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Part I: A Hybrid GPU/CPU Parallel 

FFT Library for Large FFT Programs 

 



– General Purpose CPU 

– GPGPU 

General-purpose computing on graphics processing units (GPGPU). 

GPU becomes a highly parallel, multithreaded, many-core processor with 

tremendous computational power and very high memory bandwidth. 

Heterogeneous High Performance CPU and GPU System 

 

The GPU devotes more transistors to data processing  
   (Images from the NVIDIA CUDA C Programming Guide 6.5) 



CUDA Background 

Floating-Point Operations per Second for the CPU and GPU 
         (Images from the NVIDIA CUDA C Programming Guide 6.5) 



CUDA Background 

 

– Compute Unified Device  

Architecture  a parallel 

programming model created by 

NVIDIA. 

 

– Higher FLOPS on GPU than  

CPU. Higher memory bandwidth 

on GPU than traditional 

processor’s memory. 

 

– GPUs support thousands of  

threads running at the same time. 

 

 Floating-Point Operations per Second for 

the CPU and GPU 
(Images from the NVIDIA CUDA C Programming Guide 6.5) 



Background of DFT/FFT 
 

  

 

 

• One of the most widely used and 

expensive computation in science 

and engineering domains: 
 large-scale physics simulations 

 signal processing 

 data compression 

• Discrete Fourier Transform 

(DFT)  
 Given 𝑥 ∈ ℂ𝑛, compute its Fourier 

transform 𝑥
∧
 : 

𝑥𝑑
∧
=  𝑥𝑖𝑖 𝜔𝑖𝑑  for  𝜔𝑖𝑑 = 𝑒−𝑗2𝜋𝑖𝑑 𝑁  



Background of DFT/FFT 
 

• Fast Fourier transform (FFT) reduces DFT's complexity from 

O(𝑁2) into O(𝑁log𝑁). 

– Requires large amount of computing resources and memory 

bandwidth. 

– GPUs is proved to be a more promising platform than CPU. 

much more parallel computing resources. 

achieve an order of magnitude performance improvement over 

CPUs on compute-intensive applications. 

 

  

 

 



Motivation 
• Previous works 

– Prior FFT works on GPU use only GPU to compute but employ CPU as a mere 

memory-transfer controller. 

• In-Card FFT  CUFFT by Nvidia, Nukada's work, Govindaraju's and Gu's 

on 2D/3D FFT. 

• Out-of-Card FFT  Gu’s GPU-based FFT library. Co-optimization for 

communication and computation.  

• Distributed FFT  Chen presented a GPU cluster based FFT 

implementation. 

– The computing power of CPU is wasted. 

– The GPU performance is restricted  by the limited memory size and the low 

bandwidth of data transfer  through PCIe channel. 

• Hybridize Concurrent CPU and GPU 
– A hybrid FFT library is proposed to engage both CPU and GPU for parallel FFT. 

 

 

 

 
 



Motivation 
• Challenges 

– We have to handle the low bandwidth channel for data transfer between 

CPU and GPU? 

– How to solve the locality issues when work is distributed into 

heterogeneous devices? 

– How to efficiently split the workloads, and how to achieve the workloads 

balancing between two types of computing devices? 

– Whether or not the computations and communications can be efficiently 

overlapped ? 

 

 

 

 
 



• Hybrid out-of-card 2D FFT Library on Heterogeneous 

CPU-GPU system 

 

 

 
 

Hybrid 2D FFT Library 



• A hybrid large-scale FFT decomposition framework  
– For each pass of 1st-round 2D FFT fitting into GPU memory 

 

 

 
 

 

 

 

 

– Data parallelism and concurrency is exploited along X dimension for both 
GPU and CPU. 

– However, there is still restriction to performance if size of computational 
dimension Y is large. 

Whether we can further 

decompose Y dimensional 1D 

FFT and exploit more parallelism 

that can make full use of parallel 

computing resources? 

Hybrid 2D FFT Library 



 

 

 

 
 

Hybrid 2D FFT Library 
• A hybrid large-scale FFT decomposition framework  

– Two rounds of computation & load distribution 

 

 

 

 

 

 

– Y-dimensional decomposition & load distribution 

 

 

 

 

 



 

 

 

 
 

Hybrid 2D FFT Library 
• A hybrid large-scale FFT decomposition framework  

– Two rounds of computation & load distribution 

 

 

 

 

 

 

– Y-dimensional decomposition & load distribution 

 

 

 

 

 



• Data Transfer Scheme Through PCIe Channel 

– Asynchronous strided memory copy via PCIe bus 

 

 
 



• Data Transfer Scheme Through PCIe Channel 

– Asynchronous strided memory copy via PCIe bus 

 

 
 



 

 

 

 
 

Hybrid 2D FFT Library 
• GPU Computation & Optimization 

– Out-of-card FFT  divided into several passes 

– Asynchronous strided memory copy via PCIe bus 

– Stream-based asynchronous execution 

– Shared memory increases device memory bandwidth 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Device Memory Shared Memory 



 

 

 

 
 

Hybrid 2D FFT Library 
• CPU Computation & Optimization 

– Concurrent group operations 

 Each time to operate a group of data 

 Operate on non-contiguous (strided) data 

– No input/output transposition performed  

  Pre-set the input/output access stride 

  Save much execution time 

– Multi-threaded execution to parallelize the recursive sections 

 

 

 

 

 

 

 



 

 

 

 
 

Hybrid 2D FFT Library 

Co-Optimization 

of CPUs & GPU 



 

 

 

 
 

Load Balancing between GPU and CPU 
 

• Performance Modeling 

– Split the total execution into several primitive sub-steps to 

derive a performance model parameter for each primitive. 

 



 

 

 

 
 

Load Balancing between GPU and CPU 
 

• Performance Modeling 

– Split the total execution into several primitive sub-steps to 

derive a performance model parameter for each primitive. 

  Model parameter provides estimated execution time 

parameterized with load ratio. 

 



 

 

 

 
 

Load Balancing between GPU and CPU 
 

• Performance Modeling 

– Split the total execution into several primitive sub-steps to 

derive a performance model for each primitive. 

  Model parameter provides estimated execution time 

parameterized with load ratio. 

  Two profiling runs, one on CPU and one on GPU, to determine 

parameter values of different load ratios. 

 



 

 

 

 
 

Load Balancing between GPU and CPU 
 

• Performance Modeling 

– Split the total execution into several primitive sub-steps to 

derive a performance model for each primitive. 

  Model parameter provides estimated execution time 

parameterized with load ratio. 

  Two profiling runs, one on CPU and one on GPU, to determine 

parameter values of different load ratios. 

  Automatically estimate, rather than really measuring, the total 

execution time of our implementation under varying ratios. 



 

 

 

 
 

Load Balancing between GPU and CPU 
 

• Performance Modeling 

– Split the total execution into several primitive sub-steps to 

derive a performance model for each primitive. 

  Model parameter provides estimated execution time 

parameterized with load ratio. 

  Two profiling runs, one on CPU and one on GPU, to determine 

parameter values of different load ratios. 

  Automatically estimate, rather than really measuring, the total 

execution time of our implementation under varying ratios. 

– Performance Modeling and Tuning 

 Performance estimation from model parameters. 

  Accuracy is evaluated  only use it to provide a small region of 

potentially good choices.  



 

 

 

 
 

Load Balancing between GPU and CPU 



 

 

 

 
 

Load Balancing between GPU and CPU 

Parameters 

for 2D FFT 

Running Time 

Estimation 



Load Balancing between GPU and CPU 
 

• GPU Part of Hybrid 2D FFT 

 

 

 

 

• CPU Part of Hybrid 2D FFT 

 

 

• Estimation of execution time of Hybrid 2D FFT 



 

• Environmental Setup 

 

 

 

 

• Performance Comparison 

– Test cases are all out-of-card, i.e. larger than GPU memory. 

– SSE-enabled 1-thread, 2-thread, 4-thread FFTW 3.3.3 with 

MEASURE flag. 

– SSE-enabled 1-thread, 2-thread, 4-thread Intel MKL 10.3. 

– Gu’s out-of-card FFT Library. 

 

 

Evaluation of Preliminary Results 



2D FFT of size from 2^26 to 2^29 on GTX480 



Conclusion 
 

• Our hybrid FFT library concurrently uses both CPU and GPU to compute 

large FFT problems. The library has three key components: 

– A hybrid large-scale decomposition paradigm to extract concurrency 

and workload patterns between the two different processor types. 

– A load balancer with empirical performance modeling to determine 

optimal load balancing between CPU and GPU. 

– An optimizer that exploits substantial parallelism for GPU and CPUs. 

– An effective heuristic to expose opportunities of overlapping 

communication with computation for FFT decomposition. 

• Overall, the preliminary results show that our hybrid library outperforms 

two best performing FFT implementations by 1.9x and 2.1x, respectively. 



Part II: An Input Adaptive Algorithm for 

Parallel Sparse Fast Fourier Transform 



• Original (Dense) DFT/FFT 

 

 

• Sparse FFT 

 

 

Motivation 

Filtration 



• Original (Dense) DFT/FFT 

 

 

• Sparse FFT 

 

 

• Parallelization 

 

 

Motivation 



• Original (Dense) DFT/FFT 

 

 

• Sparse FFT 

 

 

• Parallelization 

 

 

• Input Adaptive 

– Spectrum Similarities 

Motivation 



Background of DFT/FFT 

• Discrete Fourier Transform (DFT)  

– Given 𝑥 ∈ ℂ𝑛, compute its Fourier transform 𝑥
∧
 : 

𝑥𝑑
∧
=  𝑥𝑖𝑖 𝜔𝑖𝑑  for  𝜔𝑖𝑑 = 𝑒−𝑗2𝜋𝑖𝑑 𝑁  

  

 

 



Background of DFT/FFT 

• Discrete Fourier Transform (DFT)  

– Given 𝑥 ∈ ℂ𝑛, compute its Fourier transform 𝑥
∧
 : 

𝑥𝑑
∧
=  𝑥𝑖𝑖 𝜔𝑖𝑑  for  𝜔𝑖𝑑 = 𝑒−𝑗2𝜋𝑖𝑑 𝑁  

 

• Fast Fourier transform (FFT) algorithms reduce DFT's 

operational complexity from O(𝑁2) into O(𝑁log𝑁). 

– Cooley–Tukey algorithm; 

– Prime–Factor (Good-Thomas) algorithm; 

– Rader's algorithm; 

– Bluestein's algorithm. 

  

 

 



Background of Sparse FFT 

• All FFT algorithms cost time proportional to input size N.  

 

 

 



Background of Sparse FFT 

• All FFT algorithms cost time proportional to input size N.  

• What if the output of a FFT is K-sparse? 

 

 

 



Background of Sparse FFT 

• All FFT algorithms cost time proportional to input size N.  

• What if the output of a FFT is K-sparse?  only K non-

zero Fourier coefficients. Its runtime is sublinear to N. 

 

 

 



Background of Sparse FFT 

• All FFT algorithms cost time proportional to input size N.  

• What if the output of a FFT is K-sparse? 

• Sublinear sparse Fourier algorithm was first proposed by 

Kushilevitz et.al, and since then, has been extensively 

studied in many applications.  

 

 



Background of Sparse FFT 

• All FFT algorithms cost time proportional to input size N.  

• What if the output of a FFT is K-sparse? 

• Sublinear sparse Fourier algorithm was first proposed by 

Kushilevitz et.al, and since then, has been extensively 

studied in many applications.  

• However, their runtimes have large exponents in the 

polynomial of k and log𝑁, and their complex algorithmic 

structures impose restrictions on fast and parallel 

implementations. 

 

 

 



• Hassanieh et.al. recently presented improved algorithms 

with the runtime of 

𝑂(𝑘log𝑁log(𝑁 𝑘 )) or even faster 𝑂(𝑘log𝑁) 

Background of Sparse FFT 



• Hassanieh et.al. recently presented improved algorithms 

with the runtime of 

𝑂(𝑘log𝑁log(𝑁 𝑘 )) or even faster 𝑂(𝑘log𝑁) 

• Limitations: 

– Iterates over passes; 

– Dependency exists between consecutive iterations;  

– Oblivious to input characteristics.  

Background of Sparse FFT 



Motivation 
 

• Advantages 

– Many applications are sparse in the frequency 

domain and hence can benefit from sparse FFT. 



Motivation 
 

• Advantages 

– Many applications are sparse in the frequency 

domain and hence can benefit from sparse FFT. 

– Homogeneity exists in specific spectrums. 



Motivation 
 

• Advantages 

– Many applications are sparse in the frequency 

domain and hence can benefit from sparse FFT. 

– Homogeneity exists in the spectrums. 

– Parallelism is always needed to be exploited as much 

as possible from the sparse FFT algorithms. 



General Input Adaptive Sparse FFT 
 

• Basics 

– Bucketize: Hash the spectrum into a few buckets. Each bucket 

is to have only one large coefficient. 

– Estimate: Estimate large coefficient in each non-empty bucket. 



General Input Adaptive Sparse FFT 
 

• Basics 

– Bucketize: Hash the spectrum into a few buckets. Each bucket 

is to have only one large coefficient. 

– Estimate: Estimate large coefficient in each non-empty bucket. 

• Prerequisite 

– Need to generate Fourier template once. The template includes 

the locations of non-zero frequencies and is made use of for the 

spectrums in the following samples.  



 

General Input Adaptive Sparse FFT 



 

General Input Adaptive Sparse FFT 



 

General Input Adaptive Sparse FFT 



 

General Input Adaptive Sparse FFT 



 

• Parallelism Exploitation 
– Input adaptive approach directly permutes sparse coefficients in spectrum 

domain, rather than to estimate permutation in time domain. 

– To get rid of dependency existing between consecutive iterations in the 

traditional permutation estimation process.  

• Data Parallelism and Kernel Execution 
– Graphic Processing Units (GPUs) for well-suited data parallel computations. 

– Data parallelism exists in subsections of hashed index computation, filtering 

and permuting input, subsampling FFT and location recovery. 

– GPU computational kernels are constructed for each subsection. 

 

Parallel Input Adaptive Sparse FFT 



 

• Parallelism Exploitation and Kernel Execution 
 

Parallel Input Adaptive Sparse FFT 

Kernel # of threads Functionality 

HashFunc() 𝑘 Compute hashed indices of permuted coefficients and determine 
shift factors. The loop of size k is decomposed and each scalar thread 
in kernel concurrently works as each index j in the algorithm. 

Perm() 𝑘2log𝑁 Apply filter and permutation to input. Each thread multiplies filter as 
well as shifting factor with input for one element. 

Subsample() 𝑘 Parallelize subsampling to input. 

TunedFFT() (𝐾1 × 𝐾2)  Well-tuned GPU based FFT Library. 

Recover() 𝑘 Parallelize the loop of location estimation. 

Filtering() 𝑘log𝑁 Parallelize loop size 𝑂(𝑘log𝑁) of applying filter to the input. 

Shifting() 
min{𝑘,

𝑁

𝑘log𝑁
}𝑘log𝑁 

Make each thread shift one input element by a factor. For each 
shifting event, TunedFFT() is launched before we gain output. 

GPU computational kernels  



 

• Performance Optimizations 

– Maximize GPU device memory bandwidth. 

• Coalesced memory accesses.  

Coalesced accesses are enabled by setting the size of thread block 

be 16 × 2𝑝 where 𝑝 ≥ 0, and set grid size to 
#𝑡ℎ𝑟𝑒𝑎𝑑𝑠

𝑏𝑙𝑜𝑐𝑘_𝑠𝑖𝑧𝑒
. 

– Maximize data sharing between kernels. 

• Increase PCI bandwidth significantly. 

• Only two transfers between CPU and GPU to maximize PCI bandwidth.  

Parallel Input Adaptive Sparse FFT 



SFFT Real-World Application  

• Video recording of object movement 
– Fix a video camera to record a 2D object movement for a duration of time 

 𝑇0, 𝑇1, . . . , 𝑇𝑡 .  



SFFT Real-World Application  

• Video recording of object movement 
– Fix a video camera to record a 2D object movement for a duration of time 

𝑇0, 𝑇1, . . . , 𝑇𝑡 . 

– The object in video frame is denoted as 2D image matrix and as a 1D row-

major array.  

– Similarity in the spectrum.  

 

Time Domain  

Spectrums 



 

• Environmental Setup 

 

 

 

 

 

 

Evaluation of Preliminary Results 



 

• Environmental Setup 

 

 

 

 

• Sequential version 
– 1-thread SSE-enabled FFTW 3.3.3  

• basic version (ESTIMATE) 

• optimal version (MEASURE) 

– sFFT 1.0 and 2.0 

– AAFFT 0.9 

• Parallel version 
– 4-thread SSE-enabled FFTW 3.3.3 with basic and optimal version 

– CUFFT 3.2 

 

 

Evaluation of Preliminary Results 



General sparse FFT in sequential case: 

Run Time vs. Signal Size  



 

 

SFFT Real-World Application 

Performance of a real-world application 



GPU Performance of Input Adaption Process 

with 3 Video Segments. 



GPU Performance of Input Adaption Process 

with 3 Video Segments. 



GPU Performance of Input Adaption Process 

with 3 Video Segments. 



Conclusion 
 

• An input-adaptive sparse FFT algorithm that extracts input similarities 

and tunes adaptive filters to package non-zero Fourier coefficients into 

sparse bins. 

• Non-iterative with high computation intensity such that substantial 

parallelism is exploited for CPUs and GPU to improve performance.  

• Overall, our algorithm aims to be faster than other FFTs both in theory 

and implementation.  



Thank You ! 



Questions? 


