
652-14F-PXM-intro 1

Vector Processing and Architectures

Guang R. Gao

ACM Fellow and IEEE Fellow

Endowed Distinguished Professor

Electrical & Computer Engineering

University of Delaware

ggao@capsl.udel.edu

9/10/2014

9/10/2014 652-14F-PXM-intro 2

• Slides.

• Henn&Patt: Chapter 4th, 5th Edition (may

change depending on your book’s version).

• Other assigned readings from homework

and classes

Reading List

Outline

• Introduction

• Vector Processing Model and Architectures

• Cray Example

• Performance Model

• Summary

9/10/2014 652-14F-PXM-intro 3

Vector Processing Execution Model API

Abstract Machin Models for

Vector Processing

Vector Processing

Programming Model and Environment

Platforms

Users Users

V
e
c
to

r
P

ro
c
e
s
s
in

g
 E

x
e
c
u
ti
o
n
 M

o
d
e
l

Programming

Models

Execution Model and Abstract Machines 652-12F-PXM-intro 4

9/10/2014 652-14F-PXM-intro 5

Register-Register Archs Memory-Memory Archs

Vector Arch Components:

Vector Register Banks
Capable of holding a n number of vector

elements. Two extra registers

Vector Functional Units Fully pipelined, hazard detection (structural

and data)

Vector Load-Store Unit

A Scalar Unit A set of registers, FUs and CUs

Types:

Vector Architectures

(a successful SIMD class architectures)

652-14F-PXM-intro

Figure 4.2 The basic structure of a vector architecture, VMIPS. This processor has a scalar architecture just like MIPS.

There are also eight 64-element vector registers, and all the functional units are vector functional units. This chapter

defines special vector instructions for both arithmetic and memory accesses. The figure shows vector units for logical

and integer operations so that VMIPS looks like a standard vector processor that usually includes these units; however,

we will not be discussing these units. The vector and scalar registers have a significant number of read and write ports to

allow multiple simultaneous vector operations. A set of crossbar switches (thick gray lines) connects these ports to the

inputs and outputs of the vector functional units.

9/10/2014 6

• A simplified vector architecture

• Consist of one lane per functional unit

– Lane: The number of vector instructions that

can be executed in parallel by a functional unit

• Loosely based on Cray 1 architecture and

ISA

• Extension of DLX ISA for vector

architecture

9/10/2014 652-14F-PXM-intro 7

An Intro to DLXV

• Vector Registers
– Eight Vector regs / 64 element each.
– Two read ports and one write port per register
– Sixteen read ports and eight write ports in total

• Vector Functional Unit
– Five Functional Units

• Vector Load and Store Unit
– A bandwidth of 1 word per cycle
– Double as a scalar load / store unit

• A set of scalar registers
– 32 general and 32 FP regs

9/10/2014 652-14F-PXM-intro 8

DLXV Configuration

9/10/2014 652-14F-PXM-intro 9

Main Memory

Vector Load

& Store

FP Add

FP Multiply

FP Divide

Logical

Integer

Scalar Register File

Vector Register File

A Vector / Register Arch

• A single vector instruction  A lot of work

• No data hazards

– No need to check for data hazards inside vector instructions

– Parallelism inside the vector operation

• Deep pipeline or array of processing elements

• Known Access Pattern

– Latency only paid once per vector (pipelined loading)

– Memory address can be mapped to memory modules to reduce
contentions

• Reduction in code size and simplification of hazards

– Loop related control hazards from loop are eliminated.

9/10/2014 652-14F-PXM-intro 10

Advantages

DAXPY: DLX Code

9/10/2014 652-14F-PXM-intro 11

Y = a * X + Y

 LD F0, a

 ADDI R4, Rx, #512 ; last address to load

Loop: LD F2, 0(Rx) ; load X(i)

 MULTD F2, F0, F2 ; a x X(i)

 LD F4, 0 (Ry) ; load Y(i)

 ADDD F4, F2, F4 ; a x X(i) + Y(i)

 SD F4, 0 (Ry) ; store into Y(i)

 ADDI Rx, Rx, #8 ; increment index to X

 ADDI Ry, Ry, #8 ; increment index to Y

 SUB R20, R4, Rx ; compute bound

 BNZ R20, loop ; check if done

The bold instructions are part of the loop index calculation and branching

DAXPY: DLXV Code

9/10/2014 652-14F-PXM-intro 12

Y = a * X + Y

 LD F0, a ; load scalar a

 LV V1, Rx ; load vector X

 MULTSV V2, F0, V1 ; vector-scalar multiply

 LV V3, Ry ; load vector Y

 ADDV V4, V2, V3 ; add

 SV Ry, V4 ; store the result

Instruction Number [Bandwidth] for 64 elements

DLX Code 578 Instructions

DLXV Code 6 Instructions

Some Issues

• Vector Length Control

– Vector lengths are not usually less or even a
multiple of the hardware vector length

• Vector Stride

– Access to vectors may not be consecutively.

• Solutions:

– Two special registers

• One for vector length up to a maximum vector
length

• One for vector mask

9/10/2014 652-14F-PXM-intro 13

Vector Length Control

9/10/2014 652-14F-PXM-intro 14

Question: Assume the maximum hardware vector length

is MVL which may be less than n. How should we do the

above computation ?

for(i = 0; i < n; ++i)

 y[i] = a * x[i] +y[i]

An Example:

Vector Length Control

Strip Mining

9/10/2014 652-14F-PXM-intro 15

Low = 0

VL = n % MVL

for(j = 0; j <= (n /MVL); ++j){

 for(i = Low; i < Low + VL – 1; ++i)

 y[i] = a * x[i] + y[i];

 Low += VL;

 VL = MVL;

}

Strip Mined Code

for(i = 0; i < n; ++i)

 y[i] = a * x[i] +y[i]

Original Code

Vector Length Control

Strip Mining

9/10/2014 652-14F-PXM-intro 16

0 1 2 3 n/MVL

0

…

M-1

M

…

M+MVL-1

M+MVL

…

M+2*MVL-1

M+2*MVL

…

M+3*MVL-1

n-MVL

…

n-1

Value of j

Range of i

For a vector of arbitrary length VL = M = n % MVL

The vector length control register takes values similar to

the Vector Length variable (VL) in the C code

Vector Stride

9/10/2014 652-14F-PXM-intro 17

for(i = 0; i < n; ++i)

 for(j = 0; j < n; ++j){

 c[i][j] = 0.0;

 for(k = 0; k < n; ++k)

 c[i][j] += a[i][k] * b[k][j];

 }

Matrix Multiply Code

How to vectorize this code?

How stride works here?

Consider that in C the arrays are

saved in memory row-wise.

Therefore, a and c are loaded

correctly. How about b?

Cray-1

“The World Most Expensive Love

Seat...”

Picture courtesy of Cray

Original Source: Cray 1 Computer System Hardware Reference Manual

Cray 1 Data Sheet

• Designed by: Seymour Cray

• Price: 5 to 8.8 Millions dollars

• Units Shipped: 85

• Technology: SIMD, deep pipelined functional
units

• Performance: up to 160 MFLOPS

• Date Released: 1976

• Best Known for: The computer that made the term
supercomputer mainstream

9/10/2014 652-14F-PXM-intro 19

Architectural Components

9/10/2014 652-14F-PXM-intro 20

Registers

Functional Units

Instruction Buffers

Computation Section

Memory Section

From 0.25 to 1

Million 64-bit

words

I/O Section

12 Input channels

12 Output channels

MCU

Mass Storage

Subsystem

Front End Comp.

I/O Stations

Peripheral Equipment

T
h

e
C

ra
y

-1
 A

rc
h
it

ec
tu

re

9/10/2014 652-14F-PXM-intro 21 Computation Section

Vector Components

Scalar Components

Address & Instruction

Calculation

Components

Register-Register Architecture

• All ALU operands are in registers

• Registers are specialized by function (A, B, T,
etc) thus avoiding conflict

• Transfer between Memory and registers is
treated differently than ALU

• RISC based idea

• Effective use of the Cray-1 requires careful
planning to exploit its register resources
– 4 Kbytes of high speed registers

9/10/2014 652-14F-PXM-intro 22

Registers

• Memory Access Time: 11 cycles
• Register Access Time: 1 ~ 2 cycles
• Primary Registers:

– Address Regs: 8 x 24 bits
– Scalar Regs: 8 x 64 bits
– Vector Regs: 8 x 64 words

• Intermediate Registers:
– B Regs: 64 x 24 bits
– T Regs: 64 x 64 bits

• Special Registers:
– Vector Length Register: 0 <= VL <= 64
– Vector Masks Register: 64 bits

• Total Size: 4,888 bytes

9/10/2014 652-14F-PXM-intro 25

Instruction Format

9/10/2014 652-14F-PXM-intro 26

A parcel  16-bit

Instruction word 16 (one parcel) or 32 (two parcels)

according to type

4 3 3 3 3

Op Code

Result Reg

Operand reg

Operand reg

A One Parcel Instruction:

Arithmetic Logical Instruction Word

4 3 3 22

A Two Parcels Instruction:

Memory Instruction Word

Op code

Addr Index Reg

Result Reg

Address

Functional Unit Pipelines

9/10/2014 652-14F-PXM-intro 27

Functional pipelines Register Pipeline delays

 usage (clock periods)

Address functional units

 Address add unit A 2

 Address multiply unit A 6

Scalar functional units

 Scalar add unit S 3

 Scalar shift unit S 2 or 3

 Scalar logical unit S 1

 Population/leading zero count unit S 3

Vector functional units

 Vector add unit V or S 3

 Vector shift unit V or S 4

 Vector logical unit V or S 2

Floating-point functional units

 Floating-point add unit S and V 6

 Floating-point multiply unit S and V 7

 Reciprocal approximation unit S and V 14

Implementation Philosophy

• Instruction Processing

– Instruction Buffering: Four Instructions buffers of 64

16-bit parcels each

• Memory Hierarchy

– Memory Banks, T and B register banks

• Register and Function Unit Reservation

– Example: Vector ops, register operands, register result

and FU are checked as reserved

• Vector Processing

9/10/2014 652-14F-PXM-intro 28

Instruction Processing

9/10/2014 652-14F-PXM-intro 29

“Issue one instruction per cycle”

• 4 x 64 word

• 16 - 32 bit instructions

• Instruction parcel pre-fetch

• Branch in buffer

• 4 inst/cycle fetched to LRU I-buffer

Reservations

• Vector operands, results and functional unit

are marked reserved

• The vector result reservation is lifted when

the chain slot time has passed

– Chain Slot: Functional Unit delay plus two

clock cycles

9/10/2014 652-14F-PXM-intro 30

Examples:

V1 = V2 * V3

V4 = V5 + V6

V1 = V2 * V3

V4 = V5 + V2

V1 = V2 * V3

V4 = V5 * V6

Second Instruction cannot

begin until First is finished

Resource Dependency
Independent

Vector Instructions in the Cray-1

9/10/2014 652-14F-PXM-intro 31

(a) Type 1 vector instruction (b) Type 2 vector instruction

Vj

~ ~

~ ~

Vk

~ ~

Vi

~ ~

Vk

~ ~

Vi

1

2
3

n

1

2
3

n

.
.
.

.
.

.

Sj

9/10/2014 652-14F-PXM-intro 32

~ ~

~ ~

Vi

M
em

o
ry

1

2
3
4
5
6
7

1

2
3
4
5
6

M
em

o
ry

(c) Type 3 vector instruction (d) Type 4 vector instruction

Vj

Vector Instructions in the Cray-1

Vector Loops

• Long vectors with N > 64 are sectioned

• Each time through a vector loop 64

elements are processed

• Remainder handling

• “transparent” to the programmer

9/10/2014 652-14F-PXM-intro 33

Vector Chaining

• Internal forwarding techniques of IBM 360/91

• A “linking process” that occurs when results
obtained from one pipeline unit are directly fed
into the operand registers of another function pipe.

• Chaining allow operations to be issued as soon as
the first result becomes available

• Registers/F-units must be properly reserved.

• Limited by the number of Vector Registers and
Functional Units

• From 2 to 5

9/10/2014 652-14F-PXM-intro 34

C
h

ai
n

in
g
 E

x
am

p
le

9/10/2014 652-14F-PXM-intro 35

M
e
m
o
r
y

..
.

..
.

..
.

..
.

..
.

..
.

1

2

3

4

5

6

7

1

2

3

4

1

2

3

1

2

a

Memory
fetch
pipe

VO

V1

V2

V3 V4

V5

Right
shift
pipe

Vector
add
pipe

Logical
Product
Pipe

d

c

d

g

i

j j

l

f

Mem  V0 (M-fetch)

V0 + V1  V2 (V-add)

V2 < A3  V3 (left shift)

V3 ^ V4  V5 (logical product)

Fetching Adding

Fetching

Adding

Chain Slot

M
u
lt

ip
ip

el
in

e
ch

ai
n
in

g

S
A

X
P

Y
 c

o
d
e

9/10/2014 652-14F-PXM-intro 36

Multiply
Pipe

V1

Add
Pipe

..

Access
Pipe

Memory

..

Access
Pipe

Memory

Access
Pipe

Read/write port

V3

Memory

V4

V4

Read/write port

Vector register

V1

(Load Y)

(Load X)

V2

(S*)

S

(Store Y)

(Vadd)

Multiply
Pipe

..

..

Add
Pipe

Memory

Access
Pipe
(Load Y)

Read port 2

V3

Memory

V4

write port

Vector register

(S*)

S

(VAdd)

Read port 1

..

V1

Access
Pipe
(Load X)

V2

Scalar register

Access
Pipe

(Store Y)

Limited chaining using only one

memory-access pipe in the Gray 1

Complete chaining using three

memory-access pipes in the Cray X-MP

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

Y(1:N) = S x X(1:N) + Y(1:N)

Cray 1 Performance

• 3 to 160 MFLOPS

– Application and Programming Skills

• Scalar Performance: 12 MFLOPS

• Vector Dot Product: 22 MFLOPS

• Peak Performance: 153 MFLOPS

9/10/2014 652-14F-PXM-intro 37

Irregular Vector Ops

• Scatter: Use a vector to scatter another vector
elements across Memory

– X[A[i]] = B[i]

• Gather: The reverse operation of scatter

– X[i] = B[C[i]]

• Compress

– Using a Vector Mask, compress a vector

• No Single instruction to do these before 1984

– Poor Performance: 2.5 MFLOPS

9/10/2014 652-14F-PXM-intro 38

Gather Operation

9/10/2014 652-14F-PXM-intro 39

V1[i] = A[V0[i]]

VL

A0

4

100

4
2
7
0

V0 V1

200 100
300 140
400 180
500 1C0
600 200
700 240
100 280
250 2C0
350 300

Memory Contents

/ Addresses

4
2
7
0

V0

600
400
250
200

V1

200 100
300 140
400 180
500 1C0
600 200
700 240
100 280
250 2C0
350 300

Memory Contents

/ Addresses

0

1

2

3

4

5

6

7

8

Example:

V1[2] = A[V0[2]]

 = A[7]

 = 250

Scatter Operation

9/10/2014 652-14F-PXM-intro 40

A[V0[i]] = V1[i]

VL

A0

4

100

4
2
7
0

V0

200
300
400
500

V1

x 100
x 140
x 180
x 1C0
x 200
x 240
x 280
x 2C0
x 300

Memory Contents

/ Addresses

4
2
7
0

V0

200
300
400
500

V1

500 100
x 140

300 180
x 1C0

200 200
x 240
x 280

400 2C0
x 300

Memory Contents

/ Addresses

0

1

2

3

4

5

6

7

8

Example:

A[V0[0]] = V1[0]

A[4] = 200

*(0x200)= 200

Vector Compression Operation

9/10/2014 652-14F-PXM-intro 41

VL

VM

14

010110011101 …

0

-1

0

5

-15

0

0

24

-7

13

0

-17

0

0

0

1

2

3

4

5

6

7

8

9

10

11

12

13

V0 V1

V1 = Compress(V0, VM, Z)
0

-1

0

5

01

03

04

07

-15

0

0

24

08

09

11

-7

13

0

-17

0

0

0

1

2

3

4

5

6

7

8

9

V0 V1

Characteristics of Several Vector Architectures

9/10/2014 652-14F-PXM-intro 42

The VMIPS Vector Instructions

9/10/2014 652-14F-PXM-intro 43

A MIPS ISA

extended to support

Vector Instructions.

The same as DLXV

Multiple Lanes

9/10/2014 652-14F-PXM-intro 44

Vectorizing Compilers

9/10/2014 652-14F-PXM-intro 45

PERFORMANCE ANALYSIS OF

VECTOR ARCHITECTURES

9/10/2014 652-14F-PXM-intro 46

Serial, Parallel and Pipelines

9/10/2014 652-14F-PXM-intro 47

1

2

3

4

x y

z = x + y

Serial

Pipeline Array

Overlap Replicate

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

1

2

3

4

x1y1

x2y2

z1

z2

z1

x1y1

x2y2

z2

z2 z1

x1y1 x2y2

1 result per cycle

1 result per 4 cycles

N result per 4 cycles

Generic Performance Formula

 (R. Hockney & C. Jesshope 81)

)(
2

1

1 nnrt  



n

n

r

2
1

1



9/10/2014 652-14F-PXM-intro 48

Asymptotic Performance: Maximum rate of

computation in floating point operations per

second. Performance of the architecture with

an infinite length vector

Half Performance Length: The vector

length needed to achieve half of the peak

performance

Vector length

Serial Architecture

0

*

**

)(

2
1

1

2
1

1

















n

lr

nlt

nnrt

serial





9/10/2014 652-14F-PXM-intro 49

Generic Formula:

Parameters:

1

2

3

4

1

2

3

4

z1

x2y2

z2











s

l



Number of stages

Time per stage

Start up time

Pipeline Architecture

1

)1(

))1((

)(

2
1

1

2
1

1



















lsn

r

lsnt

nlst

nnrt

pipeline

pipeline







9/10/2014 652-14F-PXM-intro 50

Generic Formula:

Parameters:

1

2

3

4

1

2

3

4



s

l



Number of stages

Time per stage

Start up time

s

l

The number of elements that will

come out of the pipeline after the

initial penalty has been paid

Initial Penalty

Thus …

• The Asymptotic Performance Parameter
– It is primarily a characteristic of the computer

technology used.

– It is a scale factor applied to the performance of a
particular computer architecture reflecting the
technology in which particular implementation of that
architecture is built.

• The N half Parameter
– The amount of parallelism that is presented in a given

architecture.

– Determined by a combination of vector unit startup and
vector unit latency

9/10/2014 652-14F-PXM-intro 51

The N Half Range

2
1n

9/10/2014 652-14F-PXM-intro 52

Serial Machine Infinite array of

processor

0 ∞

The relative performance of different algorithms

on a computer is determined by the value of N half

(matching problem parallelism with architecture parallelism)

Vector Length v.s. Vector Performance

2
1n

1

r

)(
2

1

1 nnrt  



9/10/2014 652-14F-PXM-intro 53

Slope:

n

t

Calculation of r∞

9/10/2014 652-14F-PXM-intro 54

)(
2

1

1 nnrt  



n t

n0 t0

n1 t1

… …

Measure t for two or more n values

Then, determine the slope of the line in the form of:
𝑟∞

−1 =
𝑡1 −𝑡0

𝑛1 −𝑛0

Parameters of Several Parallel Architectures

Computer N half R infinity

CRAY-1 10-20 80

BSP 25-150 50

2-pipe CDC CYBER

205

100 100

1-pipe TIASC 30 12

CDC STAR 100 150 25

(64 x 64) ICL DAP 2048 16

9/10/2014 652-14F-PXM-intro 55

Another Example

The Chaining Effect





































1

2
1

1

1

1

1

])1[(*1

1

])1[(

)]1([

r

lsn

nls
m

t

t
m

t

nlst

nlst

m

i

ii

m

m

i

iim

m

i

iim

9/10/2014 652-14F-PXM-intro 56

Assume that all

s’s are the same.

The same goes

for the l’s

Assume m vector operations unchained

Thus

So

Another Example

The Chaining Effect

m
r

lsmn

nlsm
m

t

t
m

t

nlsmt

nlst

m

m

m

i

iim





























1

2
1

1

1)(

]1)(*[*1

1

]1)(*[

)]1()([

9/10/2014 652-14F-PXM-intro 57

Assume m vector operations chained

Thus

So

Summary

9/10/2014 652-14F-PXM-intro 58

Explanation

9/10/2014 652-14F-PXM-intro 59

)1(1 

 lsnr

Vop 1

Vop 2

Vop 3
s+l

)1(1 

 lsnr)1(1 

 lsnr

Vop 1 Vop 2 Vop 3

)1(1 

 lsnr

Unchained

Chained

