sequentially consistent).
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Chapel IV
Overview

Locality Constructs
I The Locale type: used to confine portions of computations and

data to a specific part of the machine (typically a compute node).
I The on clauses: to make a statement execute a specific locale.

Locality and parallelism constructs can be combined, e.g., begin on
Locale.left {...}
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X10 I

X10
I Official web site: http://x10-lang.org
I Open Source

(http://sourceforge.net/projects/x10/files/x10dt/
2.5.0/x10dt-2.5.0-linux.gtk.x86.zip/download)

I Built on top of Java VM
I Partially inspired by Scala (a mostly functional, but multi-paradigm

language based on the JVM)
I Provides a back-end to both Java and C++ code

(source-to-source translation)
I Also distinguishes between parallelism and locality
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X10 II

Parallel Constructs
I async{...}: Creates an anonymous task using the code

between braces
I finish{statement;}: Creates a synchronization point for all

async tasks created within a parallel region.
I Can be combined: finish async{...}

Locality Constructs: Accessing Places
I at: Place shifting operation
I when: Concurrency control within a place
I atomic: Concurrency control within a place
I GlobalRef[T]: Distributed heap management
I PlaceLocalHandle[T]: Distributed heap management
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X10 III

Combining Locality and Parallelism Constructs
I at(p) function(...): Remote evaluation
I at(p) async function(...): Active message
I finish for (p in Places.places()) { at(p) async

runEverywhere(...)} : SPMD
I at(ref) async atomic ref() += v: Atomic remote update
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X10 Examples
Hello World

import x10.io.Console;

class HelloWorld {
public static def main(Rail[String]) {

Console.OUT.println("Hello World!" );
}

}

import x10.io.Console;
class HelloWholeWorld {
public static def main(args:Rail[String]):void {

if (args.size < 1) {
Console.OUT.println("Usage: HelloWholeWorld message");
return;

}

finish for (p in Place.places()) {
at (p) async Console.OUT.println(here+" says hello and "+args(0));

}
Console.OUT.println("Goodbye");

}
}
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X10 Examples
Fibonacci
import x10.io.Console;

public class Fibonacci {

public static def fib(n:long) {
if (n<2) return n;

val f1:long;
val f2:long;
finish {

async { f1 = fib(n-1); }
async { f2 = fib(n-2); }

}
return f1 + f2;

}

public static def main(args:Rail[String]) {
val n = (args.size > 0) ? Long.parse(args(0)) : 10;
Console.OUT.println("Computing fib("+n+")");
val f = fib(n);
Console.OUT.println("fib("+n+") = "+f);

}
}
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Learning More About Multi-Threading and OpenMP

Internet Resources

I General PGAS web site: http://pgas.org

I Chapel: http://chapel.cray.com

I X10: http://x10-lang.org

I UPC: http://upc-lang.org, http://upc.lbl.gov/ and http://upc.gwu.edu

I The GASNet library (used in Berkeley’s UPC): http://gasnet.lbl.gov/

Tutorials Used for this Class

I Bradford L. Chamberlain’s overview of Chapel:
http://chapel.cray.com/papers/BriefOverviewChapel.pdf

I Chamberlain’s slides to present Chapel:
http://chapel.cray.com/presentations/ChapelForETH-distributeme.pdf

I X10 tutorial slides: http://x10.sourceforge.net/tutorials/x10-2.4/
APGASProgrammingInX10/APGASprogrammingInX10-slides-V7.pdf

I UPC tutorial slides: http://upc.gwu.edu/tutorials/tutorials_sc2003.pdf

Food for Thoughts

I Sutter, “The Free Lunch Is Over: A Fundamental Turn Toward Concurrency in Software”
(available at http://www.gotw.ca/publications/concurrency-ddj.htm)

I Lee, “The Problem with Threads” (available at
http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-1.pdf)

I Boehm, “Threads Cannot Be Implemented As a Library” (available at
http://www.hpl.hp.com/techreports/2004/HPL-2004-209.pdf)
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