9/10/2014

Vector Processing and Architectures

Guang R. Gao

ACM Fellow and IEEE Fellow
Endowed Distinguished Professor
Electrical & Computer Engineering

University of Delaware

ggao@capsl.udel.edu

652-14F-PXM-intro

Reading List

« Slides.
« Henn&Patt: Chapter 41, 5t Edition (may

change depending on your book’s version).

 Other assigned readings from homework

and classes

9/10/2014 652-14F-PXM-intro

Outline

 |Introduction

* Vector Processing Model and Architectures
* Cray Example

» Performance Model

e Summary

9/10/2014 652-14F-PXM-intro 3

NIVERSFY
JELA)

53 Programming

Models

A 4

A 4

Vector Processing
Programming Model and Environment
Platforms

i N

Vector Processing Execution Model API

L

A 4

Vector Processing Execution Model

Abstract Machin Models for
Vector Processing

Execution Model.and Abstract Machines

Vector Architectures CAESL
(a successful SIMD class architectures)

Types:

Register-Register Archs Memory-Memory Archs

Vector Arch Components:

Vector Register Banks Capable of holding a n n_umber of vector
elements. Two extra registers

Vector Eunctional Units Fully pipelined, hazard detection (structural
and data)

Vector Load-Store Unit

A Scalar Unit A set of registers, FUs and CUs

9/10/2014 652-14F-PXM-intro 5

Main memory

Vector
load/store

FP add/subtract '—*
| FP multiply .—>
] FP divide '—»
I]
Vector — | |
registers o gy
] Logical '—>

Scalar
registers

Figure 4.2 The basic structure of a vector architecture, VMIPS. This processor has a scalar architecture just like MIPS.
There are also eight 64-element vector registers, and all the functional units are vector functional units. This chapter
defines special vector instructions for both arithmetic and memory accesses. The figure shows vector units for logical
and integer operations so that VMIPS looks like a standard vector processor that usually includes these units; however,
we will not be discussing these units. The vector and scalar registers have a significant number of read and write ports to
allow multiple simultaneous vector operations. A set of crossbar switches (thick gray lines) connects these ports to the
inputs and outputs of the vector functional units.

9/10/2014 652-14F-PXM-intro 6

An Intro to DLXV

A simplified vector architecture

 Consist of one lane per functional unit

— Lane: The number of vector instructions that
can be executed in parallel by a functional unit

 Loosely based on Cray 1 architecture and
ISA

e Extension of DLX ISA for vector
architecture

9/10/2014 652-14F-PXM-intro

DLXV Configuration

Vector Registers
— EIght Vector regs / 64 element each.
— Two read ports and one write port per register
— Sixteen read ports and eight write ports in total

Vector Functional Unit
— Five Functional Units

Vector Load and Store Unit
— A bandwidth of 1 word per cycle
— Double as a scalar load / store unit

A set of scalar registers
— 32 general and 32 FP regs

9/10/2014 652-14F-PXM-intro 8

CAPSL

L

A Vector / Register Arch

Main Memory [Scalar Register File
[Vector Register File

A

Vector Load
& Store

A 4

FP Add

A 4

FP Multiply

FP Divide

Logical

Integer

Advantages

A single vector instruction =» A lot of work

No data hazards
— No need to check for data hazards inside vector instructions
— Parallelism inside the vector operation
« Deep pipeline or array of processing elements
Known Access Pattern
— Latency only paid once per vector (pipelined loading)

— Memory address can be mapped to memory modules to reduce
contentions

Reduction in code size and simplification of hazards
— Loop related control hazards from loop are eliminated.

9/10/2014 652-14F-PXM-intro

10

Y=a*X+Y

Loop:

The bold instructions are part of the loop index calculation and branching

9/10/2014

DAXPY: DLX Code

LD
ADDI
LD
MULTD
LD
ADDD
SD
ADDI
ADDI
SUB
BNZ

FO, a

R4, Rx, #512 ; last address to load
F2, O(RX) ; load X(i)

F2, FO, F2 ;a x X(i)

F4, 0 (Ry) ; load Y(i)

F4,F2, F4 ;a x X(i) +Y(i)

F4, 0 (Ry) ; store into Y(i)

Rx, RXx, #8 increment index to X
Ry, Ry, #8 ; increment index to Y
R20, R4, Rx ; compute bound

R20, loop ; check if done

652-14F-PXM-intro

11

CAPSL

L

DAXPY: DLXV Code

Y=a*X+Y
LD FO, a ; load scalar a
LV V1, RX ; load vector X
MULTSV V2, FO, V1 ; vector-scalar multiply
LV V3, Ry ; load vector Y
ADDV V4,V2,V3 ; add
SV Ry, V4 ; store the result

Instruction Number [Bandwidth] for 64 elements

DLX Code 578 Instructions

DLXV Code 6 Instructions

9/10/2014 652-14F-PXM-intro 12

Some Issues

 Vector Length Control

— Vector lengths are not usually less or even a
multiple of the hardware vector length

e Vector Stride

— Access to vectors may not be consecutively.

e Solutions:

9/10/2014

— Two special registers

 One for vector length up to a maximum vector
length

e One for vector mask

652-14F-PXM-intro

13

Vector Length Control

An Example:

for(i=0; 1 < n; ++i)

yli] =a* x{if +y[i]

Question: Assume the maximum hardware vector length
IS MVL which may be less than n. How should we do the
above computation ?

9/10/2014 652-14F-PXM-intro 14

Vector Length Control
Strip Mining

Original Code

for(i=0; 1 <n; ++1)

y[i] = a* x[i] +y[i] Strip Mined Code
Low =0
VL =n % MVL

for(j = 0;] <= (n /IMVL); ++j){
for(i=Low; i < Low + VL — 1; ++i)
yli] = a* x{if + yli];
Low += VL;
VL = MVL;

}

9/10/2014 652-14F-PXM-intro

15

Vector Length Control
Strip Mining

Value of |

_ 0 M M+MVL M+2*MVL
Range of i

M-1 M+MVL-1 M+2*MVL-1 M+3*MVL-1

For a vector of arbitrary length VL =M =n % MVL

The vector length control register takes values similar to
the Vector Length variable (VL) in the C code

9/10/2014 652-14F-PXM-intro 16

Vector Stride

Matrix Multiply Code

for(i=0; 1 <n; ++i)
for(= 0;] < n; ++)){
c[iji] = 0.0;
for(k = 0; k < n; ++k)
c[i]i] += ali][k] * b{k]Q];

How to vectorize this code? Consider that in C the arrays are
saved in memory row-wise.

_ Therefore, a and c are loaded
How stride works here? correctly. How about b?

9/10/2014 652-14F-PXM-intro 17

Picture courtesy of Cray
Original Source: Cray 1 Computer System Hardware Reference Manual

Cray 1 Data Sheet

» Designed by: Seymour Cray
 Price: 5to 8.8 Millions dollars
 Units Shipped: 85

» Technology: SIMD, deep pipelined functional
units

» Performance: up to 160 MFLOPS
« Date Released: 1976

« Best Known for: The computer that made the term
supercomputer mainstream

9/10/2014 652-14F-PXM-intro 19

Architectural Components

Computation Section

Registers
Functional Units
Instruction Buffers

Memory Section
From0.25t0 1
Million 64-bit
words

/O Section

12 Input channels
12 Output channels

MCU

Mass Storage
Subsystem

Front End Comp.
I/O Stations
Peripheral Equipment

CAPRSL

(N S———,

N
AR

(@b

-

)

B Vector Components
(b

=

e

O

.

< T | Scalar Components
0

>

(O

— .
U Address & Instruction

Calculation

(D)
N Components

—

Computation Section

O
=~

Register-Register Architecture

« All ALU operands are In registers

» Registers are specialized by function (A, B, T,
etc) thus avoiding conflict

 Transfer between Memory and registers Is
treated differently than ALU

e RISC based idea

- Effective use of the Cray-1 requires careful
planning to exploit its register resources

— 4 Kbytes of high speed registers

9/10/2014 652-14F-PXM-intro 22

Registers

Memory Access Time: 11 cycles
Register Access Time: 1 ~ 2 cycles

Primary Registers:
— Address Regs: 8 x 24 bits
— Scalar Regs: 8 x 64 bits
— Vector Regs: 8 x 64 words
Intermediate Registers:
— B Regs: 64 x 24 bits
— T Regs: 64 x 64 bits
Special Registers:
— Vector Length Register: 0 <= VL <= 64
— Vector Masks Register: 64 bits

Total Size: 4,888 bytes

9/10/2014 652-14F-PXM-intro

25

Instruction Format

A parcel = 16-bit

Instruction word 16 (one parcel) or 32 (two parcels)
according to type

A One Parcel Instruction: A Two Parcels Instruction:
Arithmetic Logical Instruction Word Memory Instruction Word
BN s | 3| s — 3 [3 22
Op Code l | Op code
Result Reg Addr Index Reg |
Operand reg Result Reg |
Operand reg Address

9/10/2014 652-14F-PXM-intro 26

Functional Unit Pipelines

9/10/2014 652-14F-PXM-intro

Implementation Philosophy

Instruction Processing

— Instruction Buffering: Four Instructions buffers of 64
16-bit parcels each

Memory Hierarchy
— Memory Banks, T and B register banks

Register and Function Unit Reservation

— Example: Vector ops, register operands, register result
and FU are checked as reserved

Vector Processing

9/10/2014 652-14F-PXM-intro 28

Instruction Processing

“Issue one instruction per cycle”

* 4 x 64 word

16 - 32 bit instructions

* Instruction parcel pre-fetch

* Branch in buffer

* 4 inst/cycle fetched to LRU I-buffer

9/10/2014 652-14F-PXM-intro 29

Reservations

 \Vector operands, results and functional unit
are marked reserved

e The vector result reservation is lifted when
the chain slot time has passed

— Chain Slot: Functional Unit delay plus two

clock cycles
Examples:
V1=V2*V3 V1=V2*V3 V1=V2*V3
V4 =V5 + V6 V4 =V5 + V2 V4 =V5 * V6
Independent Second Instruction cannot Resource Dependency

begin until First is finished

9/10/2014 652-14F-PXM-intro 30

.
Vector Instructions In the Cray-1

Vi
S L1
2
- Y ¥
Vv 2 V -
K K 2
2 3
n
n
Vi Vi
(@) Type 1 vector instruction (b) Type 2 vector instruction

9/10/2014 652-14F-PXM-intro 31

Vector Instructions in the Cray-1 %

Vi
-
£
(<5} Y
= ‘1' 1
. 2
3 3
4 > 4
\'% 5 S 2
1 6 g 6
/ Z i<
(c) Type 3 vector instruction (d) Type 4 vector instruction

9/10/2014 652-14F-PXM-intro 32

Vector Loops

 Long vectors with N > 64 are sectioned

 Each time through a vector loop 64
elements are processed

« Remainder handling

e “transparent” to the programmer

9/10/2014 652-14F-PXM-intro 33

Vector Chaining

* Internal forwarding techniques of IBM 360/91

* A “linking process” that occurs when results
obtained from one pipeline unit are directly fed
Into the operand registers of another function pipe.

» Chaining allow operations to be issued as soon as
the first result becomes available

 Registers/F-units must be properly reserved.

« Limited by the number of Vector Registers and
~unctional Units

e From2to5

9/10/2014 652-14F-PXM-intro 34

< =030

Mem = V0 (M-fetch)
VO+ V1i=>V2 (V-add)
'eb V2 < A3 = V3 (left shift)

— V3 * V4 = V5 (logical product)
O
E d

| Fetching | Adding |
C v
. \ector 1
LIXJ Fetigr(;?ng l | add
L pipe
c) Chain Slot
-

I f _
C >
(ﬁ v J

i - Logical 1 i — V4

U Product -

Pipe
A
9/10/2014 652-14F-PXM-intro

Y
1
2
3
4
5
6
VO 7
Vl
V
’ g Y
1
2
V3 3
) 4

Memory
fetch

pipe

Right
shift
pipe

35

Y(1:N) =S x X(1:N) + Y(1:N)

Read/write port

Read port 1 Read port 2
[Cwemoy]
Access

Vector register . Access ?ﬂ%:d X) Access
H Pipe : - Pipe
(Load Y) Vector register (Load Y)

v,| ¢ | v, V, |

ining

= o et

cs . Access Scalar register

L®, =
S*

: V, | — | Multiply

o Q i Sl

Q) . H V, Vs

C Multiply :

(S : Pipe
N
— D_ Vs)
| Add
D Add Pipe
@ "
V,

I — (Vadd) |

O v,| : | : (VAdd)
H m

) _ Access
— (Store Y) »L : Pipe

: Vv, - (Store Y)

Access
Pipe

ead/write port

write port ,@l

Limited chaining using only one Complete chaining using three
memory-access pipe in the Gray 1 memory-access pipes in the Cray X-MP

9/10/2014 652-14F-PXM-intro 36

Cray 1 Performance

« 3t0 160 MFLOPS
— Application and Programming Skills

e Scalar Performance: 12 MFLOPS
e Vector Dot Product: 22 MFLOPS
e Peak Performance: 153 MFLOPS

9/10/2014 652-14F-PXM-intro

37

Irregular Vector Ops

Scatter: Use a vector to scatter another vector
elements across Memory

— X[Ali]l = B[]

Gather: The reverse operation of scatter
— X[i] = B[C[1]]

Compress

— Using a Vector Mask, compress a vector

No Single instruction to do these before 1984
— Poor Performance: 2.5 MFLOPS

9/10/2014 652-14F-PXM-intro

38

Gather Operation

Memory Contents

/| Addresses

CAPSL

L

A T A A

V1[i] = A[VO[i] VO Vil
VL[4 >
A0 [100 /
0
o o
o o
o o
Example:
V1[2] = A[VO[2]] VO Vi
= A[7] 4 600
= 250 2 400
7 250
0 200
o o
o o
o o

9/10/2014

652-14F-PXM-intro

200 100
300 140
400 180
500 1CO
600 200
/700 240
100 280
250 2C0
350 300
Memory Contents
/ Addresses
200 100
300 140
400 180
500 1CO0
600 200
700 240
100 280
250 2C0
350 3&9

0o NOoO o WDN - O

Scatter Operation

A[VO[i]] = V1[i] VO V1 }\/I:drg?g Sizntents
4 200 X 100
VL 4 2 300 X 140
A0 100 [400 X 180
0 500 X 1CO
o ° X 200
: : X 240
X 280
X 2CO0
X 300
Example:

Memory Contents

A[VO[O]]) Vl[O] . v /Addreises
A[4] =200 4 200 500 | 100
*(0x200)= 200 2 300 \.': X 140
/ 400] 300 180
0 500 X 1CO
] ° » 200 200
: : X 240
X 280
» 400 2C0
X 3900

9/10/2014

652-14F-PXM-intro

CARSL

0o No adh WN RO

Vector Compression Operation

VL
VM

14

010110011101 ...

V1 = Compress(VO, VM, 2)

9/10/2014

el el =
WNPFP O OWWWwWNO O W NRO

© oo ~NO U W MR O

652-14

VO V1
0
1
0
5
15
0
0
24
7
13
0
17
0
0
VO V1
0 01
1 7 03
0 / 04
5 / 07
15 08
0 09
0 11
24
7
13
0
17
0
F-PXM-intm

CAPSL

L

41

haracteristics of Several VVector Arc

RN CAPSL
hitectures

Elements per

Clock register Vector
rate Vector (64-bit load-store
Processor (year) (MHz) registers elements) Vector arithmetic units units Lanes
Cray-1 (1976) 80 8 64 6: FP add. FP multiply. FP reciprocal. 1 1
integer add. logical. shift
Cray X-MP 118 8: FP add. FP multiply. FP reciprocal. 2 loads 1
(1983) 8 64 integer add. 2 logical. shift. population | store
Cray Y-MP (1988) 166 count/parity
Cray-2 (1985) 244 8 64 5: FP add, FP multiply. FP reciprocal/ 1 |
sqrt. integer add/shift/population
count, logical
Fujitsu VP 100/ 133 8-256 32—-1024 3: FP or integer add/logical. multiply. 2 1 (VP100)
VP200 (1982) divide 2 (VP200)
Hitachi S8 10/ 71 32 256 4: FP multiply-add. FP multiply/ 3 loads 1 (S810)
S820 (1983) divide-add unit, 2 integer add/logical | store 2 (SR20)
Convex C-1 10 8 128 2: FP or integer multiply/divide. add/ 1 1 (64 bit)
(1985) logical 2 (32 bit)
NEC SX/2 (1985) 167 8+ 32 256 4: FP multiply/divide, FP add. integer 1 4
add/logical. shift
Cray C90 (1991) 240 8: FP add, FP multiply. FP reciprocal. 2 load
8 128 integer add. 2 logical. shift. population | stor:
Cray T90 (1995) 460 count/parity
NEC SX/5 (1998) 312 S+ 64 512 4: FP or integer add/shift. multiply. 1
divide, logical
FFujitsu VPP5000 300 8-256 128—4096 3: FFP or integer multiply. add/logical. I load
(1999) divide | store
Cray SV1 (1998) 300 | load-stord

8: FP add, FP multiply. FP reciprocal.
inleoer 2 ical. shift. population

countyparity

| load

VMIPS (2001)

9/10/2014

500

64

5: FP multiply. FP divide, FP add.
integer add/shift. logical

| load-store

42

e

CAPS

OF
Y

~ The VMIPS Vector Instructions

L .

Instruction Operands Function

ADDV.D V1,v2,v3 Add elements of V2 and V3. then put each result in V1.
ADDVS.D V1,V2,F0 Add FO to cach element of V2. then put cach result in V1.
SUBV.D Vi,ve,v3 Subtract elements of V3 from V2, then put each result in V1.
SUBVS.D V1,V2,F0 Subtract FO from elements of V2, then put each result in V1.
SUBSV.D V1,FO,V2 Subtract elements of V2 from FO, then put each result in V1.
MULV.D V1,v2,v3 Multiply elements of V2 and V3. then put cach result in V1.
MULVS.D V1,V2,F0 Multiply each element of V2 by FO, then put each result in V1.
DIVV.D Vi,ve,v3 Divide elements of V2 by V3. then put each result in V1.
DIVVS.D V1,V2,F0 Divide elements of V2 by FO. then put each result in V1.
DIVSV.D V1,FO,V2 Divide FO by elements of V2. then put each result in V1.

LV V1,R1 Load vector register V1 from memory starting at address R1.
SV R1,V1 Store vector register V1 into memory starting at address R1.

V1, (R1,R2) Load V1 from address at R1 with stride in R2. i.e.. R1+1 x R2.

Store V1 from address at R1 with stride in R2. i.e.. R1+7 x R2.

LVI V1, (R1+V2) Load V1 with vector whose elements are at RI+V2 (i), i.e.. V2 is an index.

SVI (R1+V2),V1 Store V1 to vector whose elements are at RI+V2 (7). i.e.. V2 is an index.

CVI V1,R1 Create an index vector by storing the values 0, 1xR1, 2xR1,...,63 xRl into VL.

S--V.D V1,V2 Compare the elements (EQ, NE. GT, LT. GE. LE) in V1 and V2. If condition is true. put

S--VS.D V1,FO a 1 in the corresponding bit vector: otherwise put 0. Put resulting bit vector in vector- A M I PS ISA

mask register (VM). The instruction S--VS .D performs the same compare but using a extended to Su ppOI’t

scalar value as one operand.

PoP R1,VM Count the Is in the vector-mask register and store count in R1. Vector Instru Ct|0ns
CVM Set the vector-mask register to all 1s. h
- The same as DLXV

MTC1 VLR,R1 Move contents of R1 to the vector-length register.
MFC1 R1,VLR Move the contents of the vector-length register to R1.
MVTM VM, FO Move contents of FO to the vector-mask register.
MVFM FO,VM Move contents of vector-mask register to FO.

9/10/2014 652-14F-PXM-intro 43

Alg] B[9]

Alg] B[s]

Al7] B[7]

EIRES

IR

Al4]| [B[4]

Al3] B[3]

Al2 B[2] A[8 B[e A[9]

Al1] B[1] A[4 B[4] A[5] B[5 Al8] B[7]
Y BYchmese

+

& B

Element group
(a) {b)

Figure G.11 Using multiple functional units to improve the performance of a single
vector add instruction, C = A + B. The machine shown in (a) has a single add pipeline
and can complete one addition per cycle.The machine shown in (b) has four add pipe-
lines and can complete four additions per cycle. The elements within a single vector
add instruction are interleaved across the four pipelines.The set of elements that move
through the pipelines together is termed an element group. (Reproduced with permis-
sion from Asanovic [1998].)

9/10/2014

Multiple Lanes

Lane 0 Lane 1 Lane 2 Lane 3
e ¢ N Y
FP add FP add FP add FP add
pipe 0 pipe 1 pipe 2 pipe 3
Vector Vector Vector Vector
registers: registers: registers: registers:
elements elements elements elements
048.... 159 050 26,10, ... < O By RS
FP mul. FP mul. FP mul. FP mul.
pipe 0 pipe 1 pipe 2 pipe 3
. - A AN
Vector load-store unit

Figure G.12 Structure of a vector unit containing four lanes. The vector-register stor-
age is divided across the lanes, with each lane holding every fourth element of each
vector register.There are three vector functional units shown, an FP add, an FP multiply,
and a load-store unit. Each of the vector arithmetic units contains four execution pipe-
lines, one per lane, that act in concert to complete a single vector instruction. Note how
each section of the vector-register file only needs to provide enough ports for pipelines
local to its lane; this dramatically reduces the cost of providing multiple ports to the
vector registers.The path to provide the scalar operand for vector-scalar instructions is
not shown in this figure, but the scalar value must be broadcast to all lanes.

652-14F-PXM-intro 44

Vectorizing Compilers

Operations executed Operations executed

Benchmark in vector mode, in vector mode, Speedup from

name compiler-optimized hand-optimized hand optimization

BDNA 96.1% 97.2% 1.52 Completely Partially Not
MG3D 95.1% 94.5% 1.00 Processor Compiler vectorized vectorized vectorized
FLLOS2 91.5% 88.7% N/A CDC CYBER 205 VAST-2 V2.21 62 5 33
ARC3D 91.1% 92.0% 1.01 Convex C-series FC5.0 69 5 26
SPEC77 90.3% 90.4% 1.07 Cray X-MP CFT77 V3.0 6Y 3 28
MDG 87.7% 94.2% 1.49 Cray X-MP CFTVI1.15 50 | 49
TRFD 69.8% 73.7% 1.67 Cray-2 CFT2 V3.la 27 | 72
DYFESM 68.8% 65.6% N/A ETA-10 FTN 77 V1.0 62 7 31
ADM 42.9% 59.6% 3.60 Hitachi S8 10/820 FORT77/HAP V20-2B 67 4 29
OCEAN 42.8% 91.2% 3.92 IBM 3090/VF VS FORTRAN V2.4 52 4 44
TRACK 14.4% 54.6% 2.52 NEC SX/2 FORTRAN77 / SX V.040 66 5 29
SPICH H% 19:9% 4400 Figure G.15 Result of applying vectorizing compilers to the 100 FORTRAN test ker-
QCD 4.2% 75.1% 2.15 nels. For each processor we indicate how many loops were completely vectorized, par-

Figure G.14 Level of vectorization among the Perfect Club benchmarks when exe-
cuted on the Cray Y-MP [Vajapeyam 1991]. The first column shows the vectorization
level obtained with the compiler, while the second column shows the results after the
codes have been hand-optimized by a team of Cray Research programmers. Speedup
numbers are not available for FLO52 and DYFESM as the hand-optimized runs used
larger data sets than the compiler-optimized runs.

tially vectorized, and unvectorized. These loops were collected by Callahan, Dongarra,
and Levine [1988]. Two different compilers for the Cray X-MP show the large depen-
dence on compiler technology.

9/10/2014 652-14F-PXM-intro

45

PERFORMANCE ANALYSIS OF
VECTOR ARCHITECTURES

Serial, Parallel and Pipelines

X y

1
2
D 3
4
Z=X+Yy

Overlap Serial Replicate
x1lyl

2
xllyl <2y2 @ 3 xlyl x2y2
D : 11
3 2 x2y2 @ @
43 D 1 j j
“ 242 @ 2 z1 z2
4

1 result per cycle —

1 result per 4 cycles

9/10/2014 652-14F-PXM-intro

N result per 4 cycles

47

Generic Performance Formula CAPSL
(R. Hockney & C. Jesshope 81)

1 Asymptotic Performance: Maximum rate of
r computation in floating point operations per
second. Performance of the architecture with
an infinite length vector

n Half Performance Length: The vector
% length needed to achieve half of the peak
performance
n Vector length

9/10/2014 652-14F-PXM-intro 48

Serial Architecture

Generic Formula: t — r_l N4+ N
00 (%)

AIWIN|F
NN

N N
<
N

t....=1*7*n

serial

NYESN KA
NN

Parameters: r_l — I *T
o0

n — O | Number of stages
}/ T Time per stage

S Start up time

9/10/2014 652-14F-PXM-intro 49

CAPSL

N

Pipeline Architecture

The number of elements that will
come out of the pipeline after the
initial penalty has been paid

Generic Formula: { = rogl(n + N)
b

Initial Penalt >
nitial Penalty tpipe”ne — (5 4+ |
I S

t =7(n+s+1-1)

pipeline

-1
Parameters: roo =T

n, =s+1-1
%

Number of stages

Time per stage

Start up time

9/10/2014 652-14F-PXM-intro 50

Thus ...

» The Asymptotic Performance Parameter

— It is primarily a characteristic of the computer

technology used.

— Itis a scale factor applied to the performance of a
particular computer architecture reflecting the
technology in which particular implementation of that

architecture is built.

« The N half Parameter
— The amount of parallelism that is presented in a given

architecture.
— Determined by a combination of vector unit startup and

vector unit latency

9/10/2014 652-14F-PXM-intro o1

The N Half Range

Serial Machine Infinite array of

n }/ processor
2

The relative performance of different algorithms
on a computer is determined by the value of N half
(matching problem parallelism with architecture parallelism)

9/10/2014 652-14F-PXM-intro 52

CARSL
~ Vector Length v.s. Vector Performance

—n
% n

9/10/2014 652-14F-PXM-intro 53

Calculation of r-
t=r_"(n+ n%)

Measure t for two or more n values

n0 t0
nl tl
Then, determine the slope of the line in the form of: —1 t1 —-to0
Too —

nl —no

9/10/2014 652-14F-PXM-intro 54

9/10/2014

Computer N half R Infinity

CRAY-1 10-20 80
BSP 25-150 50
2-pipe CDC CYBER 100 100
205

1-pipe TIASC 30 12
CDC STAR 100 150 25
(64 x 64) ICL DAP 2048 16

652-14F-PXM-intro

55

Another Example
The Chaining Effect

Assume m vector operations unchained

t = Zm:[si +1.+(n-1)]r

t = Zm:[(si +1. -1 +n]r

Thus t= }{ntm

t= }{n*;[(si +1; -1)+n]z Assume that all

S’s are the same.
n}/ =s+1-1 The same goes
2 for the I's

So

9/10/2014 652-14F-PXM-intro 56

Another Example
The Chaining Effect

Assume m vector operations chained

t, = [Zm: (s;+1)+(n=-1]Jz

t =[m*(s+1)-1+n]r

Thus t:}{ntm
t:%n*[m*(s+|)—1+n]f

So n% =m(s+1)-1

9/10/2014 652-14F-PXM-intro S7

Summary

9/10/2014 652-14F-PXM-intro 58

Explanation

Unchained
Vop 1 \Vop 2 Vop 3
r*(n+s+1-1) r*(n+s+1-1) r*(n+s+1-1)
Chained
r*(n+s+1-1)
Vop 1
Vop 2
N Vop 3

S+

9/10/2014 652-14F-PXM-intro 59

