
Tutorial: Introduction to POSIX Threads

Stéphane Zuckerman Haitao Wei Guang R. Gao

Computer Architecture & Parallel Systems Laboratory
Electrical & Computer Engineering Dept.

University of Delaware
140 Evans Hall Newark,DE 19716, USA

{szuckerm, hwei, ggao}@udel.edu

Friday, September 9, 2014

Zuckerman et al. PThreads 1 / 41

jaime
Typewriter
1

Outline

1 Introduction
An Introduction to Multithreading
Processes and Threads Layouts in Memory

2 PTHREADS Basics
A Short Introduction to POSIX Threads
PTHREADS Program Examples

3 Where to Learn More

Zuckerman et al. PThreads 2 / 41

An Introduction to Multithreading

Processes: a Definition
A process is a set of instructions with its own memory space which is
accessed privately. A process is composed of a sequence of
instructions (its code), as well as input and output sets (its data).
Accessing the memory allocated to a process is in general forbidden
unless specific mechanisms are being used, such as inter-process
communication functions (IPCs).

Threads: a Definition
A thread is a sequence of code that is part of a process. Consequently,
processes contain at least one thread. All threads belonging to the
same process share the same address space, and thus can access
the same memory locations.

Zuckerman et al. PThreads 3 / 41

Processes and Threads: the Bare Minimum to Know

Process
I A list of instructions
I Some memory to access with the guarantee it is exclusive to the

process
I A stack to store current values with which to compute
I A heap to store bigger objects that don’t fit in the stack

Thread
I A list of instructions
I A memory space

I A stack to store current values with which to compute (private to the
thread)

I Some heap space, shared between threads belonging to the same
process

Zuckerman et al. PThreads 4 / 41

Various Kinds of Multithreading

I User threads
I Kernel threads
I Hybrid (M × N) threads

Zuckerman et al. PThreads 5 / 41

User Thread Libraries
Slides inspired by M. Pérache’s multithreading course

Zuckerman et al. PThreads 6 / 41

User Thread Libraries
Slides inspired by M. Pérache’s multithreading course

Zuckerman et al. PThreads 6 / 41

User Thread Libraries
Slides inspired by M. Pérache’s multithreading course

Zuckerman et al. PThreads 6 / 41

User Thread Libraries
Slides inspired by M. Pérache’s multithreading course

Zuckerman et al. PThreads 6 / 41

User Thread Libraries
Slides inspired by M. Pérache’s multithreading course

Zuckerman et al. PThreads 6 / 41

User Thread Libraries
Slides inspired by M. Pérache’s multithreading course

Zuckerman et al. PThreads 6 / 41

User Thread Libraries
Slides inspired by M. Pérache’s multithreading course

Zuckerman et al. PThreads 6 / 41

User Thread Libraries
Slides inspired by M. Pérache’s multithreading course

Zuckerman et al. PThreads 6 / 41

User Thread Libraries
Slides inspired by M. Pérache’s multithreading course

Zuckerman et al. PThreads 6 / 41

Characteristics of User Threads

I 1 thread per kernel process
I Simple to implement
I Threads libraries were initially implemented this way
I Very fast: fully running in user space
I Not really suited to SMP and CMP architectures
I Usually handle system calls badly
I Example of “popular” user thread library: GNU Pth

Zuckerman et al. PThreads 7 / 41

Kernel Thread Libraries
Slides inspired by M. Pérache’s multithreading course

Zuckerman et al. PThreads 8 / 41

Kernel Thread Libraries
Slides inspired by M. Pérache’s multithreading course

Zuckerman et al. PThreads 8 / 41

Kernel Thread Libraries
Slides inspired by M. Pérache’s multithreading course

Zuckerman et al. PThreads 8 / 41

Kernel Thread Libraries
Slides inspired by M. Pérache’s multithreading course

Zuckerman et al. PThreads 8 / 41

Kernel Thread Libraries
Slides inspired by M. Pérache’s multithreading course

Zuckerman et al. PThreads 8 / 41

Kernel Thread Libraries
Slides inspired by M. Pérache’s multithreading course

Zuckerman et al. PThreads 8 / 41

Kernel Thread Libraries
Slides inspired by M. Pérache’s multithreading course

Zuckerman et al. PThreads 8 / 41

Kernel Thread Libraries
Slides inspired by M. Pérache’s multithreading course

Zuckerman et al. PThreads 8 / 41

Characteristics of Kernel Threads

I N kernel threads
I Well suited to SMP and CMP architectures
I Handles system calls nicely
I Completely managed at the system level
I Complex to implement
I Slower than user threads (overheads due to entering kernel

space)
I Example of “popular” user thread libraries: Windows Threads,

LinuxThreads, NPTL

Zuckerman et al. PThreads 9 / 41

Hybrid Thread Libraries
Slides inspired by M. Pérache’s multithreading course

Zuckerman et al. PThreads 10 / 41

Hybrid Thread Libraries
Slides inspired by M. Pérache’s multithreading course

Zuckerman et al. PThreads 10 / 41

Hybrid Thread Libraries
Slides inspired by M. Pérache’s multithreading course

Zuckerman et al. PThreads 10 / 41

Hybrid Thread Libraries
Slides inspired by M. Pérache’s multithreading course

Zuckerman et al. PThreads 10 / 41

Hybrid Thread Libraries
Slides inspired by M. Pérache’s multithreading course

Zuckerman et al. PThreads 10 / 41

Hybrid Thread Libraries
Slides inspired by M. Pérache’s multithreading course

Zuckerman et al. PThreads 10 / 41

Hybrid Thread Libraries
Slides inspired by M. Pérache’s multithreading course

Zuckerman et al. PThreads 10 / 41

Hybrid Thread Libraries
Slides inspired by M. Pérache’s multithreading course

Zuckerman et al. PThreads 10 / 41

Hybrid Thread Libraries
Slides inspired by M. Pérache’s multithreading course

Zuckerman et al. PThreads 10 / 41

Hybrid Thread Libraries
Slides inspired by M. Pérache’s multithreading course

Zuckerman et al. PThreads 10 / 41

Characteristics of Hybrid Threads

I M kernel threads and N user threads: hybrid threads are also
called M × N threads (or sometimes M : N threads)

I Well suited to SMP and CMP architectures
I Most Complex to implement
I Two schedulers:

I Kernel Space Scheduler
I User Space Scheduler

I Efficient
I Handles system calls “well enough” (better than user threads, less

than kernel threads)
I Examples of M × N thread libraries: Solaris’ default thread library

(until Solaris v10), MPC, most efficient implementations of
OpenMP’s runtime system.

Zuckerman et al. PThreads 11 / 41

Process Layout in Memory
An Example Implementation in the Linux OS

Zuckerman et al. PThreads 12 / 41

Thread Layout in Memory
An Example Implementation in the Linux OS

Zuckerman et al. PThreads 13 / 41

A Thread’s Characteristics
An Example Implementation in the Linux OS

I All threads share the same address space
I A thread’s stack never grows (except for Thread 0)
I A thread’s stack is located in the heap (except for Thread 0)
I Global variables are shared by all threads
I Threads communicate directly through memory

Zuckerman et al. PThreads 14 / 41

A Short Introduction to POSIX Threads

I Based on the IEEE POSIX 1003.1 standard
I Any POSIX-compliant system (i.e., UNIX and Linux at the very

least) implement the PTHREAD standard:
I Linux implements PTHREADS using kernel threads
I Solaris used to implement PTHREADS as an M × N library, but now

it is implemented as a kernel thread library
I OpenBSD used to have a user-level PTHREAD library, but now uses

kernel-level one
I There are a few third-party libraries to provide a source

compatibility with PTHREADS on MS-Windows systems
I Are PTHREADS lightweight processes?

I Well, a lightweight process, in essence, is a kernel thread. So if
your PTHREAD library is implemented as kernel threads, then yes.

I In general, the answer is “it depends”

Zuckerman et al. PThreads 15 / 41

What We Will See in this Tutorial

I How to create and destroy threads
I How to make threads synchronize with each other

Zuckerman et al. PThreads 16 / 41

PTHREADS: Basic Types

pthread t A PTHREAD descriptor and ID
pthread mutex t A lock for PTHREADS
pthread cond t A conditional variable. It is necessarily associated

with a mutex
pthread attr t Descriptor for a PTHREAD’s properties

(e.g., scheduling hints)
pthread mutexattr t Descriptor for mutex’ properties (e.g.,

private to the process or shared between processes;
recursive or not; etc.)

pthread condattr t Descriptor for a condition variable (e.g., private
to the process, or shared between processes)

Zuckerman et al. PThreads 17 / 41

PTHREADS: Basic Functions
Creation and Destruction

Creation
int pthread create(pthread t* thd id, pthread attr t* attr,

void* (*code)(void*), void* data)

Creates a new PTHREAD, using its descriptor reference, the required
attributes (or NULL for default attributes), a function pointer, and an
argument pointer. The function returns 0 if it succeeded, and −1
otherwise. The descriptor is filled and becomes “active” if the call
succeeded.

Destruction
int pthread join(pthread t tid, void** retval)

Waits for the PTHREAD with ID tid to return, and stores its return
value retval. If retval is NULL, the return value is discarded.
pthread join returns 0 on success, and −1 otherwise.

Note: Calling exit(3) from any thread will terminate the whole
process, and thus all threads will also terminate!

Zuckerman et al. PThreads 18 / 41

Usual PTHREAD Calls from Within a Thread

void pthread exit(void* retval)
Exits from the thread calling the function. If retval is not NULL, it
contains the return value of the thread to pthread join (see below).

pthread t pthread self(void)
Retrieves a thread’s own ID.
Note: pthread t, while often implemented as an integer, does not
have to be!

Zuckerman et al. PThreads 19 / 41

A First PTHREAD Example
Hello, World! . . . Headers and worker function

#include <stdio.h> // for snprintf(), fprintf(), printf(), puts()
#include <stdlib.h> // for exit()
#include <errno.h> // for errno (duh!)
#include <pthread.h> // for pthread_*
#define MAX_NUM_WORKERS 4UL

typedef struct worker_id_s { unsigned long id } worker_id_t;
void* worker(void* arg)
{

// Remember, pthread_t objects are descriptors, not just IDs!
worker_id_t* self = (worker_id_t*) arg; // Retrieving my ID

char hello[100]; // To print the message
int err = snprintf(hello, sizeof(hello),

"[%lu]\t Hello, World!\n", self->id);
if (err < 0) { perror("snprintf"); exit(errno); }

puts(hello);
return arg; // so that the "master" thread

// knows which thread has returned
}

Zuckerman et al. PThreads 20 / 41

A First PTHREAD Example
Hello, World! . . .main

#define ERR_MSG(prefix,...) \
fprintf(stderr,prefix " %lu out of %lu threads",__VA_ARGS__)

int main(void) {
pthread_t workers [MAX_NUM_WORKERS];
worker_id_t worker_ids [MAX_NUM_WORKERS];
puts("[main]\tCreating workers...\n");
for (unsigned long i = 0; i < MAX_NUM_WORKERS; ++i) {

worker_ids[i].id = i;
if (0 != pthread_create(&workers[i], NULL, worker, &worker_ids[i]))

{ ERR_MSG("Could not create thread", i, MAX_NUM_WORKERS);
exit(errno); }

}
puts("[main]\tJoining the workers...\n");
for (unsigned long i = 0; i < MAX_NUM_WORKERS; ++i) {

worker_id_t* wid = (worker_id_t*) retval;
if (0 != pthread_join(workers[i], (void**) &retval))

ERR_MSG("Could not join thread", i, MAX_NUM_WORKERS);
else
printf("[main]\tWorker N.%lu has returned!\n", wid->id);

}
return 0;}

Zuckerman et al. PThreads 21 / 41

A First PTHREAD Example
Hello, World! . . . Output

Compilation Process

gcc -Wall -Wextra -pedantic -Werror -O3 -std=c99 -c hello.c
gcc -o hello hello.o -lpthread

. . . Don’t forget to link with the PTHREAD library!

. . . And the output:

Output of ./hello

[main] Creating workers...
[0] Hello, World!
[main] Joining the workers...
[2] Hello, World!
[main] Worker N.0 has returned!
[1] Hello, World!
[3] Hello, World!
[main] Worker N.1 has returned!
[main] Worker N.2 has returned!
[main] Worker N.3 has returned!

Zuckerman et al. PThreads 22 / 41

Incrementing a Global Counter
Naı̈ve Code

#ifndef BAD_GLOBAL_SUM_H
#define BAD_GLOBAL_SUM_H

#include <stdio.h>
#include <stdlib.h>
#include "utils.h"

typedef struct bad_global_sum_s {
unsigned long *value;

} bad_global_sum_t;

#endif // BAD_GLOBAL_SUM_H

Figure : bad global sum.h

Zuckerman et al. PThreads 23 / 41

Incrementing a Global Counter
Naı̈ve Code (2)

#include "bad_global_sum.h"
#define MAX_NUM_WORKERS 20UL
typedef unsigned long ulong_t;

void* bad_sum(void* frame) {
bad_global_sum_t* pgs = (bad_global_sum_t*) frame;
++*pgs->value;
return NULL;

}

int main(void) {
pthread_t threads [MAX_NUM_WORKERS];
bad_global_sum_t frames [MAX_NUM_WORKERS];
ulong_t counter = 0;

for (ulong_t i = 0; i < MAX_NUM_WORKERS; ++i) {
frames[i].value = &counter;
spthread_create(&threads[i],NULL,bad_sum,&frames[i]);

}

for (ulong_t i = 0; i < MAX_NUM_WORKERS; ++i)
spthread_join(threads[i],NULL);

printf("%lu threads were running. Sum final value: %lu\n", MAX_NUM_WORKERS, counter);

return 0;
}

Figure : bad sum pthreads.c

Zuckerman et al. PThreads 24 / 41

Incrementing a Global Counter
Naı̈ve Code (3)

Compilation Process

gcc -Wall -Wextra -pedantic -Werror -O3 -std=c99 -c bad_sum_pthreads.c
gcc -o badsum bad_sum_pthreads.o -lpthread

. . . Don’t forget to link with the PTHREAD library!

Output of ./badsum

szuckerm@evans201g:bad$./badsum
20 threads were running. Sum final value: 20

Hey, it’s working!

Multiple executions of ./badsum

szuckerm@evans201g:bad$ (for i in ‘seq 100‘;do ./badsum ;done)|uniq
20 threads were running. Sum final value: 20
20 threads were running. Sum final value: 19
20 threads were running. Sum final value: 20
20 threads were running. Sum final value: 19
20 threads were running. Sum final value: 20

Waiiiiit a minute. . .

Zuckerman et al. PThreads 25 / 41

Incrementing a Global Counter
Naı̈ve Code (3)

Compilation Process

gcc -Wall -Wextra -pedantic -Werror -O3 -std=c99 -c bad_sum_pthreads.c
gcc -o badsum bad_sum_pthreads.o -lpthread

. . . Don’t forget to link with the PTHREAD library!

Output of ./badsum

szuckerm@evans201g:bad$./badsum
20 threads were running. Sum final value: 20

Hey, it’s working!

Multiple executions of ./badsum

szuckerm@evans201g:bad$ (for i in ‘seq 100‘;do ./badsum ;done)|uniq
20 threads were running. Sum final value: 20
20 threads were running. Sum final value: 19
20 threads were running. Sum final value: 20
20 threads were running. Sum final value: 19
20 threads were running. Sum final value: 20

Waiiiiit a minute. . .

Zuckerman et al. PThreads 25 / 41

Incrementing a Global Counter
Naı̈ve Code (3)

Compilation Process

gcc -Wall -Wextra -pedantic -Werror -O3 -std=c99 -c bad_sum_pthreads.c
gcc -o badsum bad_sum_pthreads.o -lpthread

. . . Don’t forget to link with the PTHREAD library!

Output of ./badsum

szuckerm@evans201g:bad$./badsum
20 threads were running. Sum final value: 20

Hey, it’s working!

Multiple executions of ./badsum

szuckerm@evans201g:bad$ (for i in ‘seq 100‘;do ./badsum ;done)|uniq
20 threads were running. Sum final value: 20
20 threads were running. Sum final value: 19
20 threads were running. Sum final value: 20
20 threads were running. Sum final value: 19
20 threads were running. Sum final value: 20

Waiiiiit a minute. . .

Zuckerman et al. PThreads 25 / 41

Incrementing a Global Counter
Naı̈ve Code (3)

Compilation Process

gcc -Wall -Wextra -pedantic -Werror -O3 -std=c99 -c bad_sum_pthreads.c
gcc -o badsum bad_sum_pthreads.o -lpthread

. . . Don’t forget to link with the PTHREAD library!

Output of ./badsum

szuckerm@evans201g:bad$./badsum
20 threads were running. Sum final value: 20

Hey, it’s working!

Multiple executions of ./badsum

szuckerm@evans201g:bad$ (for i in ‘seq 100‘;do ./badsum ;done)|uniq
20 threads were running. Sum final value: 20
20 threads were running. Sum final value: 19
20 threads were running. Sum final value: 20
20 threads were running. Sum final value: 19
20 threads were running. Sum final value: 20

Waiiiiit a minute. . .

Zuckerman et al. PThreads 25 / 41

Incrementing a Global Counter
Fixing the Implementation

Mutexes
A MUTual EXclusive object (or mutex) is a synchronization object
which is either owned by a single thread, or by no-one. It is the basic
block to create critical sections.

#ifndef GLOBAL_SUM_H
#define GLOBAL_SUM_H

#include <stdio.h>
#include <stdlib.h>
#include "utils.h"

typedef struct global_sum_s {
unsigned long *value;
pthread_mutex_t *lock;

} global_sum_t;

#endif // GLOBAL_SUM_H

Figure : global sum.h

Zuckerman et al. PThreads 26 / 41

Incrementing a Global Counter
Fixing the Implementation (2)

#include "global_sum.h"
#define MAX_NUM_WORKERS 20UL
typedef unsigned long ulong_t;

void* sum(void* frame) {
global_sum_t* gs = (global_sum_t*) frame;
spthread_mutex_lock (gs->lock); /* Critical section starts here */
++*gs->value;
spthread_mutex_unlock (gs->lock); /* Critical section ends here */
return NULL;

}

int main(void) {
pthread_t threads [MAX_NUM_WORKERS];
global_sum_t frames [MAX_NUM_WORKERS];
ulong_t counter = 0;
pthread_mutex_t m = PTHREAD_MUTEX_INITIALIZER;

for (ulong_t i = 0; i < MAX_NUM_WORKERS; ++i) {
frames[i] = (global_sum_t){ .value = &counter, .lock = &m };
spthread_create(&threads[i],NULL,sum,&frames[i]);

}

for (ulong_t i = 0; i < MAX_NUM_WORKERS; ++i)
spthread_join(threads[i],NULL);

printf("%lu threads were running. Sum final value: %lu\n", MAX_NUM_WORKERS, counter);

return 0;
} Figure : sum pthreads.c

Zuckerman et al. PThreads 27 / 41

Incrementing a Global Counter
Fixing the Implementation (3)

Compilation Process
gcc -Wall -Wextra -pedantic -Werror -O3 -std=c99 -c sum_pthreads.c
gcc -o sum sum_pthreads.o -lpthread

. . . Don’t forget to link with the PTHREAD library!

Multiple executions of ./sum
szuckerm@evans201g:good$ (for i in ‘seq 100‘;do ./sum ;done)|uniq
20 threads were running. Sum final value: 20

Fixed!

Zuckerman et al. PThreads 28 / 41

Incrementing a Global Counter
Fixing the Implementation (3)

Compilation Process
gcc -Wall -Wextra -pedantic -Werror -O3 -std=c99 -c sum_pthreads.c
gcc -o sum sum_pthreads.o -lpthread

. . . Don’t forget to link with the PTHREAD library!

Multiple executions of ./sum
szuckerm@evans201g:good$ (for i in ‘seq 100‘;do ./sum ;done)|uniq
20 threads were running. Sum final value: 20

Fixed!

Zuckerman et al. PThreads 28 / 41

Reacting on Specific Events I
Condition Variables

Condition variables
Condition variables are used when threads are waiting on a specific
event. When the event occurs, the code where it the event was
realized signals a condition variable, either to wake up one of the
threads waiting on the event, or all of them.

Examples of Events to Be Worth Signaling
I Availability of a resource, e.g.:

I A file descriptor for a network connection,
I A file descriptor for accessing (reading or writing) a regular file,
I Any device handle, really

I A specific input provided by the user (string provided by the user,
etc.)

I etc.

Zuckerman et al. PThreads 29 / 41

Reacting on Specific Events II
Condition Variables

High-Level Explanation: Waiting on a Condition
1 A condition variable is always associated with a mutex
2 To wait on an event, a thread must first acquire the mutex, then
3 Call int pthread cond wait(pthread cond t* cond,
pthread mutex t* mutex)

4 If the call succeeds, then the thread releases the mutex
5 When the condition variable is signaled, if the thread which was

“asleep” is re-awakened, the system first returns ownership of the
mutex back to it

Zuckerman et al. PThreads 30 / 41

Reacting on Specific Events III
Condition Variables

High-Level Explanation: Signaling an Event Has Occurred
There are two function calls to perform this function:
I int pthread cond signal(pthread cond t* cond)

I To signal a single thread that the event has occurred. Note: there is
no guarantee as to which thread will wake

I int pthread cond broadcast(pthread cond t* cond)

I To signal all threads that the event has occurred.

Zuckerman et al. PThreads 31 / 41

Reacting on Specific Events
Condition Variables

#ifndef BARRIER_H
#define BARRIER_H

#define SET_BARRIER_MSG(...) \
snprintf(buffer, sizeof(buffer), __VA_ARGS__)

#define NOT_LAST_TO_REACH \
"[%lu]\tI’m NOT the last one to reach the barrier!"

#define LAST_TO_REACH \
"[%lu]\tI am the last to reach the barrier! Waking up the others."

typedef struct barrier_s {
pthread_mutex_t *lock;
pthread_cond_t *cond;
ulong_t *count;

} barrier_t;

typedef struct context_s {
barrier_t* barrier;
ulong_t id;

} context_t;

#endif // BARRIER_H

Figure : barrier.h
Zuckerman et al. PThreads 32 / 41

Reacting on Specific Events
Condition Variables (2)

#include "barrier.h"
void* worker(void* frame);

int main(void) {
pthread_t threads [MAX_NUM_WORKERS];
context_t contexts [MAX_NUM_WORKERS];
pthread_mutex_t m = PTHREAD_MUTEX_INITIALIZER;
pthread_cond_t cond = PTHREAD_COND_INITIALIZER;
ulong_t count = MAX_NUM_WORKERS;
barrier_t barrier = {.lock = &m, .cond = &cond, .count = &count};

for (ulong_t i = 0; i < MAX_NUM_WORKERS; ++i) {
contexts[i] = (context_t){ .barrier = &barrier, .id = i };
spthread_create(&threads[i],NULL,worker,&contexts[i]);

}

for (ulong_t i = 0; i < MAX_NUM_WORKERS; ++i)
spthread_join(threads[i],NULL);

return 0;
}

Figure : barrier main.c
Zuckerman et al. PThreads 33 / 41

Reacting on Specific Events
Condition Variables (3)

#include "barrier.h"

void* worker(void* frame) {
char buffer[81];
context_t* c = (context_t*) frame;
printf("[%lu]\tReaching the barrier...\n",c->id);
spthread_mutex_lock (c->barrier->lock);
--*c->barrier->count;
if (*c->barrier->count > 0) {

SET_BARRIER_MSG(NOT_LAST_TO_REACH, c->id);
spthread_cond_wait (c->barrier->cond, c->barrier->lock);

} else {
SET_BARRIER_MSG(LAST_TO_REACH, c->id);

}
puts(buffer);

spthread_mutex_unlock (c->barrier->lock);
pthread_cond_broadcast(c->barrier->cond);
printf("[%lu]\tAfter the barrier\n", c->id);

return NULL;
} Figure : barrier.c

Zuckerman et al. PThreads 34 / 41

Reacting on Specific Events
Condition Variables (4)

szuckerm@evans201g:condvar$ gcc -Wall -Wextra -pedantic -Werror -O3 -std=c99 -c barrier.c
szuckerm@evans201g:condvar$ gcc -o barrier barrier.o -lpthread
szuckerm@evans201g:condvar$./barrier
[0] Reaching the barrier...
[2] Reaching the barrier...
[1] Reaching the barrier...
[3] Reaching the barrier...
[4] Reaching the barrier...
[5] Reaching the barrier...
[7] Reaching the barrier...
[6] Reaching the barrier...
[6] I am the last to reach the barrier! Waking up the others.
[6] After the barrier
[0] I’m NOT the last one to reach the barrier!
[0] After the barrier
[1] I’m NOT the last one to reach the barrier!
[1] After the barrier
[2] I’m NOT the last one to reach the barrier!
[2] After the barrier
[3] I’m NOT the last one to reach the barrier!
[3] After the barrier
[4] I’m NOT the last one to reach the barrier!
[4] After the barrier
[5] I’m NOT the last one to reach the barrier!
[5] After the barrier
[7] I’m NOT the last one to reach the barrier!
[7] After the barrier

Zuckerman et al. PThreads 35 / 41

Creating Barriers More Easily

I “Hey, barriers are nice! I wish I could have a more practical
construct, though.”

I . . . Well actually, did I tell you about PTHREAD barriers?

pthread barrier t and its associated functions
I int pthread barrier init(pthread barrier t restrict* barrier, const

pthread barrierattr t *restrict attr, unsigned count)

I int pthread barrier destroy(pthread barrier t restrict* barrier)

I int pthread barrier wait(pthread barrier t restrict* barrier)

Zuckerman et al. PThreads 36 / 41

Creating Barriers More Easily

I “Hey, barriers are nice! I wish I could have a more practical
construct, though.”

I . . . Well actually, did I tell you about PTHREAD barriers?

pthread barrier t and its associated functions
I int pthread barrier init(pthread barrier t restrict* barrier, const

pthread barrierattr t *restrict attr, unsigned count)

I int pthread barrier destroy(pthread barrier t restrict* barrier)

I int pthread barrier wait(pthread barrier t restrict* barrier)

Zuckerman et al. PThreads 36 / 41

Updated Barrier Program
Using PTHREAD Barriers

#ifndef BARRIER_H
#define BARRIER_H
#include "utils.h"
#define MAX_NUM_WORKERS 8UL
typedef unsigned long ulong_t;
typedef struct context_s {

pthread_barrier_t* barrier;
ulong_t id;

} context_t;

#endif // BARRIER_H Figure : pth barrier.h

#include "barrier.h"

void* worker(void* frame) {
context_t* c = (context_t*) frame;
printf("[%lu]\tReaching the barrier...\n",c->id);
spthread_barrier_wait(c->barrier);
printf("[%lu]\tAfter the barrier\n", c->id);
return NULL;

} Figure : pth barrier.c (1)

Zuckerman et al. PThreads 37 / 41

Updated Barrier Program
Using PTHREAD Barriers (2)

#include "barrier.h"

int main(void) {
pthread_t threads [MAX_NUM_WORKERS];
context_t contexts [MAX_NUM_WORKERS];
ulong_t count = MAX_NUM_WORKERS;
pthread_barrier_t barrier;

spthread_barrier_init(&barrier,NULL,count);

for (ulong_t i = 0; i < MAX_NUM_WORKERS; ++i) {
contexts[i] = (context_t){ .barrier = &barrier, .id = i };
spthread_create(&threads[i],NULL,worker,&contexts[i]);

}

for (ulong_t i = 0; i < MAX_NUM_WORKERS; ++i)
spthread_join(threads[i],NULL);

spthread_barrier_destroy(&barrier);

return 0;
} Figure : pth barrier.c (2)

Zuckerman et al. PThreads 38 / 41

Learning More About Multi-Threading and PTHREADS

Books (from most theoretical to most practical)

I Tanenbaum, Modern Operating Systems

I Herlihy and Shavit, The Art of Multiprocessor Programming

I Bovet and Cesati, Understanding the Linux Kernel, Second Edition

I Stevens and Rago, Advanced Programming in the UNIX Environment, 3rd Edition

Internet Resources

I “POSIX Threads Programmings” at
https://computing.llnl.gov/tutorials/pthreads/

I “Multithreaded Programming (POSIX pthreads Tutorial)” at
http://randu.org/tutorials/threads/

Food for Thoughts

I Sutter, “The Free Lunch Is Over: A Fundamental Turn Toward Concurrency in Software”
(available at http://www.gotw.ca/publications/concurrency-ddj.htm)

I Lee, “The Problem with Threads” (available at
http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-1.pdf)

I Boehm, “Threads Cannot Be Implemented As a Library” (available at
www.hpl.hp.com/techreports/2004/HPL-2004-209.pdf)

Zuckerman et al. PThreads 39 / 41

https://computing.llnl.gov/tutorials/pthreads/
http://randu.org/tutorials/threads/
http://www.gotw.ca/publications/concurrency-ddj.htm
http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EECS-2006-1.pdf
www.hpl.hp.com/techreports/2004/HPL-2004-209.pdf

References I

Boehm, Hans-J. “Threads Cannot Be Implemented As a Library”. In:
SIGPLAN Not. 40.6 (June 2005), pp. 261–268. ISSN: 0362-1340. DOI:
10.1145/1064978.1065042. URL:
http://doi.acm.org/10.1145/1064978.1065042.
Bovet, Daniel and Marco Cesati. Understanding the Linux Kernel,
Second Edition. Ed. by Andy Oram. 2nd ed. Sebastopol, CA, USA:
O’Reilly & Associates, Inc., 2002. ISBN: 0596002130.
Herlihy, Maurice and Nir Shavit. The Art of Multiprocessor
Programming. San Francisco, CA, USA: Morgan Kaufmann
Publishers Inc., 2008. ISBN: 0123705916, 9780123705914.
Lee, Edward A. “The Problem with Threads”. In: Computer 39.5 (May
2006), pp. 33–42. ISSN: 0018-9162. DOI: 10.1109/MC.2006.180.
URL: http://dx.doi.org/10.1109/MC.2006.180.

Zuckerman et al. PThreads 40 / 41

http://dx.doi.org/10.1145/1064978.1065042
http://doi.acm.org/10.1145/1064978.1065042
http://dx.doi.org/10.1109/MC.2006.180
http://dx.doi.org/10.1109/MC.2006.180

References II

Stevens, Richard W. and Steven A. Rago. Advanced Programming in
the UNIX Environment, 3rd Edition. Indianapolis, IN, USA:
Addison-Wesley Professional, 2013. ISBN: 0321637739,
9780321637734.
Sutter, Herb. “The Free Lunch Is Over: A Fundamental Turn Toward
Concurrency in Software”. In: Dr. Dobb’s Journal 30.3 (2005).
Tanenbaum, Andrew S. Modern Operating Systems. 3rd. Upper
Saddle River, NJ, USA: Prentice Hall Press, 2007. ISBN:
9780136006633.

Zuckerman et al. PThreads 41 / 41

	Introduction
	An Introduction to Multithreading
	Processes and Threads Layouts in Memory

	PThreads Basics
	A Short Introduction to POSIX Threads
	PThreads Program Examples

	Where to Learn More

