
652-14F-PXM-intro 1

Introduction of Parallel Program Execution and

Architecture Models

Guang R. Gao

ACM Fellow and IEEE Fellow

Endowed Distinguished Professor

Electrical & Computer Engineering

University of Delaware

ggao@capsl.udel.edu

652-14F-PXM-intro

2

Corporations Vanishing
(1985 – 2005)

1990 1992 1994 1996 1985 2000 1998 2005

1999

Sequent

1994

Thinking Machines

1992

Meiko Scientific

1995

Pyramid

1998

DEC

1989

ETA

MasPar

1996

Convex

Computer

1994

nCube

2005

Kendall Square

Resarch

1996

ESCD

1990 Multiflow

1990

Cray Research

1996

BBN

1997

Myrias

1991

From Gao: IPDPS 2005 Keynote

http://parallel.ru/images/computers/qm-1-big.jpg

652-14F-PXM-intro 3

Outline
• A short history of parallel computing systems

• Program execution models (PXMs)

• Examples of parallel program execution models

– SIMD and Vector processing model

– MIMD model

– Message-passing (e.g. MPI-style) execution model

– Shared memory (e.g. OpenMP) execution model

– ILP (instruction level parallelism) model

• Superscalar model

• VLIW model

• Evolution of (dynamic) fine-grain multithreaded
program execution models.

• Summary

Memory
DDR2 SDRAM 2004

1.8V vs. 2.5V for DDR, Up to 8,533MB/s

DDR3 2007

1.5V or 1.35V for DDR3L, 6,400-

17,066MB/s

DDR4 2012

1.05-1.2V, 2133-4266MT/s

Ethernet
Gigabit Ethernet is the prevalent during last decade

Gained the lead in TOP500 system count in June 2005

Reaches the peak of 56.6% of all TOP500 systems in

June 2008

The dominance continues until June 2012

Fast Ethernet 100Mbps

Gigabit Ethernet 1000Mbps

10Gigabit Ethernet 10Gbps

InfiniBand
Scalable switched fabric communications technology

High throughput and low latency

Point-to-point bidirectional serial links

Quality of service and failover features

2.5Gbps signaling rate in each direction per link in SDR speed

Since June ‘12 InfiniBand is the dominant class of interconnects

in TOP500

Cray Interconnects
Seastar (Red Storm, Cray XT3), 2004

3-D mesh topology with link throughput of

2.5GB/s in each direction

SeaStar2 (Cray XT4), 2006

Peak bidirectional bandwidth per link:

7.6GB/s,

SeaStar2+ (Cray XT5), 2009

9.6GB/s peak bidirectional bandwidth per

link

Gemini (Cray XE6, XK6, XK7), 2010

4 links per X and Z direction, 2 links per Y

(10 total per NIC)

Aries/Dragonfly (Cray XC30), 2012

 High radix tiled router (48 tiles), 8

processor tiles, 4 NICs

Solid State Drives
Significant reduction in price per GB since mid-2000

More expensive than HDDs of comparable capacity

2007: 320GB 100k IOPS

2009: 1TB SSD with 654MB/s write and 712MB/s read BW

2009: First SSD with 6Gbps SATA interface

2011: 2.2TB, 2.7GB/s read bandwidth

2012: 99.9% of 4KB random accesses within 0.5ms

Recent Advances in Technologies

Courtesy of Prof. Thomas Sterling 652-14F-PXM-intro 4

World’s Fastest Supercomputers

5

Japan, 2002: Earth Simulator

35.86 TFLOPS LINPACK

USA, 2004: Blue Gene/L

70.72 TFLOPS Linpack

USA, 2008: Roadrunner

1026 TFLOPS Linpack

USA, 2009: Jaguar

1759 TFLOPS Linpack

China 2010: Tianhe-1a

2566 TFLOPS Linpack

Japan 2011: K (京)

10510 TFLOPS Linpack

USA 2012: Sequoia
16324 TFLOPS Linpack

USA 2012: Titan
17590 TFLOPS Linpack China 2013: Tianhe-2

33860 TFLOPS in HPL

Courtesy of Prof. T. Sterling 652-14F-PXM-intro

http://www.google.com/url?sa=i&rct=j&q=ornl+titan&source=images&cd=&cad=rja&docid=B05ecx2VwSSEjM&tbnid=znKj6ThelO_AKM:&ved=0CAUQjRw&url=http://www.bibliotecapleyades.net/ciencia/ciencia_climatechange61.htm&ei=rku2UcWlAfOxygGR6YDoAw&psig=AFQjCNFnfj_gFbq44x_Md3eIq9d6trOrcA&ust=1370986964381685

Tianhe-1A 2.566 Petaflops

652-14F-PXM-intro 6

Technology and Historical

Perspective:

A peek of the microprocessor

Evolution

652-14F-PXM-intro 8

652-14F-PXM-intro 9

652-14F-PXM-intro 10

Technology Progress Overview

• Processor speed improvement: 2x per year

(since 85). 100x in last decade.

• DRAM Memory Capacity: 2x in 2 years

(since 96). 64x in last decade.

• DISK capacity: 2x per year (since 97).

250x in last decade.

652-14F-PXM-intro 11 10
2

10
3

10
4

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8
Diminishing Return of Microprocessors

Num of Transistors x Clock Rate (Mil * MHz / 100)

S
P

E
C

In
t2

0
0
0
/(

N
u
m

 o
f

T
ra

n
s
is

to
rs

 x
 C

lo
c
k
 R

a
te

/1
0
0
)

PIII Coppermine

 P4

Willamette 423

 P4

Prescott 478

 P4

Northwood

P4 HT

 P4

 Prescott 520

Prescott

 540 Prescott

 550

7455 G4

Power4

Power5

Power5+

IA32

PowerPC

Data source:

http://www.spec.org/cpu2000/results/cint2000.html

http://www.geek.com/procspec/procspec.htm

http://www.bayarea.net/~kins/AboutMe/CPUs.html

Main observation: application of additional

resources yields diminishing return in

performance

In addition:

 - heat problem

 - design complexity

http://www.spec.org/cpu2000/results/cint2000.html
http://www.geek.com/procspec/procspec.htm
http://www.bayarea.net/~kins/AboutMe/CPUs.html

652-14F-PXM-intro 12

Pentium M

Thermal Maps from the Pentium M obtained from simulated power density (left) and

IREM measurement (right). Heat levels goes from black (lowest), red, orange, yellow and

white (highest)

Figures courtesy of Dani Genossar and Nachum Shamir in their paper Intel ® Pentium ® M Processor Power Estimation,

Bugdeting, Optimization and Validation published in the Intel Technical Journal, May 21, 2003

652-14F-PXM-intro 13

What Is Next ?

• Move to “multiprocessor on a chip” ?

– cooler

– simpler

– cheaper

– …

Architecture Features and

Trends
(Revisitd)

• core arch- simpler and simpler : RISC Core

• # of cores - larger and larger : 160 cores

• on-chip memory per core - smaller and smaller :

 < 32 KB/core

• On-chip bandwidth is becoming larger and larger :

 > 0.3 TB/sec

• Energy efficiency support - more and more :

 500 MHz

652-14F-PXM-intro 14 9/3/2014

652-14F-PXM-intro 15

Outline
• A short history of parallel computing systems

• Program execution models (PXM)

• Examples of program execution models

– Sequential execution model

– Parallel execution model

• SIMD and Vector processing model

• MIMD model

• Message-passing (e.g. MPI-style) execution model

• Shared memory (e.g. OpenMP) execution model

• ILP (instruction level parallelism) model
– Superscalar model

– VLIW model

• Evolution of (dynamic) fine-grain multithreaded
program execution models.

• Summary

What is a Program Execution Model?

 Application Code

 Software Packages

 Program Libraries

 Compilers

 Utility Applications

(API) PXM

User Code

 Hardware

 Runtime Code

 Operating System

System

Features a User Program Depends On

 Procedures; call/return

 Access to parameters and
 variables

 Use of data structures (static
 and dynamic)

Features expressed
within a Programming
language

 File creation, naming and
 access

 Object directories

 Communication: networks
 and peripherals

 Concurrency: coordination;
 scheduling

Features expressed
Outside a (typical)
programming language

But that’s not all !!

Developments in the 1960s, 1970s

1960

1970

1980

1990
 Personal Workstations  Distributed Systems  Internet

Drop in interest in Execution Models for 20+ Years

 Book on the B6700,
 Organick

 Rice University Computer

 Graph / Heap Model,
 Dennis

 IBM System 38

 Burroughs B5000 Project
 Started

 Vienna Definition Method

 Contour Model, Johnston

 Common Base Language,
 Dennis

Highlights Other Events

 IBM announces System 360

 Project MAC Funded at MIT

 Unravelling Interpreter,
 Arvind

 Burroughs builds Robert
 Barton’s DDM1

 RISC Architecture

 Monsoon (1989)

 Sigma 1 (1987)

 Tasking introduced in Algol
 68 and PL/I

 IBM AS / 400

Contour Model:
Algorithm; Nested
Blocks�and
Contours

- Johnston, 1971

Idea: A Common Base Language

.

This is a report on the work of the Computation Structures Group of
Project MAC toward the design of a common base language for
programs and information structures. We envision that the meanings
of programs expressed in practical source languages will be defined
by rules of translation into the base language.

The meanings of programs in the base language is fixed by rules of
interpretation which constitute a transition system called the
interpreter for the base language.

We view the base language as the functional specification of a
computer system in which emphasis is placed on programming
generality -- the ability of users to build complex programs by
combining independently written program modules.

- Dennis, 1972

652-14F-PXM-intro 21

Terminology Clarification

• Parallel Model of Computation

– Parallel Models for Algorithm Designers

– Parallel Models for System Designers

• Parallel Programming Models

• Parallel Execution Models

• Parallel Architecture Models

652-14F-PXM-intro 22

What Does Program Execution

Model (PXM) Mean ?

• The notion of PXM

 The program execution model (PXM) is the basic

 low-level abstraction of the underlying system

 architecture upon which our programming model,

 compilation strategy, runtime system, and other

software components are developed.

• The PXM (and its API) serves as an interface

between the architecture and the software.

Program Execution Model (PXM)

– Cont’d

Unlike an instruction set architecture (ISA)
specification, which usually focuses on
lower level details (such as instruction
encoding and organization of registers for a
specific processor), the PXM refers to
machine organization at a higher level for a
whole class of high-end machines as view
by the users

Gao, et. al., 2000

Execution Model API

Abstract Machin e Models

Programming Environment Platforms

Users Users

E
x
e
c
u
ti
o
n
 M

o
d
e
l

Programming

Models

Execution Model and Abstract Machines

Abstract Machine Models May

Be Heterogeneous!

High-Level Programming

API

(MPI, Open MP, CnC, Xio,

Chapel, etc.)

Software packages

Program libraries

Utility applications

Compilers Tools/SDK

API

Abstract

Machine
Hardware Architecture

Programming

Models/

Environment

User

s

User

s
E

x
e
c
u
ti
o
n

M
o
d
e
l

Runtime System

Execution Model and Abstract Machines

652-14F-PXM-intro 27

Outline
• A short history of parallel computing systems

• Program execution models (PXM)

• Examples of program execution models

– Sequential execution model

– Parallel execution model

• SIMD and Vector processing model

• MIMD model

• Message-passing (e.g. MPI-style) execution model

• Shared memory (e.g. OpenMP) execution model

• ILP (instruction level parallelism) model
– Superscalar model

– VLIW model

• Evolution of (dynamic) fine-grain multithreaded
program execution models.

• Summary

652-14F-PXM-intro 28

What is your

“Favorite”

 Program Execution Model?

Course Grain Execution Models

652-14F-PXM-intro 29

The Single Instruction Multiple Data (SIMD) Model

The Single Program Multiple Data (SPMD) Model

The Data Parallel Model

Pipelined Vector Unit or

Array of Processors

Program

Processor

Program

Processor

Program

Processor

Program

Processor

Task Task Task Task

Data Structure

Data Parallel Model

652-14F-PXM-intro 30

Difficult to write unstructured programs

Convenient only for problems with regular

structured parallelism.

Limited composability!

Inherent limitation of coarse-grain multi-

threading

Compute

Communication

Compute

Communication

?

Limitations

Programming Models for Multi-

Processor Systems

• Message Passing

Model

– Multiple address

spaces

– Communication can

only be achieved

through “messages”

• Shared Memory

Model

– Memory address space

is accessible to all

– Communication is

achieved through

memory

652-14F-PXM-intro 31

Local Memory

Processor

Local Memory

Processor

Messages

Processor Processor

Global Memory

Comparison

Message Passing

+ Less Contention

+ Highly Scalable

+ Simplified Synch

– Message Passing  Sync +

Comm.

– But does not mean highly

programmable

- Load Balancing

- Deadlock prone

- Overhead of small messages

Shared Memory

+ global shared address space

+ Easy to program (?)

+ No (explicit) message

passing (e.g. communication

through memory put/get

operations)

- Synchronization (memory

consistency models, cache

models)

- Scalability

652-14F-PXM-intro 32

652-14F-PXM-intro 33

Comment on OS impact?

• Should compiler be OS-Aware too ? If so,

how ?

• Or other alternatives ? Compiler-controlled

runtime, of compiler-aware kernels, etc.

• Example: software pipelining …

Gao, ECCD Workshop, Washington D.C., Nov. 2007

652-14F-PXM-intro 34

Outline
• A short history of parallel computing systems

• Examples of program execution models

– Sequential execution model

– Parallel execution model

• SIMD and Vector processing model

• MIMD model

• Message-passing (e.g. MPI-style) execution model

• Shared memory (e.g. OpenMP) execution model

• ILP (instruction level parallelism) model
– Superscalar model

– VLIW model

• Evolution of (dynamic) fine-grain multithreaded
program execution models.

• What is program execution model anyway ?

• Summary

A Quiz: Have you heard the

following terms ?

Actors (dataflow) ?

strand ?

fiber ?

codelet ?

652-14F-PXM-intro 36

CPU

Memory

Fine-Grain non-preemptive thread-

The “hotel” model

Thread

Unit

Executor

Locus

Coarse-Grain vs. Fine-Grain Multithreading

A Pool

Thread

CPU

Memory

Executor

Locus

A Single

Thread

Coarse-Grain thread-

The family home model

Thread

Unit

[Gao: invited talk at Fran Allen’s Retirement Workshop, 07/2002]

Executor

Loci

1 2

652-14F-PXM-intro 37

Coarse-Grain vs. Fine-Grain Multithreading

A Codelet

Pool

[Gao: invited talk at Fran Allen’s Retirement Workshop, 07/2002]

CPU

Memory

Fine-Grain non-preemptive thread-

The “hotel” model

Thread

Units

CPU

Memory

TU 1 TU 2

Dependency

Codelet

Dependency

Met

38

Evolution of Multithreaded
Execution and Architecture Models

Non-dataflow
based

CDC 6600
1964

MASA
Halstead
1986

HEP
B. Smith
1978

Cosmic Cube
Seiltz
1985

J-Machine
Dally
1988-93

M-Machine
Dally
1994-98

Dataflow
model inspired

MIT TTDA
Arvind
1980

Manchester
Gurd & Watson
1982

*T/Start-NG
MIT/Motorola
1991-

SIGMA-I
Shimada
1988

Monsoon
Papadopoulos
& Culler
1988

P-RISC
Nikhil &
Arvind
1989

EM-5/4/X
RWC-1
1992-97

Iannuci’s
1988-92

Others: Multiscalar (1994), SMT (1995), etc.

Flynn’s
Processor
1969

CHoPP’77 CHoPP’87

TAM
Culler
1990

Tera
B. Smith
1990-

Alwife
Agarwal
1989-96

Cilk
Leiserson

LAU
Syre
1976

Eldorado

CASCADE

Static
Dataflow
Dennis 1972
MIT

Arg-Fetching
Dataflow
DennisGao
1987-88

MDFA
Gao
1989-93

EARTH CARE
PACT95’,
ISCA96,
Theobald99

Marquez04

HTVM/

TNT-X

Gao et. al.

9/3/2014 652-14F-PXM-intro

The Codelet: A Fine-Grain
Piece of Computing

Codelet

Result

Object

Data

Objects

Supports Massively Parallel Computation!

652-14F-PXM-intro 40

Outline
• A short history of parallel computing systems

• Examples of program execution models

– Sequential execution model

– Parallel execution model

• SIMD and Vector processing model

• MIMD model

• Message-passing (e.g. MPI-style) execution model

• Shared memory (e.g. OpenMP) execution model

• ILP (instruction level parallelism) model
– Superscalar model

– VLIW model

• Evolution of (dynamic) fine-grain multithreaded
program execution models.

• What is program execution model anyway ?

• Summary

