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• Slides. 

• Henn&Patt: Chapter 4th, 5th Edition (may 

change depending on your book’s version). 

• Other assigned readings from homework 

and classes 

Reading List 



Outline 

• Introduction 

• Vector Processing Model and Architectures 

• Cray Example 

• Performance Model 

• Summary 
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Vector Processing Execution Model API 

Abstract  Machin Models for 

Vector Processing 

Vector Processing 

Programming Model and Environment 

Platforms 
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Register-Register Archs Memory-Memory Archs 

Vector Arch Components: 

Vector Register Banks 
Capable of holding a n number of vector 

elements. Two extra registers 

Vector Functional Units Fully pipelined, hazard detection (structural 

and data) 

Vector Load-Store Unit 

A Scalar Unit A set of registers, FUs and CUs 

Types: 

Vector Architectures 

(a successful SIMD class architectures) 
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Figure 4.2 The basic structure of a vector architecture, VMIPS. This processor has a scalar architecture just like MIPS. 

There are also eight 64-element vector registers, and all the functional units are vector functional units. This chapter 

defines special vector instructions for both arithmetic and memory accesses. The figure shows vector units for logical 

and integer operations so that VMIPS looks like a standard vector processor that usually includes these units; however, 

we will not be discussing these units. The vector and scalar registers have a significant number of read and write ports to 

allow multiple simultaneous vector operations. A set of crossbar switches (thick gray lines) connects these ports to the 

inputs and outputs of the vector functional units.  
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• A simplified vector architecture 

• Consist of one lane per functional unit 

– Lane: The number of vector instructions that 

can be executed in parallel by a functional unit 

• Loosely based on Cray 1 architecture and 

ISA 

• Extension of DLX ISA for vector 

architecture 
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An Intro to DLXV 



• Vector Registers  
– Eight Vector regs / 64 element each.  
– Two read ports and one write port per register  
– Sixteen read ports and eight write ports in total 

• Vector Functional Unit 
– Five Functional Units 

• Vector Load and Store Unit 
– A bandwidth of 1 word per cycle 
– Double as a scalar load / store unit 

• A set of scalar registers 
– 32 general and 32 FP regs 
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DLXV Configuration 
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Main Memory 

Vector Load 

& Store 

FP Add 

FP Multiply 

FP Divide 

Logical 

Integer 

Scalar Register File 

Vector Register File 

A Vector / Register Arch 



• A single vector instruction  A lot of work 

• No data hazards  

– No need to check for data hazards inside vector instructions 

– Parallelism inside the vector operation 

• Deep pipeline or array of processing elements 

• Known Access Pattern 

– Latency only paid once per vector (pipelined loading) 

– Memory address can be mapped to memory modules to reduce 
contentions 

• Reduction in code size and simplification of hazards 

– Loop related control hazards from loop are eliminated.  
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Advantages 



DAXPY: DLX Code 
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Y = a * X + Y  

  LD  F0, a 

  ADDI  R4, Rx, #512 ; last address to load 

Loop:   LD  F2, 0(Rx) ; load X(i) 

  MULTD  F2, F0, F2 ; a x X(i) 

  LD  F4, 0 (Ry) ; load Y(i) 

  ADDD  F4, F2, F4 ; a  x  X(i) + Y(i) 

  SD  F4, 0 (Ry) ; store into Y(i) 

  ADDI  Rx, Rx, #8 ; increment index to X 

  ADDI  Ry, Ry, #8 ; increment index to Y 

  SUB  R20, R4, Rx ; compute bound 

  BNZ  R20, loop ; check if done 

 

The bold instructions are part of the loop index calculation and branching 



DAXPY: DLXV Code 
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Y = a * X + Y  

  LD  F0, a   ; load scalar a 

  LV  V1, Rx   ; load vector X 

  MULTSV V2, F0, V1  ; vector-scalar multiply 

  LV  V3, Ry   ; load vector Y 

  ADDV  V4, V2, V3  ; add 

  SV  Ry, V4   ; store the result 

Instruction Number [Bandwidth] for 64 elements 

DLX Code 578 Instructions 

DLXV Code 6 Instructions 



Some Issues 

• Vector Length Control 

– Vector lengths are not usually less or even a 
multiple of the hardware vector length 

• Vector Stride 

– Access to vectors may not be consecutively. 

• Solutions: 

– Two special registers 

• One for vector length up to a maximum vector 
length 

• One for vector mask 

9/10/2014 652-14F-PXM-intro 13 



Vector Length Control 
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Question: Assume the maximum hardware vector length 

is MVL which may be less than n. How should we do the 

above computation ? 

for(i = 0; i < n; ++i) 

   y[i] = a * x[i] +y[i] 

An Example: 



Vector Length Control 

Strip Mining 

9/10/2014 652-14F-PXM-intro 15 

Low = 0 

VL = n % MVL 

for(j = 0; j <= (n /MVL); ++j){ 

   for(i = Low; i < Low + VL – 1; ++i) 

       y[i] = a * x[i] + y[i]; 

   Low += VL; 

   VL = MVL; 

} 

Strip Mined Code 

for(i = 0; i < n; ++i) 

   y[i] = a * x[i] +y[i] 

Original Code 



Vector Length Control 

Strip Mining 
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0 1 2 3 n/MVL 

0 

… 

M-1 

M 

… 

M+MVL-1 

M+MVL 

… 

M+2*MVL-1 

M+2*MVL 

… 

M+3*MVL-1 

n-MVL 

… 

n-1 

Value of j 

Range of i 

For a vector of arbitrary length VL = M = n % MVL   

The vector length control register takes values similar to 

the Vector Length variable (VL) in the C code  



Vector Stride 
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for(i = 0; i < n; ++i) 

   for(j = 0; j < n; ++j){ 

       c[i][j] = 0.0; 

       for(k = 0; k < n; ++k) 

            c[i][j] += a[i][k] * b[k][j]; 

   } 

Matrix Multiply Code 

How to vectorize this code? 

How stride works here? 

Consider that in C the arrays are 

saved in memory row-wise. 

Therefore, a and c are loaded 

correctly. How about b? 



Cray-1 

“The World Most Expensive Love 

Seat...” 

Picture courtesy of Cray 

Original Source: Cray 1 Computer System Hardware Reference Manual  



Cray 1 Data Sheet 

• Designed by: Seymour Cray 

• Price: 5 to 8.8 Millions dollars 

• Units Shipped: 85 

• Technology: SIMD, deep pipelined functional 
units 

• Performance: up to 160 MFLOPS 

• Date Released: 1976 

• Best Known for: The computer that made the term 
supercomputer mainstream 
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Architectural Components 
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Registers 

Functional Units 

Instruction Buffers 

Computation Section 

Memory Section 

From 0.25 to 1 

Million 64-bit 

words 

I/O Section 

12 Input channels 

12 Output channels 

MCU 

Mass Storage 

Subsystem 

Front End Comp. 

I/O Stations 

Peripheral Equipment 
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Vector Components 

Scalar Components 

Address & Instruction 

Calculation 

Components 



Register-Register Architecture 

• All ALU operands are in registers 

• Registers are specialized by function (A, B, T, 
etc) thus avoiding conflict 

• Transfer between Memory and registers is 
treated differently than ALU 

• RISC based idea 

• Effective use of the Cray-1 requires careful 
planning to exploit its register resources 
– 4 Kbytes of high speed registers 
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Registers 

• Memory Access Time: 11 cycles 
• Register Access Time: 1 ~ 2 cycles 
• Primary Registers: 

– Address Regs: 8 x 24 bits 
– Scalar Regs: 8 x 64 bits 
– Vector Regs: 8 x 64 words 

• Intermediate Registers: 
– B Regs: 64 x 24 bits 
– T Regs: 64 x 64 bits 

• Special Registers: 
– Vector Length Register: 0 <= VL <= 64 
– Vector Masks Register: 64 bits 

• Total Size: 4,888 bytes 
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Instruction Format 
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A parcel  16-bit 

Instruction word 16 (one parcel) or 32 (two parcels) 

according to type 

4 3 3 3 3 

Op Code 

Result Reg 

Operand reg 

Operand reg 

A One Parcel Instruction: 

Arithmetic Logical Instruction Word 

4 3 3 22 

A Two Parcels Instruction: 

Memory Instruction Word 

Op code 

Addr Index Reg 

Result Reg 

Address 



Functional Unit Pipelines 
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Functional pipelines                 Register                Pipeline delays 

            usage                    (clock periods)  

 

Address functional units   

  Address add unit   A   2 

  Address multiply unit  A   6 
 
Scalar functional units 

  Scalar add unit   S   3 

  Scalar shift unit   S   2 or 3  

  Scalar logical unit   S   1 

  Population/leading zero count unit S   3 
             
Vector functional units 

  Vector add unit   V or S   3 

  Vector shift unit   V or S   4 

  Vector logical unit   V or S   2 
 
Floating-point functional units 

  Floating-point add unit  S and V   6 

  Floating-point multiply unit  S and V   7 

  Reciprocal approximation unit  S and V 14 



Implementation Philosophy 

• Instruction Processing 

– Instruction Buffering: Four Instructions buffers of 64 

16-bit parcels each 

• Memory Hierarchy 

– Memory Banks, T and B register banks 

• Register and Function Unit Reservation 

– Example: Vector ops, register operands, register result 

and FU are checked as reserved 

• Vector Processing 
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Instruction Processing 
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“Issue one instruction per cycle” 

• 4 x 64 word 

• 16 - 32 bit instructions 

• Instruction parcel pre-fetch 

• Branch in buffer 

• 4 inst/cycle fetched to LRU I-buffer 



Reservations 

• Vector operands, results and functional unit 

are marked reserved  

• The vector result reservation is lifted when 

the chain slot time has passed 

– Chain Slot: Functional Unit delay plus two 

clock cycles 
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Examples: 

V1 = V2 * V3 

V4 = V5 + V6 

V1 = V2 * V3 

V4 = V5 + V2 

V1 = V2 * V3 

V4 = V5 * V6 

Second Instruction cannot 

begin until First is finished 

Resource Dependency 
Independent 



Vector Instructions in the Cray-1 
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(a)  Type 1 vector instruction (b)  Type 2 vector instruction 
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(c)  Type 3 vector instruction (d)  Type 4 vector instruction 

Vj 

Vector Instructions in the Cray-1 



Vector Loops 

• Long vectors with N > 64 are sectioned 

• Each time through a vector loop 64 

elements are processed 

• Remainder handling 

• “transparent” to the programmer 
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Vector Chaining 

• Internal forwarding techniques of IBM 360/91 

• A “linking process” that occurs when results 
obtained from one pipeline unit are directly fed 
into the operand registers of another function pipe. 

• Chaining allow operations to be issued as soon as 
the first result becomes available 

• Registers/F-units must be properly reserved. 

• Limited  by the number of Vector Registers and 
Functional Units 

• From 2 to 5 
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VO 
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pipe 
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pipe 

Logical 
Product 
Pipe 
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f 

Mem       V0 (M-fetch) 

V0 +  V1  V2 (V-add) 

V2 <  A3  V3 (left shift) 

V3  ^  V4  V5 (logical product) 

Fetching Adding 

Fetching 

Adding 

Chain Slot 
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Multiply 
Pipe 

V1 

Add  
Pipe 

..
 

Access  
Pipe 

Memory  

..
 

Access  
Pipe 

Memory  

Access  
Pipe 

Read/write port 

V3 

Memory  

V4 

V4 

Read/write port 

Vector register 

V1 

(Load Y) 

(Load X) 

V2 

(S*) 

S 

(Store Y) 

(Vadd) 

Multiply  
Pipe 

..
 

..
 

Add  
Pipe 

Memory  

Access  
Pipe 
(Load Y) 

Read port 2 

V3 

Memory  

V4 

write port 

Vector register 

(S*) 

S 

(VAdd) 

Read port 1 

..
 

V1 

Access  
Pipe 
(Load X) 

V2 

Scalar register  

Access  
Pipe 

(Store Y) 

Limited chaining using only one 

memory-access pipe in the Gray 1 

Complete chaining using three 

memory-access pipes in the Cray X-MP 

..
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..
 

..
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..
 

..
 

..
 

..
 

Y(1:N) = S x X(1:N) + Y(1:N) 



Cray 1 Performance 

• 3 to 160 MFLOPS 

– Application and Programming Skills 

• Scalar Performance: 12 MFLOPS 

• Vector Dot Product: 22 MFLOPS 

• Peak Performance: 153 MFLOPS 
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Irregular Vector Ops 

• Scatter: Use a vector to scatter another vector 
elements across Memory 

– X[A[i]] = B[i] 

• Gather: The reverse operation of scatter 

– X[i] = B[C[i]] 

• Compress 

– Using a Vector Mask, compress a vector 

• No Single instruction to do these before 1984 

– Poor Performance: 2.5 MFLOPS 
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Gather Operation 
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V1[i] = A[V0[i]] 

VL 

A0 

4 

100 

4 
2 
7 
0 

V0 V1 

200 100 
300 140 
400 180 
500 1C0 
600 200 
700 240 
100 280 
250 2C0 
350 300 

Memory Contents 

/ Addresses 

4 
2 
7 
0 

V0 

600 
400 
250 
200 

V1 

200 100 
300 140 
400 180 
500 1C0 
600 200 
700 240 
100 280 
250 2C0 
350 300 

Memory Contents 

/ Addresses 

0 

1 

2 

3 

4 

5 

6 

7 

8 

Example: 

V1[2] = A[V0[2]] 

          = A[7] 

          = 250 



Scatter Operation 
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A[V0[i]] = V1[i] 

VL 

A0 

4 

100 

4 
2 
7 
0 

V0 

200 
300 
400 
500 

V1 

x 100 
x 140 
x 180 
x 1C0 
x 200 
x 240 
x 280 
x 2C0 
x 300 

Memory Contents 

/ Addresses 

4 
2 
7 
0 

V0 

200 
300 
400 
500 

V1 

500 100 
x 140 

300 180 
x 1C0 

200 200 
x 240 
x 280 

400 2C0 
x 300 

Memory Contents 

/ Addresses 

0 

1 

2 

3 

4 

5 

6 

7 

8 

Example: 

A[V0[0]] = V1[0] 

A[4]       = 200 

*(0x200)= 200 



Vector Compression Operation 
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Characteristics of Several Vector Architectures 
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The VMIPS Vector Instructions 
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A MIPS ISA 

extended to support 

Vector Instructions. 

The same as DLXV 



Multiple Lanes 
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Vectorizing Compilers 
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PERFORMANCE ANALYSIS OF 

VECTOR ARCHITECTURES 
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Serial, Parallel and Pipelines 
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Generic Performance Formula 

 (R. Hockney & C. Jesshope 81) 
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Asymptotic Performance: Maximum rate of 

computation in floating point operations per 

second. Performance of the architecture with 

an infinite length vector  

Half Performance Length: The vector 

length needed to achieve half of the peak 

performance 

Vector length 



Serial Architecture 
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Generic Formula: 

Parameters: 

1 

2 

3 

4 

1 

2 
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4 

z1 

x2y2 

z2 




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l
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Number of stages 

Time per stage 

Start up time 



Pipeline Architecture 
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Generic Formula: 

Parameters: 

1 

2 

3 

4 

1 

2 

3 

4 



s

l



Number of stages 

Time per stage 

Start up time 

s 

l 

The number of elements that will 

come out of the pipeline after the 

initial penalty has been paid 

Initial Penalty 



Thus … 

• The Asymptotic Performance Parameter 
– It is primarily a characteristic of the computer 

technology used. 

– It is a scale factor applied to the performance of a 
particular computer architecture reflecting the 
technology in which particular implementation of that 
architecture is built. 

• The N half Parameter 
– The amount of parallelism that is presented in a given 

architecture. 

– Determined by a combination of vector unit startup and 
vector unit latency 
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The N Half Range 

2
1n
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Serial Machine Infinite array of 

processor 

0 ∞ 

The relative performance of different algorithms  

on a computer is determined by the value of N half 

(matching problem parallelism with architecture parallelism) 



Vector Length v.s. Vector Performance 

2
1n

1
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
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Slope: 

n 

t 



Calculation of r∞  
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)(
2

1

1 nnrt  



n t 

n0 t0 

n1 t1 

… … 

Measure t for two or more n values 

Then, determine the slope of the line in the form of: 
𝑟∞

−1 =
𝑡1 −𝑡0

𝑛1 −𝑛0
  



Parameters of Several Parallel Architectures 

Computer N half R infinity 

CRAY-1 10-20 80 

BSP 25-150 50 

2-pipe CDC CYBER 

205 

100 100 

1-pipe TIASC  30 12 

CDC STAR 100 150 25 

(64 x 64) ICL DAP 2048 16 
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Another Example 

The Chaining Effect 





































1

2
1

1

1

1

1

])1[(*1

1

])1[(

)]1([

r

lsn

nls
m

t

t
m

t

nlst

nlst

m

i

ii

m

m

i

iim

m

i

iim

9/10/2014 652-14F-PXM-intro 56 

Assume that all 

s’s are the same. 

The same goes 

for the l’s 

Assume m vector operations unchained 

Thus 

So 



Another Example 

The Chaining Effect 
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Assume m vector operations chained 

Thus 

So 



Summary 
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Explanation 
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)1(1 

 lsnr

Vop 1 

Vop 2 

Vop 3 
s+l 

)1(1 

 lsnr )1(1 

 lsnr

Vop 1 Vop 2 Vop 3 

)1(1 

 lsnr

Unchained 

Chained 


