Introduction to Hardware Security and Trust

Ramesh Karri (rkarri@nyu.edu) Professor of Electrical and Computer Engineering IEEE Computer Society Distinguished visitor (Hardware Security) http://engineering.nyu.edu/people/ramesh-karri

CYBER SECURITY NYU School of Engineering Fall 2014

821

A Reputation in Cyber Security

- One of the earliest to offer degrees
- Triple distinction
 - NSA Center of Excellence in Information Assurance Education
 - NSA Center of Excellence in Information Assurance Research
 - NSA Center of Excellence in Cyber Operations
- Over \$25 million in funding for research and education over last10 years
- Strong research and training partnership with federal agencies
- Signature programs and partnerships

Center for Research in Information Systems and Security (CRISSP)

- Cutting-edge research collaboration of five NYU schools to integrate technology with policy, law, human psychology and business
- NSF funding for 24 interdisciplinary PhD students and team of 20 researchers

POLYTECHNIC SCHOOL

CRISSP-Research Labs

Internet Security Lab

- AppSec
- Forensics
- Virtual Lab VITAL connects university partners in NYC

Information Systems & Information Forensics & Secure Systems Lab **Security Lab** Virtualization

- Media Forensics
- Network Forensics
- Data Recovery
- Incident Response
- Authentication

- Cloud Computing
- Mobile Security

Secure & Reliable Hardware Lab

- Reliable & Trustworthy Hardware **Design & Testing**
- Encrypted computing •

Privacy, Security & Networking Lab

- Internet Privacy
- P2P Security
- Internet Piracy •

CRISSP-Cyber Security Programs

Founded on engineering principles and reinforced with lab experience. 8 faculty serving123 MS students and 20 PhD students with 17 classes

MS in Cyber Security with Management Track available online

NSA Certificates

Certificate in Security

Graduate & Undergraduate Courses

Application Security Biometrics Computer Security Digital Forensics Information Security Management Modern Cryptography Network Security and Management Pen Testing and Vulnerability Analysis Hardware Security Special Topics: Advanced Network Security Psychology and Security

Wireless Security

CRISSP-Signature Programs and Offerings

Cyber Security Awareness Week (CSAW)

- Celebrating its 11th year
- Largest student cyber competition in US
- Largest Capture the Flag

13,000+ HS and college students
Summer Cyber Boot-camp for High School STEM Educators
Sloan Speaker Series
Hackers in Residence from Industry
Host to NSF/NSA CyberCorps Program over 75 sent to government service

Introduction to Hardware Security and Trust

Ramesh Karri (rkarri@nyu.edu) Professor of Electrical and Computer Engineering IEEE Computer Society Distinguished visitor (Hardware Security) http://engineering.nyu.edu/people/ramesh-karri Cell: 917 3639703 Skype: karriramesh

- Application software
- Protocols
- Operating system software

Severity of incidents not considered

Is security worth my time?

Source: <u>http://www.uscc.gov/annual_report/2008/annual_report_full_09.pdf</u>, page 168 US-China economic and security review commission hearing on China's proliferation practices and the development of its cyber and space warfare capabilities, testimony of Col. Gary McAlum.

- Fix applications
- Fix protocols
- Fix operating systems

This assumes that...

"the core root of trust (CRT)" is secure

Image: Polytechnic schoolImage: Polytechnic schoolOF ENGINEERING

Example 1: Cap'n Crunch (1972)

- John Draper discovered he could make free, long distance phone calls using a whistle from Cap'n Crunch cereal box
 - whistle emitted a 2600 hertz tone
 - allowed user to route his call by emulating in band signaling
 - and make free calls
 - No longer works in western nations: digital+out of band signaling

Image Courtesy Wikipedia

Exposed PIC18F1320: Electric tape covers flash mem; prevents erasure of firmware when UV light is shined onto config. fuses

Example 3: apple laptop batteries

- Smart battery chips have a micro-controller
 - Help OS monitor/control battery/charger.
- Each battery has a unique password (not strong)
 - Loophole identified by Miller, Accuvant Lab
 - Once deciphered, a hacker could control smart battery.
 - Could permanently damage battery; Could infect computer w/ malware
 - may cause battery to overheat, catch fire or explode
 - but sensors can detect overheating

(

POLYTECHNIC SCHOOL OF ENGINEERING ABU DHABI

POLYTECHNIC SCHOOL

if ibutton output = pre-computed output, then go to 1 3.

http://grandideastudio.com/wp-

- Cody Brocious discovered vulnerabilities in Onity room locks
 - gain instant access to hotel rooms
 - http://daeken.com/blackhat-paper
- Attack: Dump memory of reader; 32-bit key of proprietary crypto
 - Get master key for all rooms
 - Cost of attack: \$50

Source: http://cdn.pearltrees.com/s/preview/index?urlId=35156327

Example 7: Smart meters

- Utilities are rolling out smart (electronic) meters
 - remote reading, activation, deactivation
 - tamper?

Hacking a smart electric meter

- CC2420 modules used for Zigbee comm. with AES-128.
- Used two syringes to intercept Keys on SPI bus between the ROM and the zigbee module

http://www.forbes.com/2009/04/29/smart-grid-legislation-technology-security-smart-grid.html http://travisgoodspeed.blogspot.com/2009/03/breaking-802154-aes128-by-syringe.html http://www.blackhat.com/presentations/bh-usa-09/GOODSPEED/BHUSA09-Goodspeed-ZigbeeChips-PAPER.pd http://www.ioactive.com/news-events/DavisSmartGridBlackHatPR.php

Scan chains are extremely popular...

- >80 % of ICs use scan chains for test/debug/validation
- Scan DFT is widely supported
 - Fast Scan/TestKompress: Mentor Graphics
 - DFT compiler/TetraMAX ATPG: Synopsys
- Readback and test infrastructure in FPGAs
 - Load configuration bitstream from external PROM
 - Readout bitstream for debug

Scan chains are a portal for hackers

¹http://www.eedesign.com/story/showArticle.jhtml?articleID=51200154

- •Step 1: access scan chains
 - Approach L: Get lucky (don't do anything)
 - Approach A: bypass test authentication steps
 - Approach B: activate scan chain using physical attacks
- •Step 2: use scan chains to leak secrets
 - Approach A: observe (normal→scan out)
 - Approach B: control+observe (scan in →normal→ scan ou

NEW YORK UNIVERSITY

NEW YORK UNIVERSITY ABU DHABI

DES scan-based attack

B. Yang, K. Wu, R. Karri, *"Scan Chain Based Side Channel Attack on dedicated hardware implementations of Data Encryption Standard",* ITC Oct 2004

B. Yang, K. Wu, R. Karri, *"Scan Chain Based Side Channel Attack on dedicated hardware implementations of Data Encryption Standard",* ITC Oct 2004

O. Kömmerling, M. G. Kuhn, Design Principles for Tamper-Resistant Smartcard Processors, USENIX Workshop on Smartcard Technology, pp.9-20, May, 1999.

Countermeasure 2: secure scan

- information obtained from scan chains should not be useful in retrieving the secret key
- Two copies of key
 - Secret key: use in normal mode (secure memory)
 - Mirror Key: use for testing (mirror key register)
- Two modes of operation: insecure and secure
 - Secure/Normal: use secret key; disable test/debug
 - Insecure/Test: use MK (isolate secret); enable test/debug

B. Yang, K. Wu and R. Karri "Secure scan: a design-for-test architecture for crypto chips," IEEE/ACM Symposium on Design Automation Conference, 2004
B. Yang, K. Wu and R. Karri "Secure scan: a design-for-test architecture for crypto chips," IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems 2006, 25(10): 2287-2293.

POLYTECHNIC SCHOOL

Security-aware SoC test access

- ✗ Shared test wiring
- X Untrusted third-party SoC cores

Security-aware SoC test access

- Can SoC tester safely exchange sensitive data with cores on a shared test bus?
- SoC integrator trusts CAD tools, fabrication, packaging
- SoC integrator does not trust except third-party cores

K. Rosenfeld, R. Karri, Security-aware SOC test access mechanisms. IEEE VLSI Test Symposium 2011: 100-10

K UNIVERSITY

- Protects test data secrecy
- Boosts test bandwidth
- High die area cost due to wiring complexity

K UNIVERSITY

Shared wiring with pre-shared keys embedded in design

- No need for key setup at test time
- Requires secrecy of design (netlist, mask, etc.)
- Key management logistics difficult with multiple users

K UNIVERSITY

ABI

- Idea: Distribute keys to each core using a shift register.
- Problem: Core 1 sees key bits for core 3 as it is shifted.

Approach 4: inhibit and shift-in

Key setup

- Assert output inhibit on the trusted scan chain
- Shift key into the trusted scan chain
- De-assert output inhibit on the trusted scan chain
- Latch bit from trustworthy scan chain into shift reg. in core

<u>(</u>

K. Rosenfeld and R. Karri, "Attacks and Defenses for JTAG", IEEE Design & Test of Comp., pp. 36-47, 2010

() Ī

(ل) آ

JTAG attack 3: collects test vectors

JTAG Security: defenses

Level	Authenticity	Secrecy	Integrity
0	No	No	No
1	Yes	No	No
2	Yes	Yes	No
3	Yes	Yes	Yes

Globalized IC design flow

Takeaway: security- the big picture

K. Rosenfeld and R. Karri, "Attacks and Defenses for JTAG", IEEE Design & Test of Comp., pp. 36-47, 2010

Takeaway: Moore' law and hacking

- 1970: DES was designed to withstand 30 years of cryptanalysis
- 1998: <u>Deep Crack</u> (custom hardware; \$250,000; recover key in ~56 hrs)
- 2006: <u>COPACOBANA</u> (FPGAs; \$10,000 recover key in ~6.4 days on avg)

AES-128 decryption (million keys per second)

http://www.sciengines.com/solutions/crypto.html

Introduction; Homework 1 on example hardware attacks not covered in class 1 Ciphers: Historical; Block (AES/DES), stream, (Trivium) public key ciphers (RSA. 2 ECC), hash functions (SHA-1); Homework on the various ciphers

White hat hardware hacking =>security mindset
 Design for security

 Logic design+security
 offline test+security
 online test+security
 PUFS, RNGs, ...

ple projects ult and test tacks etc... Information n Hardware ardware and EE explore

1: 10%

2

2

2

1

2

1

• Labs

🧳 NE

• Summer school: 6 weeks in July; (hardware) cybersecurity

Takeaway: Build capacity

STO-HUB Home my HUB Resources Members Explore About Su	upport Newsletter Archive	Q- Search Login
Cyber Security Awareness We the Embedded Systems Challer	3 4 5 II Welcome Challenge ek 2011. Included is enge. ANNOUN View our mage Learn more	to trust-HUB, sponsored by the National Science on, a resource to: The by keeping up to date on news and events. Arrough resources such as publications, courses, and more ORATE by forming working groups to share ideas. CE your discoveries and major news using our simple upload to hission statement.
RESOURCES	GET INVOLVED	WHAT'S IN THE NEWS?
O. Search	> Upload Content Publish your own materials	Hacker extracts RFID credit card details in News Items, Feb 01, 2012
Popular Tags: Security Benchmark Conference had RFID Cryptography encryption counterfeit FPGA	K Solution Form working groups Trojan Share things privately with	2012 Data Encryption Survey: Progress And Pain in News Items, Jan 30, 2012
Hardware Security Hardware Attack PUF Side C	hannel colleagues	Targeting RF key security in News Items, Jan 27, 2012
	What is the most secure	Video: IC/Die Recovery: Challenges and Solutions

application of a PLIE on an EPGA2

Conclusions

- Critical infrastructures are unprotected (power grid, water, finance, etc) ⇒ risks are real
- Do not wait for a disaster due to IC (in)security to initiate research and development
- Industry is losing US \$1-10 billion per year because of counterfeit electronics (probably more world wide)
- Enhance competitiveness in microelectronics
 - Supply chain and design environments are untrusted
 - cannot secure software, systems and networks unless we secure the core root of trust

Questions? <u>rkarri@nyu.edu</u>,