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Outline 
• A short history of parallel computing systems 

• Program execution models (PXMs) 

• Examples of parallel program execution models 

– SIMD and Vector processing model 

– MIMD model 

– Message-passing (e.g. MPI-style) execution model 

– Shared memory (e.g. OpenMP) execution model 

– ILP (instruction level parallelism) model 

• Superscalar model 

• VLIW model 

• Evolution of (dynamic) fine-grain multithreaded 
program execution models. 

• Summary 



Memory 
DDR2 SDRAM 2004 

1.8V vs. 2.5V for DDR, Up to 8,533MB/s  

DDR3 2007 

1.5V or 1.35V for DDR3L, 6,400-

17,066MB/s 

DDR4 2012 

1.05-1.2V, 2133-4266MT/s 

Ethernet 
Gigabit Ethernet is the prevalent during last decade 

Gained the lead in TOP500 system count in June 2005 

Reaches the peak of 56.6% of all TOP500 systems in 

June 2008 

The dominance continues until June 2012 

Fast Ethernet 100Mbps 

Gigabit Ethernet 1000Mbps 

10Gigabit Ethernet 10Gbps 

InfiniBand 
Scalable switched fabric communications technology 

High throughput and low latency 

Point-to-point bidirectional serial links 

Quality of service and failover features 

2.5Gbps signaling rate in each direction per link in SDR speed 

Since June ‘12 InfiniBand is the dominant class of interconnects 

in TOP500 

Cray Interconnects 
Seastar (Red Storm, Cray XT3), 2004 

3-D mesh topology with link throughput of 

2.5GB/s in each direction 

SeaStar2 (Cray XT4), 2006 

Peak bidirectional bandwidth per link: 

7.6GB/s, 

SeaStar2+ (Cray XT5), 2009 

9.6GB/s peak bidirectional bandwidth per 

link 

Gemini (Cray XE6, XK6, XK7), 2010 

4 links per X and Z direction, 2 links per Y 

(10 total per NIC) 

Aries/Dragonfly (Cray XC30), 2012 

  High radix tiled router (48 tiles), 8 

processor tiles, 4 NICs 

Solid State Drives 
Significant reduction in price per GB since mid-2000 

More expensive than HDDs of comparable capacity 

2007: 320GB 100k IOPS 

2009: 1TB SSD with 654MB/s write and 712MB/s read BW 

2009: First SSD with 6Gbps SATA interface 

2011: 2.2TB, 2.7GB/s read bandwidth 

2012: 99.9% of 4KB random accesses within  0.5ms 

Recent Advances in Technologies 
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World’s Fastest Supercomputers 
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Japan, 2002: Earth Simulator 

35.86 TFLOPS LINPACK 
 

USA, 2004: Blue Gene/L 

70.72 TFLOPS Linpack  

USA, 2008: Roadrunner 

1026 TFLOPS Linpack  

USA, 2009: Jaguar 

1759 TFLOPS Linpack 

China 2010: Tianhe-1a 

2566 TFLOPS Linpack 

Japan 2011: K (京) 

10510 TFLOPS Linpack  

USA 2012: Sequoia 
16324 TFLOPS Linpack  

USA 2012: Titan 
17590 TFLOPS Linpack China 2013: Tianhe-2 

33860 TFLOPS in HPL  
 

Courtesy of Prof. T. Sterling 652-14F-PXM-intro 
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Tianhe-1A  2.566 Petaflops 
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Technology and Historical 

Perspective: 

 
A peek of the microprocessor 

Evolution 



652-14F-PXM-intro 8 



652-14F-PXM-intro 9 



652-14F-PXM-intro 10 

Technology Progress Overview 

•  Processor speed improvement: 2x per year 

(since 85).  100x in last decade. 

•  DRAM Memory Capacity: 2x in 2 years 

(since 96). 64x in last decade. 

•  DISK capacity: 2x per year (since 97).          

250x in last decade. 



652-14F-PXM-intro 11 10
2

10
3

10
4

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8
Diminishing Return of Microprocessors

Num of Transistors x Clock Rate (Mil * MHz / 100)

S
P

E
C

In
t2

0
0
0
/(

N
u
m

 o
f 

T
ra

n
s
is

to
rs

 x
 C

lo
c
k
 R

a
te

/1
0
0
)

PIII Coppermine

        P4 

Willamette 423

      P4 

Prescott 478

     P4 

Northwood

P4 HT

       P4 

 Prescott 520

Prescott 

   540 Prescott 

   550

7455 G4

Power4

Power5

Power5+

IA32

PowerPC

Data source: 

http://www.spec.org/cpu2000/results/cint2000.html 

http://www.geek.com/procspec/procspec.htm 

http://www.bayarea.net/~kins/AboutMe/CPUs.html 

Main observation: application of additional  

resources yields diminishing return in 

performance 

In addition: 

    - heat problem 

    - design complexity 

http://www.spec.org/cpu2000/results/cint2000.html
http://www.geek.com/procspec/procspec.htm
http://www.bayarea.net/~kins/AboutMe/CPUs.html
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Pentium M  

Thermal Maps from the Pentium M obtained from simulated power density (left) and 

IREM measurement (right). Heat levels goes from black  (lowest), red, orange, yellow and 

white (highest) 

Figures courtesy of Dani Genossar and Nachum Shamir in their paper Intel ® Pentium ® M Processor Power Estimation, 

Bugdeting, Optimization and Validation published in the Intel Technical Journal, May 21, 2003 
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What Is Next ? 

•  Move to “multiprocessor on a chip” ? 

–  cooler  

–  simpler 

–  cheaper 

–  … 

 



Architecture Features and 

Trends 
(Revisitd) 

• core arch- simpler and simpler : RISC Core 

• # of cores - larger and larger : 160 cores 

• on-chip memory per core -  smaller and smaller : 

    < 32 KB/core 

• On-chip bandwidth is becoming larger and larger : 

    > 0.3 TB/sec 

• Energy efficiency support - more and more : 

     500 MHz 

652-14F-PXM-intro 14 9/3/2014 
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Outline 
• A short history of parallel computing systems 

• Program execution models (PXM) 

• Examples of program execution models 

– Sequential execution model 

– Parallel execution model 

• SIMD and Vector processing model 

• MIMD model 

• Message-passing (e.g. MPI-style) execution model 

• Shared memory (e.g. OpenMP) execution model 

• ILP (instruction level parallelism) model 
– Superscalar model 

– VLIW model 

• Evolution of (dynamic) fine-grain multithreaded 
program execution models. 

• Summary 



What is a Program Execution Model? 

 

 Application Code 

 Software Packages 

 Program Libraries 

 Compilers 

 Utility Applications  

(API) PXM 

User Code 

 Hardware 

 Runtime Code 

 Operating System 

System 



Features a User Program Depends On 

 Procedures; call/return 

 Access to parameters and  
 variables 

 Use of data structures (static  
 and dynamic) 

Features expressed 
within a Programming 
language 

 File creation, naming and 
 access 

 Object directories 

 Communication: networks 
 and peripherals 

 Concurrency: coordination; 
 scheduling 

Features expressed 
Outside a (typical) 
programming language 

But that’s not all !! 



Developments in the 1960s, 1970s  

1960 

1970 

1980 

1990 
 Personal Workstations  Distributed Systems  Internet 

Drop in interest in Execution Models for 20+ Years 

 Book on the B6700,  
 Organick 

 Rice University Computer 

 Graph / Heap Model,  
 Dennis 

 IBM System 38 

 Burroughs B5000 Project  
 Started 

 Vienna Definition Method 

 Contour Model, Johnston 

 Common Base Language, 
 Dennis 

Highlights Other Events 

 IBM announces System 360 

 Project MAC Funded at MIT 

 Unravelling Interpreter, 
 Arvind 

 Burroughs builds Robert 
 Barton’s DDM1 

 RISC Architecture 

 Monsoon (1989) 

 Sigma 1 (1987) 

 Tasking introduced in Algol 
 68 and PL/I 

 IBM AS / 400 



Contour Model: 
Algorithm; Nested 
Blocks�and 
Contours 

- Johnston, 1971 



Idea: A Common Base Language 

. 

This is a report on the work of the Computation Structures Group of 
Project MAC toward the design of a common base language for 
programs and information structures. We envision that the meanings 
of programs expressed in practical source languages will be defined 
by rules of translation into the base language. 
 
The meanings of programs in the base language is fixed by rules of 
interpretation which constitute a transition system called the 
interpreter for the base language. 
 
We view the base language as the functional specification of a 
computer system in which emphasis is placed on programming 
generality -- the ability of users to build complex programs by 
combining independently written program modules. 

- Dennis, 1972 
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Terminology Clarification 

• Parallel Model of Computation 

– Parallel Models for Algorithm Designers 

– Parallel Models for System Designers 

• Parallel Programming Models 

• Parallel Execution Models 

• Parallel Architecture Models 
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What Does Program Execution 

Model (PXM) Mean ? 

• The notion of PXM 

    The program execution model (PXM) is the basic 

    low-level abstraction of the underlying system 

    architecture upon which our programming model, 

    compilation strategy, runtime system, and other 

software components are developed.  

• The PXM (and its API) serves as an interface 

between the architecture and the software. 

 



Program Execution Model (PXM) 

– Cont’d 

Unlike an instruction set architecture (ISA) 
specification, which usually focuses on 
lower level details (such as instruction 
encoding and organization of registers for a 
specific processor), the PXM refers to 
machine organization at a higher level for a 
whole class of high-end machines as view 
by the users 

 

 
 

Gao, et. al., 2000 
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Abstract Machine Models  May 

Be Heterogeneous! 



High-Level Programming 

API  

(MPI, Open MP, CnC, Xio, 

Chapel, etc.) 

Software packages 

Program libraries 

Utility applications 

Compilers Tools/SDK 
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Outline 
• A short history of parallel computing systems 

• Program execution models (PXM) 

• Examples of program execution models 

– Sequential execution model 

– Parallel execution model 

• SIMD and Vector processing model 

• MIMD model 

• Message-passing (e.g. MPI-style) execution model 

• Shared memory (e.g. OpenMP) execution model 

• ILP (instruction level parallelism) model 
– Superscalar model 

– VLIW model 

• Evolution of (dynamic) fine-grain multithreaded 
program execution models. 

• Summary 
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What is your  

“Favorite” 

 Program Execution Model? 



Course Grain Execution Models 
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The Single Instruction Multiple Data (SIMD) Model 

The Single Program Multiple Data (SPMD) Model 

The Data Parallel Model 

Pipelined Vector Unit or 

Array of Processors 

Program 

Processor 

Program 

Processor 

Program 

Processor 

Program 

Processor 

Task Task Task Task 

Data Structure 



Data Parallel Model 
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Difficult to write unstructured programs 

Convenient only for problems with regular 

structured parallelism. 

Limited composability! 

Inherent limitation of coarse-grain multi-

threading 

Compute 

Communication 

Compute 

Communication 

? 

Limitations 



Programming Models for Multi-

Processor Systems 

• Message Passing 

Model 

– Multiple address 

spaces 

– Communication can 

only be achieved 

through “messages” 

• Shared Memory 

Model 

– Memory address space 

is accessible to all 

– Communication is 

achieved through 

memory 
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Local Memory 

Processor 

Local Memory 

Processor 

Messages 

Processor Processor 

Global Memory 



Comparison 

Message Passing 

+ Less Contention  

+ Highly Scalable   

+ Simplified Synch  

– Message Passing  Sync + 

Comm. 

– But does not mean highly 

programmable 

- Load Balancing  

- Deadlock prone  

- Overhead of small messages  

Shared Memory 

+ global shared address space  

+ Easy to program (?) 

+ No (explicit) message 

passing (e.g. communication 

through memory put/get 

operations) 

- Synchronization (memory 

consistency models, cache 

models) 

- Scalability  

652-14F-PXM-intro 32 
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Comment on OS impact? 

• Should compiler be OS-Aware too ? If so, 

how ? 

• Or other alternatives ? Compiler-controlled 

runtime, of compiler-aware kernels, etc. 

• Example: software pipelining … 

Gao, ECCD Workshop, Washington D.C., Nov. 2007 
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Outline 
• A short history of parallel computing systems 

• Examples of program execution models 

– Sequential execution model 

– Parallel execution model 

• SIMD and Vector processing model 

• MIMD model 

• Message-passing (e.g. MPI-style) execution model 

• Shared memory (e.g. OpenMP) execution model 

• ILP (instruction level parallelism) model 
– Superscalar model 

– VLIW model 

• Evolution of (dynamic) fine-grain multithreaded 
program execution models. 

• What is program execution model anyway ? 

• Summary 



A Quiz: Have you heard the 

following terms ? 

Actors (dataflow) ? 

 

strand ? 

fiber ? 

codelet ? 
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CPU 

Memory 

Fine-Grain non-preemptive thread- 

The “hotel” model 

Thread 

Unit 

Executor 

Locus 

Coarse-Grain vs. Fine-Grain Multithreading 

A Pool 

Thread 

CPU 

Memory 

Executor 

Locus 

A Single 

Thread 

Coarse-Grain thread- 

The family home model 

Thread 

Unit 

[Gao: invited talk at Fran Allen’s Retirement Workshop, 07/2002] 



Executor 

Loci 

1 2 
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Coarse-Grain vs. Fine-Grain Multithreading 

A Codelet  

Pool 

[Gao: invited talk at Fran Allen’s Retirement Workshop, 07/2002] 

CPU 

Memory 

Fine-Grain non-preemptive thread- 

The “hotel” model 

Thread 

Units 

CPU 

Memory 

TU 1 TU 2 

Dependency 

Codelet 

Dependency 

Met 
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Evolution of Multithreaded  
Execution and Architecture Models 

Non-dataflow 
based 

CDC 6600 
1964 

MASA 
Halstead 
1986 

HEP 
B. Smith 
1978 

Cosmic Cube 
Seiltz 
1985 

J-Machine 
Dally 
1988-93 

M-Machine 
Dally 
1994-98 

Dataflow 
model inspired 

MIT TTDA 
Arvind 
1980 

Manchester 
Gurd & Watson 
1982 

*T/Start-NG 
MIT/Motorola 
1991- 
 

SIGMA-I 
Shimada 
1988 

Monsoon 
Papadopoulos 
& Culler  
1988 

P-RISC 
Nikhil &  
Arvind 
1989 

EM-5/4/X  
RWC-1 
1992-97 

Iannuci’s 
1988-92 

Others: Multiscalar (1994), SMT (1995), etc. 

Flynn’s 
Processor 
1969 

CHoPP’77 CHoPP’87 

TAM 
Culler 
1990 

Tera 
B. Smith 
1990- 

 

Alwife 
Agarwal 
1989-96 

Cilk 
Leiserson 

LAU 
Syre 
1976 

Eldorado 

CASCADE 

Static 
Dataflow 
Dennis 1972 
MIT 

Arg-Fetching 
Dataflow 
DennisGao 
1987-88 

MDFA 
Gao 
1989-93 

EARTH        CARE 
PACT95’,  
ISCA96,  
Theobald99 

Marquez04 

HTVM/ 

TNT-X 

Gao et. al. 
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The Codelet: A Fine-Grain 
Piece of Computing 

Codelet 

Result 

Object 

Data 

Objects 

Supports Massively Parallel Computation! 
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Outline 
• A short history of parallel computing systems 

• Examples of program execution models 

– Sequential execution model 

– Parallel execution model 

• SIMD and Vector processing model 

• MIMD model 

• Message-passing (e.g. MPI-style) execution model 

• Shared memory (e.g. OpenMP) execution model 

• ILP (instruction level parallelism) model 
– Superscalar model 

– VLIW model 

• Evolution of (dynamic) fine-grain multithreaded 
program execution models. 

• What is program execution model anyway ? 

• Summary 


