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Heterogeneous High Performance CPU and GPU System

— General Purpose CPU
— GPGPU
» General-purpose computing on graphics processing units (GPGPU).

» GPU becomes a highly parallel, multithreaded, many-core processor with
tremendous computational power and very high memory bandwidth.
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The GPU devotes more transistors to data processing
(Images from the NVIDIA CUDA C Programming Guide 6.5)
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CUDA Background

Theoretical GFLOP/s
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CUDA Background T&&e
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Background of DFT/FFT
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 Discrete Fourier Transform

(DFT)
» Given x € C"*, compute its Fourier

N
transform x :
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Xy = Zixi wid for wid = g—Jj2mid/N
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* One of the most widely used and

o-Lu - [ , expensive computation in science
o 1000 2000 3000 4001 . . .
He and engineering domains:
W= sampled Audio Data (Time) > large-scale physics simulations
W DFT of Audio Samples (Frequency) > signal processing

» data compression
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Background of DFT/FFT

« Fast Fourier transform (FFT) reduces DFT's complexity from
O(N?) into O(NlogN).
— Requires large amount of computing resources and memory
bandwidth.
— GPUs is proved to be a more promising platform than CPU.
» much more parallel computing resources.

» achieve an order of magnitude performance improvement over
CPUs on compute-intensive applications.
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Motivation

 Previous works

— Prior FFT works on GPU use only GPU to compute but employ CPU as a mere
memory-transfer controller.

* In-Card FFT - CUFFT by Nvidia, Nukada's work, Govindaraju's and Gu's
on 2D/3D FFT.

* Out-of-Card FFT - Gu’s GPU-based FFT library. Co-optimization for
communication and computation.

» Distributed FFT - Chen presented a GPU cluster based FFT
implementation.

— The computing power of CPU is wasted.

— The GPU performance is restricted by the limited memory size and the low
bandwidth of data transfer through PCle channel.

« Hybridize Concurrent CPU and GPU
— Ahybrid FFT library is proposed to engage both CPU and GPU for parallel FFT.
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Motivation
« Challenges

We have to handle the low bandwidth channel for data transfer between
CPU and GPU?

How to solve the locality issues when work is distributed into
heterogeneous devices?

How to efficiently split the workloads, and how to achieve the workloads
balancing between two types of computing devices?

Whether or not the computations and communications can be efficiently
overlapped ?



Hybrid 2D FFT Library

* Hybrid out-of-card 2D FFT Library on Heterogeneous
CPU-GPU system
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Hybrid 2D FFT Library

* A hybrid large-scale FFT decomposition framework
— For each pass of 1st-round 2D FFT fitting into GPU memory

- I ass 1II e P“'ﬁ'ﬁrﬁﬁm—“‘ , X Pass lioIRx
1 !

R I ¥ Whether we can further
i decompose Y dimensional 1D

E I(; ‘;f % (If (13 FFT and exploit more parallelism

u (ul u U u u|l that can make full use of parallel
| computing resources?

Y Y
— Data parallelism and concurrency is exploited along X dimension for both
GPU and CPU.

— However, there is still restriction to performance if size of computational
dimension Y is large.



Hybrid 2D FFT Library

* A hybrid large-scale FFT decomposition framework
— Two rounds of computation & load distribution
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Hybrid 2D FFT Library

A hybrid large-scale FFT decomposition framework
— Two rounds of computation & load distribution
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« Data Transfer Scheme Through PCle Channel
— Asynchronous strided memory copy via PCle bus

X
Xlofpass1 | X2 of pass2
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memcpy

cudaMemcpyAsync(stream[0])

> hybridFFT_kernelQ<<<

dG, dB, 0, stream[0]>>>
()

hybridFFT_kernell<<<
dG, dB, 0, stream[1]>>>
()

cudaMemepyAsync(stream[1])
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hybridFFT_kernel2<<<
dG, dB, 0, stream[2]>>>
(r)

cudaMemcpyAsync(stream|[2])
>

cudaMemcpyAsync(stream|[3]) hybridFFT_kernel3<<<
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>
()
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Host memory in CPU side Temporary memory on GPU global memory
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« Data Transfer Scheme Through PCle Channel

— Asynchronous strided memory copy via PCle bus

Xgpu of pass i

GPU global memory

cudaMemepy Asynelstream[0])

cudaMemepy Asyne(stream|[ 1)

cudaMemcpyAsyne(stream[2])

cudaMemepy Asyne(stream[3])

Intermediate output on CPU is automatically stored
into Host memaory without additional memcpy
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Hybrid 2D FFT Library
 GPU Computation & Optimization

Out-of-card FFT - divided into several passes
Asynchronous strided memory copy via PCle bus

Stream-based asynchronous execution

Shared memory increases device memory bandwidth
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Hybrid 2D FFT Library
« CPU Computation & Optimization

— Concurrent group operations
- Each time to operate a group of data
- Operate on non-contiguous (strided) data
— No input/output transposition performed
- Pre-set the input/output access stride
- Save much execution time
— Multi-threaded execution to parallelize the recursive sections



Hybrid 2D FFT Library

Y2
Pl
X
+----.‘Cg_.':'.1——---i—-——5{qu-+ "
L ! L] L ! : St | ﬂ = I--
Co-Optimization : pass 1 ([
i stream 1
| Pass 2 stream 0
of CPUs & GPU : stream |
I Tl
T4
Y2&XFFT
Synchronization()
Y1FFT
1
Further ¥ viak Eh:ea-il:-ludi_ )
g'_n'nn] MEmMary d.ecum]ms:i:i.un Y l“‘*mi‘l]l:‘![‘].]..‘![ I]__I
_____ _'h:g_:u J—
stream ()
Pazs 1 ~iream 1
cudaMemcpy2D [ —
Y1 MM“S ) [ stream 0 v
Pl - stream 1
~ GPU computation
"X
NEpu-- Ncpu-+] V1
Pass 1 Y1
~
Pazz 2
(s 30cp-of FETW plan for
Y2+ N —— e grouped arrays
'&rz L)

CPU computation



Load Balancing between GPU and CPU

* Performance Modeling

— Split the total execution into several primitive sub-steps to
derive a performance model parameter for each primitive.
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* Performance Modeling

— Split the total execution into several primitive sub-steps to
derive a performance model parameter for each primitive.

» Model parameter provides estimated execution time
parameterized with load ratio.



Load Balancing between GPU and CPU

* Performance Modeling

— Split the total execution into several primitive sub-steps to
derive a performance model for each primitive.

» Model parameter provides estimated execution time
parameterized with load ratio.

» Two profiling runs, one on CPU and one on GPU, to determine
parameter values of different load ratios.



Load Balancing between GPU and CPU

* Performance Modeling

— Split the total execution into several primitive sub-steps to
derive a performance model for each primitive.

» Model parameter provides estimated execution time
parameterized with load ratio.

» Two profiling runs, one on CPU and one on GPU, to determine
parameter values of different load ratios.

» Automatically estimate, rather than really measuring, the total
execution time of our implementation under varying ratios.



Load Balancing between GPU and CPU

* Performance Modeling

— Split the total execution into several primitive sub-steps to
derive a performance model for each primitive.

» Model parameter provides estimated execution time
parameterized with load ratio.

» Two profiling runs, one on CPU and one on GPU, to determine
parameter values of different load ratios.

» Automatically estimate, rather than really measuring, the total
execution time of our implementation under varying ratios.

— Performance Modeling and Tuning

» Performance estimation from model parameters.

» Accuracy is evaluated - only use it to provide a small region of
potentially good choices.



Load Balancing between GPU and CPU

GPU control thread Four concurrent threads on CPU

[ For each round of 2D | [ For each round of 2D |

cudaMemcpyAsync() Buffer preparation
to transfer a data block
from CPU to GPU.

Total 4 threads for each of the

Concurrent kernels for 4 partitions.
each of the 4 partitions

(B

E . .

E Combination of kernel C?tmblnaélon dof

é) 0 and 1 partition O an

:i Combination of C - -

S kernel 2 and 3 orpblnatlon of
Conbinationof partition 2 and 3

kernel 0, 1, 2 and 3

Combination of
partition O, 1, 2 and 3

cudaMemcpyAsync() to
transfer a data block from
GPU to CPU.

[ omp barrier |

[ omp barrier |

[ End Loop | [ End Loop |




Load Balancing between GPU and CPU

Parameters Description
# passes Total # of passes. Subproblem of each pass fits
into GPU memory.
Parameters # streams Total # of streams that support for asynchronous
for 2D FFT kernel executions and transfers.
] ) # thds # of threads of CPU.
Running Time Toau (i, Ry) = Toann-gpu % Hg. Time of copying a 2D
Estimation strided array of size
#pifﬁ;if;eim from host to device in stream 1.

computation of concurrent kernel in stream i.
Thread block size is YIW x max(Y11.Yi12),

rid size is e XX X Y2
g ] " ¥ passes x # sireams

T‘EEEI:}EH(-E'-RQJ = TEd]]EH—gpu )4 Rg. Time of Cﬂ]J}"illg a 2D

strided array of size

RyxXxY i . e .
F passes X ¥ sieams from device to host in stream z.

Ty, mw(l — Rg) =Ty, fw-cpu X (1 — Hg). Time of Yy -step FFTs
on advanced FFTW plan
for grouped array of size (1 — Rg) x X in CPU.
Total number of plans 1s Y2.

Ty, & x Time of subsequent calculation of Y5 and X
dimensional FFTs.




Load Balancing between GPU and CPU

 GPU Part of Hybrid 2D FFT
TGap = #passes X max{ Y1 X Toanan(0, Ry)+
Ty, kernel (0. By ) + Toapon (0, f?g):: ...];
Y7 X Togmop (# streams-1, i)
+ Ty, kernel (# streams-1, )
+ Toapon (# streams-1, R,)]:  }

« CPU Part of Hybrid 2D FFT

g Bl . YQ Tl .
1 CQD — Zthds X lY-lh‘tw(l T Rg)

« Estimation of execution time of Hybrid 2D FFT
Ty, = max{TGyp, TCsp}



Evaluation of Preliminary Results

* Environmental Setup

GPU Global Memory NVCC PCI
GeForce GTX480 1.5GB 3.2 PCle2.0 x16
Tesla C2070 6GB 3.2 PCle2.0 x16
Tesla C2075 6GB 3.2 PCle2.0 x16
CPU Frequency, # of Cores|System Memory Cache
Intel i7 920 2.66GHz, 4 cores 24GB 8192KB

« Performance Comparison
— Test cases are all out-of-card, i.e. larger than GPU memory.

— SSE-enabled 1-thread, 2-thread, 4-thread FFTW 3.3.3 with
MEASURE flag.

— SSE-enabled 1-thread, 2-thread, 4-thread Intel MKL 10.3.
— Gu'’s out-of-card FFT Library.



GFLOPS
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Conclusion

e Our hybrid FFT library concurrently uses both CPU and GPU to compute
large FFT problems. The library has three key components:

— A hybrid large-scale decomposition paradigm to extract concurrency
and workload patterns between the two different processor types.

— Aload balancer with empirical performance modeling to determine
optimal load balancing between CPU and GPU.

— An optimizer that exploits substantial parallelism for GPU and CPUs.

— An effective heuristic to expose opportunities of overlapping
communication with computation for FFT decomposition.

* Overall, the preliminary results show that our hybrid library outperforms
two best performing FFT implementations by 1.9x and 2.1x, respectively.
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Part Il: An Input Adaptive Algorithm for
Parallel Sparse Fast Fourier Transform



Motivation

« Original (Dense) DFT/FFT
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Motivation
* Original (Dense) DFT/FFT

Time Frequency

e Sparse FFT

 Parallelization

CPU GPU




Motivation

« Original (Dense) DFT/FFT

Time Frequency
 Sparse FFT
 Parallelizatior

i —
* Input Adaptive

— Spectrum Similarities




Background of DFT/FFT

* Discrete Fourier Transform (DFT)
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— Given x € C™, compute its Fourier transform x :

A\ . . iy
Xq = Zixi wid for wid = e—J2mid/N



Background of DFT/FFT

* Discrete Fourier Transform (DFT)

. ) } AN
— Given x € C™, compute its Fourier transform x :

A\ . . iy
Xq = Zixi wid for wid = e—J2mid/N

 Fast Fourier transform (FFT) algorithms reduce DFT's
operational complexity from O(N?4) into O(NlogN).
— Cooley-Tukey algorithm;
— Prime—Factor (Good-Thomas) algorithm;
— Rader's algorithm;
— Bluestein's algorithm.



Background of Sparse FFT

« All FFT algorithms cost time proportional to input size N.
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« What if the output of a FFT is K-sparse?



Background of Sparse FFT

« All FFT algorithms cost time proportional to input size N.

 What if the output of a FFT is K-sparse? - only K non-
zero Fourier coefficients. Its runtime i1s sublinear to N.



Background of Sparse FFT

« All FFT algorithms cost time proportional to input size N.
« What if the output of a FFT is K-sparse?
« Sublinear sparse Fourier algorithm was first proposed by

Kushilevitz et.al, and since then, has been extensively
studied in many applications.



Background of Sparse FFT

« All FFT algorithms cost time proportional to input size N.
« What if the output of a FFT is K-sparse?

« Sublinear sparse Fourier algorithm was first proposed by
Kushilevitz et.al, and since then, has been extensively
studied in many applications.

 However, their runtimes have large exponents in the
polynomial of k and logN, and their complex algorithmic
structures impose restrictions on fast and parallel
Implementations.



Background of Sparse FFT

« Hassanieh et.al. recently presented improved algorithms
with the runtime of

O(klogNlog(N /k)) or even faster O(klogN)



Background of Sparse FFT

« Hassanieh et.al. recently presented improved algorithms
with the runtime of

O(klogNlog(N /k)) or even faster O(klogN)
« Limitations:
— lterates over passes,;
— Dependency exists between consecutive iterations;
— Oblivious to input characteristics.



Motivation

« Advantages

— Many applications are sparse in the frequency
domain and hence can benefit from sparse FFT.



Motivation

« Advantages

— Many applications are sparse in the frequency
domain and hence can benefit from sparse FFT.

— Homogeneity exists in specific spectrums.

= = = = =
Object
Movement Time

Video Camera



Motivation

« Advantages

— Many applications are sparse in the frequency
domain and hence can benefit from sparse FFT.

— Homogeneity exists in the spectrums.

— Parallelism is always needed to be exploited as much
as possible from the sparse FFT algorithms.



General Input Adaptive Sparse FFT

« Basics

— Bucketize: Hash the spectrum into a few buckets. Each bucket
IS to have only one large coefficient.

— Estimate: Estimate large coefficient in each non-empty bucket.

Spectrum X;




General Input Adaptive Sparse FFT

« Basics

— Bucketize: Hash the spectrum into a few buckets. Each bucket
IS to have only one large coefficient.

— Estimate: Estimate large coefficient in each non-empty bucket.

* Prerequisite

— Need to generate Fourier template once. The template includes
the locations of non-zero frequencies and is made use of for the
spectrums in the following samples.

Spectrum X;

|




General Input Adaptive Sparse FFT

{a) Original Spectrum of Signal



General Input Adaptive Sparse FFT

{a) Original Spectrum of Signal (b) Permuted Spectrum of Signal



General Input Adaptive Sparse FFT

{a) Original Spectrum of Signal (b) Permuted Spectrum of Signal
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{c) Applying Filter and
Subsampled FFT




General Input Adaptive Sparse FFT

- - Sy

{a) Original Spectrum of Signal (b) Permuted Spectrum of Signal
(c) Applying Filter and (d) Recovered Spectrum of Output

Subsampled FFT



Parallel Input Adaptive Sparse FFT

« Parallelism Exploitation

— Input adaptive approach directly permutes sparse coefficients in spectrum
domain, rather than to estimate permutation in time domain.

— To get rid of dependency existing between consecutive iterations in the
traditional permutation estimation process.

« Data Parallelism and Kernel Execution
— Graphic Processing Units (GPUSs) for well-suited data parallel computations.

— Data parallelism exists in subsections of hashed index computation, filtering
and permuting input, subsampling FFT and location recovery.

— GPU computational kernels are constructed for each subsection.



Parallel Input Adaptive Sparse FFT

« Parallelism Exploitation and Kernel Execution

HashFunc() k Compute hashed indices of permuted coefficients and determine
shift factors. The loop of size k is decomposed and each scalar thread
in kernel concurrently works as each index j in the algorithm.

Perm() kzlogN Apply filter and permutation to input. Each thread multiplies filter as
well as shifting factor with input for one element.
Subsample() k Parallelize subsampling to input.
TunedFFT() (K1 X K5) Well-tuned GPU based FFT Library.
Recover() k Parallelize the loop of location estimation.
Filtering() k]og]\[ Parallelize loop size O (klogN) of applying filter to the input.
Shifting() _ N Make each thread shift one input element by a factor. For each
min{k, klog }klogN shifting event, TunedFFT() is launched before we gain output.

GPU computational kernels



Parallel Input Adaptive Sparse FFT

« Performance Optimizations

— Maximize GPU device memory bandwidth.
» Coalesced memory accesses.
» Coalesced accesses are enabled by setting the size of thread block

be 16 x 2P where p > 0, and set grid size to —e2ds.
block_size

— Maximize data sharing between kernels.
* Increase PCI bandwidth significantly.
* Only two transfers between CPU and GPU to maximize PCI bandwidth.




SFFT Real-World Application

 Video recording of object movement
— Fix a video camera to record a 2D object movement for a duration of time

{To, T4, ..., T,}
_ — > —> —> —> —>
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Video Camera



SFFT Real-World Application

* Video recording of object movement
— Fix a video camera to record a 2D object movement for a duration of time

(Ty, Ty,..., Te).

— The object in video frame is denoted as 2D image matrix and as a 1D row-

major array.

— Similarity in the spectrum.

Spectrums | | | | ‘ ‘ ‘ ‘
ARARRE A e A

Time Domain

object x{i.T0)

object x(i-ml1.11)

object %(i-m2,T2)

—
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Time
X-axis
( 2 )
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T1 T

b= = 1112 i

Video Frames

T3

Memem M3 —ea




Evaluation of Preliminary Results

* Environmental Setup

GPU Global Memory NVCC PCI
GeForce GTX480 1.5GB 3.2 PCle2.0 x16
Tesla C2070 6GB 3.2 PCle2.0 x16
Tesla C2075 6GB 3.2 PCle2.0 x16
CPU Frequency, # of Cores|System Memory Cache
Intel i7 920 2.66GHz, 4 cores 24GB 8192KB




Evaluation of Preliminary Results

* Environmental Setup

GPU Global Memory NVCC PCI
GeForce GTX480 1.5GB 3.2 PCle2.0 x16
Tesla C2070 6GB 3.2 PCle2.0 x16
Tesla C2075 6GB 3.2 PCle2.0 x16
CPU Frequency, # of Cores|System Memory Cache
Intel i7 920 2.66GHz, 4 cores 24GB 8192KB

« Sequential version
— 1-thread SSE-enabled FFTW 3.3.3
 Dbasic version (ESTIMATE)
« optimal version (MEASURE)
— sFFT 1.0 and 2.0
— AAFFT 0.9

 Parallel version

— 4-thread SSE-enabled FFTW 3.3.3 with basic and optimal version
— CUFFT 3.2



Run Time (sec)

General sparse FFT In sequential case:

Run Time vs. Signhal Size
Run Time vs Signal Size (k=64)
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Run Time (sec)

100

SFFT Real-World Application

(a) Performance of Application (N:ZET, k=64)
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Performance of a real-world application



sFFT 1.0 s

FFTW 1 thread 1

FFTW 4 threads G

CUFFT mmm
sFFT 2.0 ===

Our C2070 =Y

Our GTX480 E=~A

OQur C2075 =7

Performance of Three GPUs with Three Segments

Our G2075 OPT E=XA
Our C2070 OPT

Our GTX480 OPT

GPU Performance of Input Adaption Process
with 3 Video Segments
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GPU Performance of Input Adaption Process
with 3 Video Segments.

Performance of Three GPUs with Three Segments
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Conclusion

An input-adaptive sparse FFT algorithm that extracts input similarities
and tunes adaptive filters to package non-zero Fourier coefficients into
sparse bins.

Non-iterative with high computation intensity such that substantial
parallelism is exploited for CPUs and GPU to improve performance.

Overall, our algorithm aims to be faster than other FFTs both in theory
and implementation.



UNIVERSITY of DELAWARE

Thank You !



NIVERSITY of DELAWARE

Questions?



