
Parallel FFT Program Optimizations

on Heterogeneous Computers

Shuo Chen, Xiaoming Li

Department of Electrical and Computer Engineering

University of Delaware, Newark, DE 19716

Outline

• Part I: A Hybrid GPU/CPU Parallel FFT

Library for Large FFT Programs

• Part II: An Input Adaptive Algorithm for

Parallel Sparse Fast Fourier Transform

Part I: A Hybrid GPU/CPU Parallel

FFT Library for Large FFT Programs

– General Purpose CPU

– GPGPU

General-purpose computing on graphics processing units (GPGPU).

GPU becomes a highly parallel, multithreaded, many-core processor with

tremendous computational power and very high memory bandwidth.

Heterogeneous High Performance CPU and GPU System

The GPU devotes more transistors to data processing
 (Images from the NVIDIA CUDA C Programming Guide 6.5)

CUDA Background

Floating-Point Operations per Second for the CPU and GPU
 (Images from the NVIDIA CUDA C Programming Guide 6.5)

CUDA Background

– Compute Unified Device

Architecture a parallel

programming model created by

NVIDIA.

– Higher FLOPS on GPU than

CPU. Higher memory bandwidth

on GPU than traditional

processor’s memory.

– GPUs support thousands of

threads running at the same time.

 Floating-Point Operations per Second for

the CPU and GPU
(Images from the NVIDIA CUDA C Programming Guide 6.5)

Background of DFT/FFT

• One of the most widely used and

expensive computation in science

and engineering domains:
 large-scale physics simulations

 signal processing

 data compression

• Discrete Fourier Transform

(DFT)
 Given 𝑥 ∈ ℂ𝑛, compute its Fourier

transform 𝑥
∧
 :

𝑥𝑑
∧
= 𝑥𝑖𝑖 𝜔𝑖𝑑 for 𝜔𝑖𝑑 = 𝑒−𝑗2𝜋𝑖𝑑 𝑁

Background of DFT/FFT

• Fast Fourier transform (FFT) reduces DFT's complexity from

O(𝑁2) into O(𝑁log𝑁).

– Requires large amount of computing resources and memory

bandwidth.

– GPUs is proved to be a more promising platform than CPU.

much more parallel computing resources.

achieve an order of magnitude performance improvement over

CPUs on compute-intensive applications.

Motivation
• Previous works

– Prior FFT works on GPU use only GPU to compute but employ CPU as a mere

memory-transfer controller.

• In-Card FFT CUFFT by Nvidia, Nukada's work, Govindaraju's and Gu's

on 2D/3D FFT.

• Out-of-Card FFT Gu’s GPU-based FFT library. Co-optimization for

communication and computation.

• Distributed FFT Chen presented a GPU cluster based FFT

implementation.

– The computing power of CPU is wasted.

– The GPU performance is restricted by the limited memory size and the low

bandwidth of data transfer through PCIe channel.

• Hybridize Concurrent CPU and GPU
– A hybrid FFT library is proposed to engage both CPU and GPU for parallel FFT.

Motivation
• Challenges

– We have to handle the low bandwidth channel for data transfer between

CPU and GPU?

– How to solve the locality issues when work is distributed into

heterogeneous devices?

– How to efficiently split the workloads, and how to achieve the workloads

balancing between two types of computing devices?

– Whether or not the computations and communications can be efficiently

overlapped ?

• Hybrid out-of-card 2D FFT Library on Heterogeneous

CPU-GPU system

Hybrid 2D FFT Library

• A hybrid large-scale FFT decomposition framework
– For each pass of 1st-round 2D FFT fitting into GPU memory

– Data parallelism and concurrency is exploited along X dimension for both
GPU and CPU.

– However, there is still restriction to performance if size of computational
dimension Y is large.

Whether we can further

decompose Y dimensional 1D

FFT and exploit more parallelism

that can make full use of parallel

computing resources?

Hybrid 2D FFT Library

Hybrid 2D FFT Library
• A hybrid large-scale FFT decomposition framework

– Two rounds of computation & load distribution

– Y-dimensional decomposition & load distribution

Hybrid 2D FFT Library
• A hybrid large-scale FFT decomposition framework

– Two rounds of computation & load distribution

– Y-dimensional decomposition & load distribution

• Data Transfer Scheme Through PCIe Channel

– Asynchronous strided memory copy via PCIe bus

• Data Transfer Scheme Through PCIe Channel

– Asynchronous strided memory copy via PCIe bus

Hybrid 2D FFT Library
• GPU Computation & Optimization

– Out-of-card FFT divided into several passes

– Asynchronous strided memory copy via PCIe bus

– Stream-based asynchronous execution

– Shared memory increases device memory bandwidth

Device Memory Shared Memory

Hybrid 2D FFT Library
• CPU Computation & Optimization

– Concurrent group operations

 Each time to operate a group of data

 Operate on non-contiguous (strided) data

– No input/output transposition performed

 Pre-set the input/output access stride

 Save much execution time

– Multi-threaded execution to parallelize the recursive sections

Hybrid 2D FFT Library

Co-Optimization

of CPUs & GPU

Load Balancing between GPU and CPU

• Performance Modeling

– Split the total execution into several primitive sub-steps to

derive a performance model parameter for each primitive.

Load Balancing between GPU and CPU

• Performance Modeling

– Split the total execution into several primitive sub-steps to

derive a performance model parameter for each primitive.

 Model parameter provides estimated execution time

parameterized with load ratio.

Load Balancing between GPU and CPU

• Performance Modeling

– Split the total execution into several primitive sub-steps to

derive a performance model for each primitive.

 Model parameter provides estimated execution time

parameterized with load ratio.

 Two profiling runs, one on CPU and one on GPU, to determine

parameter values of different load ratios.

Load Balancing between GPU and CPU

• Performance Modeling

– Split the total execution into several primitive sub-steps to

derive a performance model for each primitive.

 Model parameter provides estimated execution time

parameterized with load ratio.

 Two profiling runs, one on CPU and one on GPU, to determine

parameter values of different load ratios.

 Automatically estimate, rather than really measuring, the total

execution time of our implementation under varying ratios.

Load Balancing between GPU and CPU

• Performance Modeling

– Split the total execution into several primitive sub-steps to

derive a performance model for each primitive.

 Model parameter provides estimated execution time

parameterized with load ratio.

 Two profiling runs, one on CPU and one on GPU, to determine

parameter values of different load ratios.

 Automatically estimate, rather than really measuring, the total

execution time of our implementation under varying ratios.

– Performance Modeling and Tuning

 Performance estimation from model parameters.

 Accuracy is evaluated only use it to provide a small region of

potentially good choices.

Load Balancing between GPU and CPU

Load Balancing between GPU and CPU

Parameters

for 2D FFT

Running Time

Estimation

Load Balancing between GPU and CPU

• GPU Part of Hybrid 2D FFT

• CPU Part of Hybrid 2D FFT

• Estimation of execution time of Hybrid 2D FFT

• Environmental Setup

• Performance Comparison

– Test cases are all out-of-card, i.e. larger than GPU memory.

– SSE-enabled 1-thread, 2-thread, 4-thread FFTW 3.3.3 with

MEASURE flag.

– SSE-enabled 1-thread, 2-thread, 4-thread Intel MKL 10.3.

– Gu’s out-of-card FFT Library.

Evaluation of Preliminary Results

2D FFT of size from 2^26 to 2^29 on GTX480

Conclusion

• Our hybrid FFT library concurrently uses both CPU and GPU to compute

large FFT problems. The library has three key components:

– A hybrid large-scale decomposition paradigm to extract concurrency

and workload patterns between the two different processor types.

– A load balancer with empirical performance modeling to determine

optimal load balancing between CPU and GPU.

– An optimizer that exploits substantial parallelism for GPU and CPUs.

– An effective heuristic to expose opportunities of overlapping

communication with computation for FFT decomposition.

• Overall, the preliminary results show that our hybrid library outperforms

two best performing FFT implementations by 1.9x and 2.1x, respectively.

Part II: An Input Adaptive Algorithm for

Parallel Sparse Fast Fourier Transform

• Original (Dense) DFT/FFT

• Sparse FFT

Motivation

Filtration

• Original (Dense) DFT/FFT

• Sparse FFT

• Parallelization

Motivation

• Original (Dense) DFT/FFT

• Sparse FFT

• Parallelization

• Input Adaptive

– Spectrum Similarities

Motivation

Background of DFT/FFT

• Discrete Fourier Transform (DFT)

– Given 𝑥 ∈ ℂ𝑛, compute its Fourier transform 𝑥
∧
 :

𝑥𝑑
∧
= 𝑥𝑖𝑖 𝜔𝑖𝑑 for 𝜔𝑖𝑑 = 𝑒−𝑗2𝜋𝑖𝑑 𝑁

Background of DFT/FFT

• Discrete Fourier Transform (DFT)

– Given 𝑥 ∈ ℂ𝑛, compute its Fourier transform 𝑥
∧
 :

𝑥𝑑
∧
= 𝑥𝑖𝑖 𝜔𝑖𝑑 for 𝜔𝑖𝑑 = 𝑒−𝑗2𝜋𝑖𝑑 𝑁

• Fast Fourier transform (FFT) algorithms reduce DFT's

operational complexity from O(𝑁2) into O(𝑁log𝑁).

– Cooley–Tukey algorithm;

– Prime–Factor (Good-Thomas) algorithm;

– Rader's algorithm;

– Bluestein's algorithm.

Background of Sparse FFT

• All FFT algorithms cost time proportional to input size N.

Background of Sparse FFT

• All FFT algorithms cost time proportional to input size N.

• What if the output of a FFT is K-sparse?

Background of Sparse FFT

• All FFT algorithms cost time proportional to input size N.

• What if the output of a FFT is K-sparse? only K non-

zero Fourier coefficients. Its runtime is sublinear to N.

Background of Sparse FFT

• All FFT algorithms cost time proportional to input size N.

• What if the output of a FFT is K-sparse?

• Sublinear sparse Fourier algorithm was first proposed by

Kushilevitz et.al, and since then, has been extensively

studied in many applications.

Background of Sparse FFT

• All FFT algorithms cost time proportional to input size N.

• What if the output of a FFT is K-sparse?

• Sublinear sparse Fourier algorithm was first proposed by

Kushilevitz et.al, and since then, has been extensively

studied in many applications.

• However, their runtimes have large exponents in the

polynomial of k and log𝑁, and their complex algorithmic

structures impose restrictions on fast and parallel

implementations.

• Hassanieh et.al. recently presented improved algorithms

with the runtime of

𝑂(𝑘log𝑁log(𝑁 𝑘)) or even faster 𝑂(𝑘log𝑁)

Background of Sparse FFT

• Hassanieh et.al. recently presented improved algorithms

with the runtime of

𝑂(𝑘log𝑁log(𝑁 𝑘)) or even faster 𝑂(𝑘log𝑁)

• Limitations:

– Iterates over passes;

– Dependency exists between consecutive iterations;

– Oblivious to input characteristics.

Background of Sparse FFT

Motivation

• Advantages

– Many applications are sparse in the frequency

domain and hence can benefit from sparse FFT.

Motivation

• Advantages

– Many applications are sparse in the frequency

domain and hence can benefit from sparse FFT.

– Homogeneity exists in specific spectrums.

Motivation

• Advantages

– Many applications are sparse in the frequency

domain and hence can benefit from sparse FFT.

– Homogeneity exists in the spectrums.

– Parallelism is always needed to be exploited as much

as possible from the sparse FFT algorithms.

General Input Adaptive Sparse FFT

• Basics

– Bucketize: Hash the spectrum into a few buckets. Each bucket

is to have only one large coefficient.

– Estimate: Estimate large coefficient in each non-empty bucket.

General Input Adaptive Sparse FFT

• Basics

– Bucketize: Hash the spectrum into a few buckets. Each bucket

is to have only one large coefficient.

– Estimate: Estimate large coefficient in each non-empty bucket.

• Prerequisite

– Need to generate Fourier template once. The template includes

the locations of non-zero frequencies and is made use of for the

spectrums in the following samples.

General Input Adaptive Sparse FFT

General Input Adaptive Sparse FFT

General Input Adaptive Sparse FFT

General Input Adaptive Sparse FFT

• Parallelism Exploitation
– Input adaptive approach directly permutes sparse coefficients in spectrum

domain, rather than to estimate permutation in time domain.

– To get rid of dependency existing between consecutive iterations in the

traditional permutation estimation process.

• Data Parallelism and Kernel Execution
– Graphic Processing Units (GPUs) for well-suited data parallel computations.

– Data parallelism exists in subsections of hashed index computation, filtering

and permuting input, subsampling FFT and location recovery.

– GPU computational kernels are constructed for each subsection.

Parallel Input Adaptive Sparse FFT

• Parallelism Exploitation and Kernel Execution

Parallel Input Adaptive Sparse FFT

Kernel # of threads Functionality

HashFunc() 𝑘 Compute hashed indices of permuted coefficients and determine
shift factors. The loop of size k is decomposed and each scalar thread
in kernel concurrently works as each index j in the algorithm.

Perm() 𝑘2log𝑁 Apply filter and permutation to input. Each thread multiplies filter as
well as shifting factor with input for one element.

Subsample() 𝑘 Parallelize subsampling to input.

TunedFFT() (𝐾1 × 𝐾2) Well-tuned GPU based FFT Library.

Recover() 𝑘 Parallelize the loop of location estimation.

Filtering() 𝑘log𝑁 Parallelize loop size 𝑂(𝑘log𝑁) of applying filter to the input.

Shifting()
min{𝑘,

𝑁

𝑘log𝑁
}𝑘log𝑁

Make each thread shift one input element by a factor. For each
shifting event, TunedFFT() is launched before we gain output.

GPU computational kernels

• Performance Optimizations

– Maximize GPU device memory bandwidth.

• Coalesced memory accesses.

Coalesced accesses are enabled by setting the size of thread block

be 16 × 2𝑝 where 𝑝 ≥ 0, and set grid size to
#𝑡ℎ𝑟𝑒𝑎𝑑𝑠

𝑏𝑙𝑜𝑐𝑘_𝑠𝑖𝑧𝑒
.

– Maximize data sharing between kernels.

• Increase PCI bandwidth significantly.

• Only two transfers between CPU and GPU to maximize PCI bandwidth.

Parallel Input Adaptive Sparse FFT

SFFT Real-World Application

• Video recording of object movement
– Fix a video camera to record a 2D object movement for a duration of time

 𝑇0, 𝑇1, . . . , 𝑇𝑡 .

SFFT Real-World Application

• Video recording of object movement
– Fix a video camera to record a 2D object movement for a duration of time

𝑇0, 𝑇1, . . . , 𝑇𝑡 .

– The object in video frame is denoted as 2D image matrix and as a 1D row-

major array.

– Similarity in the spectrum.

Time Domain

Spectrums

• Environmental Setup

Evaluation of Preliminary Results

• Environmental Setup

• Sequential version
– 1-thread SSE-enabled FFTW 3.3.3

• basic version (ESTIMATE)

• optimal version (MEASURE)

– sFFT 1.0 and 2.0

– AAFFT 0.9

• Parallel version
– 4-thread SSE-enabled FFTW 3.3.3 with basic and optimal version

– CUFFT 3.2

Evaluation of Preliminary Results

General sparse FFT in sequential case:

Run Time vs. Signal Size

SFFT Real-World Application

Performance of a real-world application

GPU Performance of Input Adaption Process

with 3 Video Segments.

GPU Performance of Input Adaption Process

with 3 Video Segments.

GPU Performance of Input Adaption Process

with 3 Video Segments.

Conclusion

• An input-adaptive sparse FFT algorithm that extracts input similarities

and tunes adaptive filters to package non-zero Fourier coefficients into

sparse bins.

• Non-iterative with high computation intensity such that substantial

parallelism is exploited for CPUs and GPU to improve performance.

• Overall, our algorithm aims to be faster than other FFTs both in theory

and implementation.

Thank You !

Questions?

