) UNIVERSITY of DELAWARE

Leveraging Micro-architectural
Side Channel Information to Efficiently
Enhance Program Control Flow Integrity

Chen Liu and Chengmo Yang

Electrical and Computer Engineering
University of Delaware

10/8/2014

UNIVERSITY of DELAWARE

Outline

 Background: stack buffer overflow
* Motivation: need for low cost & accurate detection scheme
* Micro-architectural event monitoring:

— Event 1: Return Address Stack (RAS) mis-prediction

— Event 2: instruction cache misses

— Alarm condition

 Experimental evaluation

Ll
oc
<L
=
<L
—
L
(o)
b=
>=
-
(V]
oc
Ll
>
2
>

Computer System Security

UNIVERSITY of DELAWARE

Most Severe Threat — Buffer Overflow

Swvmibolic Lirk
Ex ploit System Trust
YWirs
m fisconfiguration
Trojan Horss
m Spoafing
W Backdoor Trojan
m Ciirectory Traversal
Fultiple Wulnerabilities
Format String
Whormm
H nauthorized Access
Security Solution Wealkness
W Softwara Fault (Wl
B Cross-Site Scripting
® [nformation Disclosurs
Frivilege Escalation
Artitrary Code BExacution
mDanial of Service
4E§uffer Crrerflow

Top 20 threats and vulnerabilities, January - October 2007

NIVERSITY of DELAWARE

Stack Buffer Overflow — Hijack Return Address

- Memory Layout
High
00}5,;2 N /int BOF (char *str) {\
char buf[16];
char *str strcpy(buf, str);
Sra return address o return 1;
tac
Sfp old fp - }
buf[15] segment \ /
buf[14]
Ssp buf[0] D
Free memory * Sra: Return address pointer
» Sfp: Frame pointer
Data Segment * Ssp: Stack pointer
Code Segment
Lower

address

NIVERSITY of DELAWARE

Stack Buffer Overflow — Hijack Return Address

; Memory Layout
High
GC;Z,;Z (int BOF (char *str) {\
char buf[16];
char *str strcpy(buf, str);
sra return address return 1,
Sfp old fp \})

* |f sizeof(str)<=16, no problem

Ssp

Free memory

Data Segment

Code Segment

Lower
address

NIVERSITY of DELAWARE

Stack Buffer Overflow — Hijack Return Address

Memory Layout

ﬂgﬁ;@ (int BOF (char *str) {\
char buf[16];
char *str strcpy(buf, str);
Sra return 1;

U)

* |f sizeof(str)<=16, no problem

* If sizeof(str)>16, adjacent entries
will be overwritten

* Return address could be hijacked
* Three types of BOF based attacks:
1. Code injection

Code Segment 2. Return-to-libc
Lower 3. Return-oriented programming

address

Sfp

Ssp

Free memory

Data Segment

UNIVERSITY of DELAWARE

Buffer Overflow (BOF) — Code Injection

Higher
address

Sra
Sfp

Ssp

Lower
address

Memory Layout

Malicious code

hijacked return
str[16]
str[15]
str[14]

str[0]

Free memory

Data Segment

Code Segment

D

Code Injection:

Put malicious code in str(]
Write str[] in stack

Direct return address to
the malicious code

UNIVERSITY of DELAWARE

Buffer Overflow (BOF) — Return-to-libc

Higher
address

Sra
Sfp

Ssp

Lower
address

Memory Layout

parameter
hijacked return
str[16]
str[15]
str[14]

str[0]

Free memory

Data Segment

Code Segment

7

A
C shared library

fuc(parameter)

Return-to-libc:

e Divert control flow to a
function in C shared library

* Parameter(s) can also be
passed via stack

UNIVERSITY of DELAWARE

A

Buffer Overflow (BOF) — Return-Oriented Programming

Higher
address

Sra
Sfp

Ssp

Lower
address

Memory Layout

hijacked return 2
hijacked return 1
str[16]
str[15]
str[14]

buf{0]

Free memory

Data Segment

Code Segment

Code Segment

return

:|> gadget2
head2
return

:|> gadgetl
headl

Return-Oriented Programming

* Select a set of “gadgets” from original
code: instructions ending with return.

* Overwrite the stack with gadget heads
* Chain the gadgets with returns

/

UNIVERSITY of DELAWARE

Existing Countermeasures

NX bit
e Pages cannot be both writable and
executable at the same time

StackGuard
* Places a canary in between local
variables and frame pointer

Address randomization
 Adds a random offset to each
page/segment

Control flow checking
 Compares runtime control flow with
profiled control flow

Not suitable for embedded systems

Software-based, sizable overhead
Need to change compiler

Cannot defend against all three types
of BOF based attacks

Our solution: online attack detection by
monitoring micro-architectural events

Hardware based, low overhead
Achieve high detection accuracy

through hardware enhancement
Can handle all three types of BOF
based attacks

UNIVERSITY Of DELAWARE

Outline

e Motivation: need for low cost & accurate detection scheme

UNIVERSITY of DELAWARE

High-quality Detection Scheme for Embedded
Systems

Attack, but Alarm, but

m-© @@ST no alarm no attack

-

* Low runtime cost
* Low design cost

HIGH ACCURACY

4

* Low false positive rate .
] Security
* Low false negative rate y Alarms

€<—— Attacks —>

NIVERSITY of DELAWARE

High-quality Detection Scheme for Embedded

Systems

LOW COST

-

* Low runtime cost
* Low design cost

HIGH ACCURACY

\ 4

* Low false positive rate
* Low false negative rate

—_—

Design requirements

Monitor events that are highly
correlated with BOF attacks

Leverage existing performance-
driven micro-architectural
modules for security purpose

Further extend those modules
to improve detection accuracy

UNIVERSITY of DELAWARE

High-quality Detection Scheme for Embedded

Systems

LOW COST

-

* Low runtime cost
* Low design cost

HIGH ACCURACY

\ 4

* Low false positive rate
* Low false negative rate

Three critical questions:

* Which events to monitor?

e How to further enhance

accuracy?

e What is the overall alarm

condition?

UNIVERSITY Of DELAWARE

Outline

* Micro-architectural event monitoring:

— Event 1: Return Address Stack (RAS) mis-prediction

UNIVERSITY of DELAWARE

Event 1: Return address stack (RAS) mis-prediction

* Modern processors use RAS to improve pipeline Control flow

\

performance _
e Return address predicted at instruction fetch stage i
Vulnerable
m Stack
m memory | Return

Address Procedure 1

Return
Address RAS

Destination
(:F)lJ pop

return

Procedure 2

push

m Comparator

TOS

return

P e e e T e e e e e T T
e

ret addr B

-
7’

ret addr A

Inaccessible to attacker

UNIVERSITY of DELAWARE

Event 1: Return address stack (RAS) mis-prediction

* Predicted return address (RAS) is compared
with real address stored in stack

* Normally prediction accuracy rate is high

CPU

=
)
Return
Address

pop

push

Stack
memory

RAS

Destination

ret addr B

ret addr A

S

TOS

Prediction correct

Return
Address

Comparator

Control flow

main

Procedure 1

return

Procedure 2

return

UNIVERSITY of DELAWARE

Event 1: Return address stack (RAS) mis-prediction

* Predicted return address (RAS) is compared
with real address stored in stack

 When there is attack, mis-prediction occurs

=
)
Return
Address

CPU § rop

push

Stack

memory

RAS

Destination

ret addr B

ret addr A

S

TOS

Mis-prediction detected!

Hijacked
return
Address

Comparator

Control flow

main

Procedure 1

return

Procedure 2

return

) UNIVERSITY of DELAWARE

Event 1: Possible False Positives

When there is no attack, RAS mis-prediction may occur due to
* Non-LIFO control flow, uncommon
 Size limitation of RAS, upon recursive procedure calls ,.--=----------=---------- .

7 Control flow
‘ Im Stack | ﬂ
NN memoarv Return

Need n entries to store n identical returns
Address RAS

C P U Destinatio
o

POp ret addr B

§m ret addr B

push

main

call proc1

m Comparator

TOS

ret addr B
ret addr B

|
Procedure 1

.

Procedure 1 recursively
calls itself

UNIVERSITY of DELAWARE

Event 1: Enhance RAS with Call Counter

Idea: add a recursive call counter to each RAS entry
* Initially, counter=0

Control flow

|' i

| main]

m Stack ‘
SS»| memory | i
Return
Address RAS :
o Procedure 1 i

C P U Destination : :
pop | |
call proc1 :

push

Procedure 1 recursively
calls itself

UNIVERSITY of DELAWARE

Event 1: Enhance RAS with Call Counter

Idea: add a recursive call counter to each RAS entry

* Initially, counter=0
* Upon acall, if TOS = new return address, counter++

7 Control flow

. [.

First call, | —_— |

m Stack counter=1 i
memory | :

Return
Address RAS
o Procedure 1 :

C P U Destination ! :
pop | |
call proc 1 :

push
retaddrB | 70s Procedure 1 recursively ,E

calls itself

UNIVERSITY of DELAWARE

Event 1: Enhance RAS with Call Counter

Idea: add a recursive call counter to each RAS entry

* Initially, counter=0
* Upon acall, if TOS = new return address, counter++

m Stack Second call,
N

7 Control flow

main

addr=tos,
memory counter=2

' i

Return

Address RAS

o Procedure 1 :

C P U Destination ! :
pop | |

call proc 1 :

push

retaddrB | 70s Procedure 1 recursively ,E

calls itself

UNIVERSITY of DELAWARE

Event 1: Enhance RAS with Call Counter

Idea: add a recursive call counter to each RAS entry

* Initially, counter=0
* Upon acall, if TOS = new return address, counter++

7/ Control flow
' :
| main :
Im Stack | |
| memorv | i
Need only 1 entry to store n identical returns |
Address RAS
o Procedure 1 :
C P U Destination ! :
pop | |
m call proc 1
push
retaddrB | 70s Procedure 1 recursively ,E

calls itself

UNIVERSITY of DELAWARE

Event 1: Enhance RAS with Call Counter

Idea: add a recursive call counter to each RAS entry
¢ Upon a return, counter--

Control flow

|' |

| main :

Y| stack | |
SS»| memory | i
Return
Address RAS
. Procedure 1 i

C P U Destination ! :
pop
push !
return

retaddrB | 70s . Procedure 1 recursively ,E

calls itself

UNIVERSITY of DELAWARE

Event 1: Enhance RAS with Call Counter

Idea: add a recursive call counter to each RAS entry
¢ Upon a return, counter--

* Pop stack when counter =0 Control flow ‘
' :

: main :

‘ Im Stack I | |
N memorv ’ i

For a 3-bit counter, Overhead=9% RAS size ! |
Address RAS

o Procedure 1 :

C P U Destination : :
pop | 5

push .

return

ret addr B T0S . Procedure 1 recursively ,E

calls itself

UNIVERSITY Of DELAWARE

Outline

* Micro-architectural event monitoring:

— Event 2: instruction cache misses

/) UNIVERSITY of DELAWARE

Event 2: |-cache Miss of Return Target

« Modern processors use I-cache to speed up P — .
instruction fetch Control flow

main

~

e Usually very low miss rate due high locality

call proc 1
ret target A

vulnerable

m memory
fetch @7

C P U call proc1

ret target A

Procedure 1

call proc 2
ret target B

return

read Inaccessible to

attacker
call proc 2

ret target B

Procedure 2

P e e T e e e e e T T
e

-

UNIVERSITY of DELAWARE

Event 2: |-cache Miss of Return Target

* Can be used to detect BOF attack: the P —— -
malicious return target is not in I-cache 7 Control flow

main :

| t target A .
Hijacked addr = :

m memory Procedure 1
fetch @r ret target B

C P U call proc1 E i

\ 4

ret target A . : .
read 5 not in I-cache, ‘

. | Procedure 2 :
a miss ! .
call proc 2 ! ;

ret target B

UNIVERSITY of DELAWARE

Event 2: Possible False Negatives

An attack can bypass detection if the malicious return ~ _------coommcommoo o .
target is in I-cache /~ Control flow

 E.g., for ROP, gadgets may be recently accessed
and hence placed in I-cache

main

ret target A

m memory
fetch @

C P U call proc1

- it!
ret target A I-Cache h|t._
read False negative

SN [i proc

ret target B

Procedure 1

ret target B
gadget

Procedure 2

P e e T e e e e e T T
e

-
7’

/) UNIVERSITY of DELAWARE

Event 2: Possible False Positives

When there is no attack, I-cache miss occurs if a valid emmm e .
return address is not in I-cache Control flow

main

~

* Either not fetched, or replaced by other instructions

ret target A

m memory
fetch @

C P U call proc1

ret target A I-cache miss!
read False positive

SN [i proc

ret target B

Procedure 1

ret target B

Procedure 2
other ins

P e e T e e e e e T T
e

-

NIVERSITY of DELAWARE

Event 2: Enhance I-cache with Prefetching

Goal: decrease miss rate of a legal return target ~ --------o-oooooooo .
Control flow

main

Approach: prefetch the target into I-cache at !'I
procedure call. |

m memory Procedure 1

call proc 2
fetch i ret target B
C P U call proc1 :V 7

ret target A s
read P

_ Procedure 2
s 1
SN [i proc - :

NIVERSITY of DELAWARE

Event 2: Enhance I-cache with Prefetching

Goal: decrease miss rate of a legal return target ~ --------o-oooooooo .
Control flow

Approach: prefetch the target into I-cache at !" .
procedure call. | main

However, this target may still being replaced by
other instructions before being used.

m memory Procedure 1
fetch @ call proc 2
etc .

C P U call proc1

ret target A

read

Procedure 2
SN [iprecs ; other ins

ret target B

NIVERSITY of DELAWARE

Event 2: Enhance I-cache with Cache-line Locking

Goal: decrease miss rate of a legal return target ~ --------o-oooooooo .
Control flow

main

Approach: Add a lock bit to each cache line to .’I
prevent useful return targets from being replaced

M‘ memory I |
Procedure 1

fetch

I-cache call proc 2
lock instruction i { rettargetB
read : : Stepl: R
w prefetch _« 1
° Procedure 2
0 call proc 2 Pl |
& Y

NIVERSITY of DELAWARE

Event 2: Enhance I-cache with Cache-line Locking

Goal: decrease miss rate of a legal return target ~ --------o-oooooooo .
Control flow

main

Approach: Add a lock bit to each cache line to .’I
prevent useful return targets from being replaced

Y ‘ memory I |
Procedure 1
fetch
|-cache call proc 2
lock. instruction i
CPU read : : Stepl: /’:(
w prefetch , «*
//’ Procedure 2
0 call proc 2 07 :
7
Step2: ret address B &
setlock(. & ., ... o~

NIVERSITY of DELAWARE

Event 2: Enhance I-cache with Cache-line Locking

Goal: decrease miss rate of a legal return target ~ --------o-oooooooo .
Control flow

main

Approach: Add a lock bit to each cache line to .’I
prevent useful return targets from being replaced

M‘ memory I |
Procedure 1

fetch

lock instruction

CPU

read

m N Procedure 2
0 call proc 2 __LA--| otherins
pap—— '*-’ 1
1 ret address B \ | :

NIVERSITY of DELAWARE

Event 2: Enhance I-cache with Cache-line Locking

Goal: decrease miss rate of a legal return target P — .

Approach: Add a lock bit to each cache line to .’I Control flow

prevent useful return targets from being replaced i

Unlock the return target after access

M‘ memory I |
Procedure 1

fetch

lock instruction i ret target B

N Procedure 2
call proc 2 _ T W
ret address B \ | :

CPU

read

NS

) UNIVERSITY of DELAWARE

Event 2: Enhance I-cache with Cache-line Locking

Cache locking also reduces false negative rate! I CRELOEEEEEER N
. E.g., for ROP, even if a gadget is in I-cache, its lock / Control flow \

will not be set main
call proc 1
return to: gadget ret target A

M‘ memory I

fetch

Procedure 1

call proc 2
ret target B

lock instruction

CPU

read return

NS

Procedure 2

call proc 2

P e e T e e e e e T T
e

ret address B

-
7’

UNIVERSITY Of DELAWARE

Outline

* Micro-architectural event monitoring:

— Alarm condition

NIVERSITY of DELAWARE

Answers to the Three Critical Questions

1. Which events to monitor?
e Event 1: RAS mis-prediction of return addresses
* Event 2: return target missed in I-cache OR return target not locked in
I-cache

2. How do further improve prediction accuracy?

RAS call counter
|-cache prefetching

I-cache locking

; 3. What is the alarm condition?
= * Jointly monitoring both events

) UNIVERSITY of DELAWARE

Jointly Monitoring Both Events

l, False Positive (FP): no attack, false alarm
False Negative (FN): has attack, no alarm

I:Pjointz I:PEventl n I:PEventz

Event

Reduced!

I:Njointz I:NEventl U I:NEventZ

No I:NEvent1!

FP1 U FP2

Unchanged!
= FP2

Monitoring Flowchart

UNIVERSITY 0f DELAWARE

Outline

 Experimental evaluation

) UNIVERSITY of DELAWARE

Experimental Setup

Schemes to evaluate 1. Original benchmark (no protection)

Attacks simulated

Benchmarks

Simulator

2. Monitoring only RAS
3. Jointly monitoring both RAS and I-cache
4. Jointed events with hardware enhancement

Code injection: malicious code in stack segment
Return-to-libc: malicious code in C library
ROP: chain malicious gadgets in original code

From SPEC2000, MiBench, and Mediabench

SimpleScalar:
cycle accurate, micro-architectural level

RAS size 8 entries
RAS call counter 3 bits

L1 I-cache sets 512

L1 I-cache block size 32

L1 I-cache associativity 2

UNIVERSITY of DELAWARE

Reduction in False Positive Count

* Results collected by running detection scheme without performing attack

| RAS-only Jointed events Jointed+HW enhanced

Count Count Reduction Count Reduction
art 14 4 71% 0 100%
crafty 96174 15259 84% 3944 96%
dijkstra 781 0 100% 0 100%
fft 22 11 50% 0 100%
galgel 111 38 66% 1 99%
gcc 143981 38060 74% 8244 94%
gzip 32 3 91% 0 100%
jpeg 17 9 47% 0 100%
mcf 13728 2 100% 97 99%
mpeg2 28 13 54% 0 100%
Average 74% 99%

e Both the jointly monitoring strategy and the hardware enhancements
effectively reduce false positives

UNIVERSITY of DELAWARE

False Negative Rate Evaluation

Methodology

Run detection scheme together with the benchmark, perform attacks
randomly in the following way:

 Code injection
Hijacked return address = randomly picked address in stack segment

* return-to-libc
Hijacked return address = randomly picked address in code segment
except for the current program text

* return-oriented programming (ROP)
Chain of gadgets = 31 addresses randomly picked from program code
Perform detection on these gadget heads one by one,
Report an attack if any gadget head triggers the alarm condition.

UNIVERSITY of DELAWARE

False Negative Rate Evaluation

Return-oriented

Code Return-to-

Injection libc RAS-only Joint-event HW enhanced

art 0 0 0 5.11E-28 4.49E-101
crafty 0 0 0 1.23E-35 7.07E-103
dijkstra 0 0 0 4.36E-21 1.07E-77
fft 0 0 0 2.93E-14 1.10E-92
galgel 0 0 0 1.09E-49 0
gcc 0 0 0 5.76E-56 9.84E-117
gzip 0 0 0 6.22E-26 7.39E-114
jpeg 0 0 0 1.50E-34 0
mcf 0 0 0 3.74E-23 1.24E-94
mpeg2 0 0 0 2.95E-23 1.30E-79

* Except for ROP, no other false negatives observed

* The false negative rates of ROP are extremely low since it is very
hard for all the gadgets to escape from triggering the alarm

) UNIVERSITY of DELAWARE

Impact on RAS Mis-prediction Rates

RAS mis-predictions per 108 returns

1.00E+06

1.00E+05

1.00E+04

1.00E+03 M Original
1.00E+02 B HW enhanced
1.00E+01] I

1.00E+00 -

art crafty dljkstra fft galgel gcc gzip jpeg mcf mpeg2

* Programs originally with many RAS mis-predictions benefit
significantly from the call counter — these mis-predictions are caused
by recursive procedure calls

UNIVERSITY of DELAWARE

Impact on |I-cache Miss Rate

I-cache misses per 107 instructions

1.00E+06

1.00E+05

1.00E+04

1.00E+03 M Original
1.00E+02 B HW enhanced
1.00E+01 I

1.00E+00 —

art crafty dljkstra fft galgel gcc gzip jpeg mcf mpeg2

* Prefetching and cache-line locking may:
* reduce miss rate — misses of useful return targets are eliminated
* increase miss rate —locked lines may have conflicts with hot lines

e OQOverall, the two enhancements have negligible impact on I-cache misses

UNIVERSITY of DELAWARE

Summary

* Stack buffer overflow is a common cyber security vulnerability
* Qur approach: monitor micro-architectural events at runtime to
detect such attacks.
* Event 1: RAS mis-prediction of a return address

e Event 2: I-cache miss of a return target OR the target is not locked in
I-cache

* Qur approach works well in embedded systems:

* Low cost: hardware-based scheme requires little runtime overhead;
reuse performance-driven enhancements for security purpose

* High accuracy: jointly event monitoring flow and the proposed
hardware enhancements eliminate most of the false positives and
false negatives

) UNIVERSITY of DELAWARE

Thank you!

Questions?

