Shared Memory Systems

Haitao Wel

(Most of the slides are from Dr.

Stephane Zuckerman)
Computer Architecture and

University of Delaware Parallel Systems
Laboratory

http://www.capsl.udel.edu

CAPSL

http://www.udel.edu

- SITYor
FIAWARE,

Outline

* Part 1: Basic Topics (2 sessions)
e Memory Model of Shared Memory System
 Cache

* Part 2: Advanced Topics (1 session)
* Partitioned Global Address Space (PGAS)

* Open Problems of Memory Models for
Distributed

Reading List

* Hennessy and Patterson: Chapter 5
(optionally chapter 6)

* Culler and Singh: Chapter 5

Outline

 Overview of Shared Memory Systems

* Programming Execution Models

* Memory Consistency Models

A Motivating Example

Uniform Memory Consistency Models Strongest
MCMs

Weaker Uniform MCMs

Non-Uniform Memory Consistency Models Hardware-

Oriented MCMs
Software- and Programmer-Oriented MCMs

Conclusion On MCMs

A 100,000-Mile View

DRAM

Advantages of Shared-Memory
Systems

No need to perform special operations to
access memory locations

State can be passed to multiple threads of
execution implicitly

Reduced overhead when read from/writing
to memory

Shortcomings of Shared-Memory

Systems
LOTS!

... But we will talk about them later.

Symmetric MultiProcessor Systems

DRAM

Distributed Shared Memory Systems

-

Why This Is More Complicated Than It
Appears

L1 Cache L1 Cache

PC + Registers PC + Registers

Why This Is More Complicated Than It
Appears (cont’d)

L2 Cache

MAGIC!
L1 Cache L1 Cache

11

Putting It All Together (1)

Shared address space

12

The Advent of Chip Multi-Processors

(CMP)

Last Level of Cache

Cache hierarchy Cache hierarchy

UAL FPU UAL FPU

¥ I I
PC + Registers PC + Registers

Cache hierarchy Cache hierarchy

o T 1T T T T 1 1
PC + Registers PC + Registers

13

Hardware Implementations of

Threads

Types of Multithreading

* Fine-grain
 Switch between threads on each instruction
 Interleaved thread execution

 Hide throughput losses in both short and long stalls
 Slowdown execution of single-threaded applications

* (Coarse-grain
 Switch threads only when a high-latency or stall is found

 Limited ability to overcome throughput losses
— Pipeline startup

Simutaneous MultiThreading (SMT)

. Better utilization of resources

Normal multithreading: pipeline is “locked” by the thread

14

Comparison of Multithreading
Hardware

Issue Slot

Time

Super Scalar Coarse MT Fine MT SMT

Figure : From Hennessy and Patterson

15

Putting It All Together

) @

L1$
I I

Main Memory

Shared Cache

Bus

Main Mem

|/O Devices

Bus Based Shared Memory

$

Mem

$ $
| |
IC
| |
Mem oo Mem
Dance Hall

$

—Mem

IC

Distributed Memory

16

Outline

* Overview of Shared Memory Systems

* Programming Execution Models

* Memory Consistency Models

A Motivating Example

Uniform Memory Consistency Models Strongest

MCMs
Weaker Uniform MCMs

Non-Uniform Memory Consistency Models Hardware-

Oriented MCMs
Software- and Programmer-Oriented MCMs

Conclusion On MCMs

17

Programming Execution Models

PXMs define a set of rules to describe how programs
run:

* Message Passing Model
 De facto multi-computer programming model
 Multiple address spaces
e Explicit communications / implicit synchronization

 Shared Memory Model
 De facto multi-processor programming model
* Single address space
* |mplicit communications / explicit synchronization

18

Distributed Memory MIMD

Advantages:

Less contention
Highly scalable

Simplified
synchronization
= sync+comms

Disadvantages:

Load balancing

Deadlock /
Livelock prone

Waste of
bandwidth

Overhead of small
messages

19

Shared Memory MIMD

Advantages:

No Partitioning

No (explicit) data
movement

Minor
modifications (or
not at all) of
toolchains and
compilers

Disadvantages:

* Synchronization

* Scalability

High-throughput,
low-latency network

Memory hierarchies

Distributed shared-
memory (DSM)

Shared-Memory Execution Models

Shared-memory PXMs are usually described according to
three criteria:

e The threading (or task) model
= How do | create parallel work to speed-up my
computation?

e The memory model

= In which order are loads and stores seen by all
threads?

e The synchronization model
= How is memory ordering enforced when needed?

21

The Challenges of Shared-Memory

e Shared-memory multiprocessors
= Effective at a number of thousand units

e How to optimize and compile parallel
applications

e Main areas: assumptions about

Coherence
Memory consistency

22

Outline

* Overview of Shared Memory Systems

* Programming Execution Models

* Memory Consistency Models

A Motivating Example

Uniform Memory Consistency Models Strongest

MCMs
Weaker Uniform MCMs

Non-Uniform Memory Consistency Models Hardware-

Oriented MCMs
Software- and Programmer-Oriented MCMs

Conclusion On MCMs

23

A Motivating Example

x&1
rl<y

A Motivating Example

y<1
r2 & x

A Motivating Example

ThreadO Threadl
x<1 y<1
rl <y r2 < X

Table: Initially, x =y =0. Is it possible to have
rl=r2=07?

26

What Memory Consistency is All
About

Q What happens when at least two concurrent
memory operations arrive at the same memory
location x?

— What happens when a data-race (i.e. at
least one of the two memory operations is
a write) occurs at some memory location x?

e Memory Consistency Models try to answer that
guestion.

27

The Answer of the Message Passing

Crowd

It can never happen: data is explicitly sent and
received. This answer is fine, but. ..

e We do not live in a pure message-passing world
e Memory is shared on most super-computers,
e.g.:

— Efficient MPI runtime systems make the distinction

between intra-node and inter-node
communications

— Inter-node communications work as advertised, but...

— Efficient intra-node communications make the use of
shared-memory segments, i.e. shared memory

28

Issue order and perform order

Issue order (program order if there is on out of
order opt.): the operation order that is issued
by the processor

Perform order: the operation order that is
happened (executed) to the memory

29

Read

rl <y
t1

Back to our Example

PO P2 Pn
Twrite N -
X1 | t3 y<1|t4
r2 & x
t2 < ik
Inter Connection
x=0 Memory
y=0
tl, t2, t3, t4

ThreadO Thread1

x<1 y<1

rl<y r2 & x
ri=r2=0

30

Outline

* Overview of Shared Memory Systems

* Programming Execution Models

* Memory Consistency Models

A Motivating Example

Uniform Memory Consistency Models Strongest

MCMs
Weaker Uniform MCMs

Non-Uniform Memory Consistency Models Hardware-

Oriented MCMs
Software- and Programmer-Oriented MCMs

Conclusion On MCMs

31

Atomic Consistency [Lamport(1986)]

A system is AC if

e All memory operations are issued and performed
in some total order

—> Real time constraint: time slots are allocated,
and mem ops must be performed according to

them.
e Memory operations must follow program order

e Strongest MCM that was conceived

- Never implemented

32

Sequential Consistency
[Lamport(1978)]
A system is SC if

e All memory operations appear to follow some total
order

e Memory operations (appear to) follow program order
Definition: Sequential Consistency
A system is sequentially consistent if

... the result of any execution is the same as if the
operations of all the processors were executed in some
sequential order, and the operations of each individual
processor appear in this sequence in the order specified

by its program.

33

__

Sequential Consistency Model

34

Back to our Example

ThreadO Threadl
x<1 y<1
rl<y r2 & X

Table: Initially, x =y =0.

Is it possibleto haverl=r2=07

NO - There is no total linear order which allows both
Thread O and Thread 1 to see memory operations
happening in the same order such thatrl=r2=0

35

The Drawbacks of Sequential

Consistency

It offers strong guarantees: a modification to
memory must be seen by all other threads in a
given program

-—> How complicated is it to implement such a
system in hardware ?

—> What about caches? Write buffers? etc.
——> How scalableis it ?

-—> How expensive is it to implement that kind of
consistency model?

36

Write Buffer Breaks SC

P1 P2
Read Read
Flag2 | \\rite Flagl 13 Flagh | \\rite Flag2 14
t1 12
Shared Bus
Flagl: 0
M
Flag2: 0 emoLy

Pl

Flagl =1
if (Flag2 ==0)

critical section

P2

Flag2 =1
if (Flagl ==0)

critical section

From [Sarita V. Adve and Kourosh Gharachorloo paper 1995: Shared Memory Consistency Models: A Tutorial]

http://www.hpl.hp.com/techreports/Compaq-DEC/WRL-95-7.pdf

37

Overlapped Writes Breaks SC

P1 P2
Read Data 13
General Interconnect Read Head 72
PL P2
Write Head Write Data
t1 \ t4 Data = 2000 while (Head ==0) {;}
I Head =1 ...= Data
Head: O Data: 0
= Memory i

From [Sarita V. Adve and Kourosh Gharachorloo paper 1995: Shared Memory Consistency Models: A Tutorial]
http://www.hpl.hp.com/techreports/Compaqg-DEC/WRL-95-7.pdf

38

Non-Blocking Reads Breaks SC

Write Head 3
Write Data 12

P1 P2
General Interconnect
Read Head
/ 4 Read Data
tl
Head: O Data: 0

Memory

P1 P2
Data = 2000 while (Head ==0) {;}
Head =1 ...= Data

From [Sarita V. Adve and Kourosh Gharachorloo paper 1995: Shared Memory Consistency Models: A Tutorial]

http://www.hpl.hp.com/techreports/Compaqg-DEC/WRL-95-7.pdf

39

Coherence (Cache Consistency)
[Gharachorloo et al.(1990)]

Coherence is achieved if
e for each memory location x, there is a total
order of all the memory operations dealing

with x
e Memory operations on x follow the program

order

40

Is our First Example Coherent?

ThreadO Threadl
x<1 y<1
rl <y r2 < X

Table: Initially, x =y =0.

Is it possibleto haverl=r2=07
YES!

= r1l<y,y<1,r2x,x<1

41

The Difference with Previous Models

e Previous models tried to define an order for
memory operations, regardless of their role in
a program whatsoever

e Non-uniform MCMs make a difference between
synchronizing memory operations and ordinary
ones

42

Weak Consistency
[Dubois et al.(1986)Dubois, Scheurich,
Weak Ordering [Adve and Hill()]

A system is WC/WO if

eall synchronizing accesses have performed before
any ordinary access (load or store) is allowed to
perform, and

eall ordinary accesses (load or store) have

performed before any synchronizing access is
allowed to perform

esynchronizing accesses are SC

43

Release Consistency [Gharachorloo et
al.(1990)]

RC refines synchronizing accesses into two types:
acquire and release. They are used to label
instructions (Gharachorloo speaks about properly
labeled programs). A system is RC if:

e acquire accesses must have performed before any
ordinary operation is performed

e all ordinary memory operations have performed
before an release operation is performed

e Synchronizing accesses (acquire or release) are SC

44

The Critical Section Example

Thread 0
while(true){
a=...
while(lock==0)[acquire]
L{x+ =1;
a=x+a;/
rI>ock=0[Release]

read a;

/

Thread 1

while(true){
b=...
while(lock==1)[acquire]

{x+=2;
N

b=x+b;]/
.

lock=1[Release]
_read b;

/

45

More Examples (See

[Adve et al.(1999)]
Thread 0 Thread 1
Datal = 64 while(Flag 1= 1) ;
Data2 =55 regl = Datal
Flag=1 reg2 = Data2

Table : Ex1: What are the legal values in SC? WC? RC?

Solution
SC: regl =64;reg2 =55
WC,RC: regl =64 0or0; reg2=550r0

46

More Examples (See [Adve and

Gharachorloo(1996)])
Thread O Thread 1
Flagl=1 Flag2 =1
regl = Flag2 reg2 = Flagl
if regl == if reg2 ==

critical section critical section

Table : Ex2: What are the legal values in SC? WC? RC?

Solution
SC: Both regl and reg2 cannot be O (at the same time)
WC,RC:regl =0or1l;reg2=0o0r1

47

The C++ Memory Model

Very easy to understand:

e Synchronizing accesses (through the atomic
keyword) are SC

e any incorrectly synchronized behavior implies
an undefined behavior,

48

[No possible
data race

A Brief Recap

Coherence

Strongest
Memory
Model

Coherence Causality

Weakest
Memory
Model

-

-

May cause causal cycles

Yay

M

Q

y violate coherence

49

What to take home

A memory consistency model defines which
memory operations are allowed, in which
order

It concerns both hardware and software points of
view

The weaker the MCM,
e the more optimizations can be performed

e the more scalable it is
e the heavier it is on a programmer’s shoulders

The MCMs | Did Not Talk About

e SPARC processors’ memory consistency
models:

e Total Store Order (TSO)
e Partial Store Order (PSO)

e Location Consistency [Gao and Sarkar(2000)] e
Others(Localconsistency,...)

51

If You Want to Know More. ..

A S.Adve, K.Gharachorloo: Shared Memory
Consistency Models: a Tutorial
[Adve and Gharachorloo(1996)]

A D.Mosberger: Memory Consistency Models

[Mosberger(1993)]

A J.Hennessy and D.

Patterson® Computer

Architecture: A Quantitative Approach

Bibliography |

S. Adve and K. Gharachorloo. Shared memory consistency
models: a tutorial. Computer, 29(12):66 —76, Dec. 1996.
ISSN 0018-9162. doi: 10.1109/2.546611.

S. Adve, V. Pai, and P. Ranganathan. Recent advances in
memory consistency models for hardware shared memory
systems. Proceedings of the IEEE, 87(3):445 —455, Mar.
19909.

ISSN 0018-9219. doi: 10.1109/5.747865.

S. V. Adve and M. D. Hill. Weak ordering—a new
definition. pages 2-14.

M. Dubois, C. Scheurich, and F. Briggs. Memory access
buffering in multiprocessors. In Proceedings of the 13th
Annual International Symposium on Computer Architecture,
pages 434-442, Tokyo, Japan, June 1986.

53

Bibliography I

® G. R. Gao and V. Sarkar. Location consistency-a new
memory model and cache consistency protocol.
IEEE Trans. Comput., 49:798-813, August 2000.
ISSN 0018-9340.

® K. Gharachorloo, D. Lenoski, J. Laudon, P. Gibbons, A.
Gupta, and J. Hennessy. Memory consistency and event
ordering in scalable shared-memory multiprocessors. In
Proceedings of the 17th Annual International Symposium
on Computer Architecture, pages 15-26, Seattle,
Washington, May 1990.

® L. Lamport. Time, clocks, and the ordering of events in a
distributed system. Communications of the ACM, 21(7):
558-565, July 1978.

54

Bibliography Il

 D. Mosberger. Memory consistency
models. SIGOPS Oper. Syst. Rev., 27:18—
26, January 1993.ISSN 0163-5980.

55

