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Outline

 Background: stack buffer overflow
* Motivation: need for low cost & accurate detection scheme
* Micro-architectural event monitoring:

— Event 1: Return Address Stack (RAS) mis-prediction

— Event 2: instruction cache misses

— Alarm condition

 Experimental evaluation
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Most Severe Threat — Buffer Overflow

Swvmibolic Lirk
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Trojan Horss
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W Backdoor Trojan
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Fultiple Wulnerabilities
Format String
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Security Solution Wealkness
W Softwara Fault (Wl
B Cross-Site Scripting
® [nformation Disclosurs
Frivilege Escalation
Artitrary Code BExacution
mDanial of Service
4E§uffer Crrerflow

Top 20 threats and vulnerabilities, January - October 2007
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Stack Buffer Overflow — Hijack Return Address

- Memory Layout
High
00}5,;2 N /int BOF (char *str) {\
char buf[16];
char *str strcpy(buf, str);
Sra return address o return 1;
tac
Sfp old fp - }
buf[15] segment \ /
buf[14]
Ssp buf[0] D
Free memory * Sra: Return address pointer
» Sfp: Frame pointer
Data Segment * Ssp: Stack pointer
Code Segment
Lower

address
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Stack Buffer Overflow — Hijack Return Address

; Memory Layout
High
GC;Z,;Z (int BOF (char *str) {\
char buf[16];
char *str strcpy(buf, str);
sra return address return 1,
Sfp old fp \} )

* |f sizeof(str)<=16, no problem

Ssp

Free memory

Data Segment

Code Segment

Lower
address
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Stack Buffer Overflow — Hijack Return Address

Memory Layout

ﬂgﬁ;@ (int BOF (char *str) {\
char buf[16];
char *str strcpy(buf, str);
Sra return 1;

U )

* |f sizeof(str)<=16, no problem

* If sizeof(str)>16, adjacent entries
will be overwritten

* Return address could be hijacked
* Three types of BOF based attacks:
1. Code injection

Code Segment 2. Return-to-libc
Lower 3. Return-oriented programming

address

Sfp

Ssp

Free memory

Data Segment
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Buffer Overflow (BOF) — Code Injection

Higher
address

Sra
Sfp

Ssp

Lower
address

Memory Layout

Malicious code

hijacked return
str[16]
str[15]
str[14]

str[0]

Free memory

Data Segment

Code Segment

D

Code Injection:

Put malicious code in str(]
Write str[] in stack

Direct return address to
the malicious code
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Buffer Overflow (BOF) — Return-to-libc

Higher
address

Sra
Sfp

Ssp

Lower
address

Memory Layout

parameter
hijacked return
str[16]
str[15]
str[14]

str[0]

Free memory

Data Segment

Code Segment

7

A
C shared library

fuc(parameter)

Return-to-libc:

e Divert control flow to a
function in C shared library

* Parameter(s) can also be
passed via stack
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A

Buffer Overflow (BOF) — Return-Oriented Programming

Higher
address

Sra
Sfp

Ssp

Lower
address

Memory Layout

hijacked return 2
hijacked return 1
str[16]
str[15]
str[14]

buf{0]

Free memory

Data Segment

Code Segment

Code Segment

return

:|> gadget2
head2
return

:|> gadgetl
headl

Return-Oriented Programming

* Select a set of “gadgets” from original
code: instructions ending with return.

* Overwrite the stack with gadget heads
* Chain the gadgets with returns

/
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Existing Countermeasures

NX bit
e Pages cannot be both writable and
executable at the same time

StackGuard
* Places a canary in between local
variables and frame pointer

Address randomization
 Adds a random offset to each
page/segment

Control flow checking
 Compares runtime control flow with
profiled control flow

Not suitable for embedded systems

Software-based, sizable overhead
Need to change compiler

Cannot defend against all three types
of BOF based attacks

Our solution: online attack detection by
monitoring micro-architectural events

Hardware based, low overhead
Achieve high detection accuracy

through hardware enhancement
Can handle all three types of BOF
based attacks
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Outline

e Motivation: need for low cost & accurate detection scheme
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High-quality Detection Scheme for Embedded
Systems

Attack, but Alarm, but

m-© @@ST no alarm no attack

-

* Low runtime cost
* Low design cost

HIGH ACCURACY

4

* Low false positive rate .
] Security
* Low false negative rate y Alarms

€<—— Attacks —>



NIVERSITY of DELAWARE

High-quality Detection Scheme for Embedded

Systems

LOW COST

-

* Low runtime cost
* Low design cost

HIGH ACCURACY

\ 4

* Low false positive rate
* Low false negative rate

—_—

Design requirements

Monitor events that are highly
correlated with BOF attacks

Leverage existing performance-
driven micro-architectural
modules for security purpose

Further extend those modules
to improve detection accuracy
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High-quality Detection Scheme for Embedded

Systems

LOW COST

-

* Low runtime cost
* Low design cost

HIGH ACCURACY

\ 4

* Low false positive rate
* Low false negative rate

Three critical questions:

* Which events to monitor?

e How to further enhance

accuracy?

e What is the overall alarm

condition?
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* Micro-architectural event monitoring:

— Event 1: Return Address Stack (RAS) mis-prediction
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Event 1: Return address stack (RAS) mis-prediction

________________________

* Modern processors use RAS to improve pipeline Control flow

\

performance _
e Return address predicted at instruction fetch stage i
Vulnerable
m Stack
m memory | Return

Address Procedure 1

Return
Address RAS

Destination
(:F)lJ pop

return

Procedure 2

push

m Comparator

TOS

return

P e e e T e e e e e T T
e

ret addr B

-
7’

ret addr A

________________________

Inaccessible to attacker
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Event 1: Return address stack (RAS) mis-prediction

* Predicted return address (RAS) is compared
with real address stored in stack

* Normally prediction accuracy rate is high

CPU

=
)
Return
Address

pop

push

Stack
memory

RAS

Destination

ret addr B

ret addr A

S

TOS

Prediction correct

Return
Address

Comparator

________________________

Control flow

main

Procedure 1

return

Procedure 2

return

________________________
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Event 1: Return address stack (RAS) mis-prediction

* Predicted return address (RAS) is compared
with real address stored in stack

 When there is attack, mis-prediction occurs

=
)
Return
Address

CPU § rop

push

Stack

memory

RAS

Destination

ret addr B

ret addr A

S

TOS

Mis-prediction detected!

Hijacked
return
Address

Comparator

________________________

Control flow

main

Procedure 1

return

Procedure 2

return

________________________
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Event 1: Possible False Positives

When there is no attack, RAS mis-prediction may occur due to
* Non-LIFO control flow, uncommon
 Size limitation of RAS, upon recursive procedure calls ,.--=----------=---------- .

7 Control flow
‘ Im Stack | ﬂ
NN memoarv Return

Need n entries to store n identical returns
Address RAS

C P U Destinatio
o

POp ret addr B

§m ret addr B

push

main

call proc1

m Comparator

TOS

ret addr B
ret addr B

|
Procedure 1

.

Procedure 1 recursively
calls itself

________________________
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Event 1: Enhance RAS with Call Counter

Idea: add a recursive call counter to each RAS entry
* Initially, counter=0

________________________

Control flow

|' i

| main ]

m Stack ‘
SS»| memory | i
Return
Address RAS :
o Procedure 1 i

C P U Destination : :
pop | |
call proc1 :

push

Procedure 1 recursively
calls itself

________________________
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Event 1: Enhance RAS with Call Counter

Idea: add a recursive call counter to each RAS entry

* Initially, counter=0
* Upon acall, if TOS = new return address, counter++

________________________

7 Control flow

. [ .

First call, | —_— |

m Stack counter=1 i
memory | :

Return
Address RAS
o Procedure 1 :

C P U Destination ! :
pop | |
call proc 1 :

push
retaddrB | 70s Procedure 1 recursively ,E

calls itself

________________________
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Event 1: Enhance RAS with Call Counter

Idea: add a recursive call counter to each RAS entry

* Initially, counter=0
* Upon acall, if TOS = new return address, counter++

m Stack Second call,
N

________________________

7 Control flow

main

addr=tos,
memory counter=2

' i

Return

Address RAS

o Procedure 1 :

C P U Destination ! :
pop | |

call proc 1 :

push

retaddrB | 70s Procedure 1 recursively ,E

calls itself

________________________
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Event 1: Enhance RAS with Call Counter

Idea: add a recursive call counter to each RAS entry

* Initially, counter=0
* Upon acall, if TOS = new return address, counter++

________________________

7/ Control flow
' :
| main :
Im Stack | |
| memorv | i
Need only 1 entry to store n identical returns |
Address RAS
o Procedure 1 :
C P U Destination ! :
pop | |
m call proc 1
push
retaddrB | 70s Procedure 1 recursively ,E

calls itself

________________________
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Event 1: Enhance RAS with Call Counter

Idea: add a recursive call counter to each RAS entry
¢ Upon a return, counter--

________________________

Control flow

|' |

| main :

Y| stack | |
SS»| memory | i
Return
Address RAS
. Procedure 1 i

C P U Destination ! :
pop
push !
return

retaddrB | 70s . Procedure 1 recursively ,E

calls itself

________________________
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Event 1: Enhance RAS with Call Counter

Idea: add a recursive call counter to each RAS entry
¢ Upon a return, counter--

________________________

* Pop stack when counter =0 Control flow ‘
' :

: main :

‘ Im Stack I | |
N memorv ’ i

For a 3-bit counter, Overhead=9% RAS size ! |
Address RAS

o Procedure 1 :

C P U Destination : :
pop | 5

push .

return

ret addr B T0S . Procedure 1 recursively ,E

calls itself

________________________
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* Micro-architectural event monitoring:

— Event 2: instruction cache misses
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Event 2: |-cache Miss of Return Target

« Modern processors use I-cache to speed up P — .
instruction fetch Control flow

main

~

e Usually very low miss rate due high locality

call proc 1
ret target A

vulnerable

m memory
fetch @7

C P U call proc1

ret target A

Procedure 1

call proc 2
ret target B

return

read Inaccessible to

attacker
call proc 2

ret target B

Procedure 2

P e e T e e e e e T T
e

-

________________________
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Event 2: |-cache Miss of Return Target

* Can be used to detect BOF attack: the P —— -
malicious return target is not in I-cache 7 Control flow

main :

| t target A .
Hijacked addr = :

m memory Procedure 1
fetch @r ret target B

C P U call proc1 E i

\ 4

ret target A . : .
read 5 not in I-cache, ‘

. | Procedure 2 :
a miss ! .
call proc 2 ! ;

ret target B

________________________
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Event 2: Possible False Negatives

An attack can bypass detection if the malicious return ~ _------coommcommoo o .
target is in I-cache /~  Control flow

 E.g., for ROP, gadgets may be recently accessed
and hence placed in I-cache

main

ret target A

m memory
fetch @

C P U call proc1

- it!
ret target A I-Cache h|t._
read False negative

SN [ i proc

ret target B

Procedure 1

ret target B
gadget

Procedure 2

P e e T e e e e e T T
e

-
7’

________________________
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Event 2: Possible False Positives

When there is no attack, I-cache miss occurs if a valid emmm e .
return address is not in I-cache Control flow

main

~

* Either not fetched, or replaced by other instructions

ret target A

m memory
fetch @

C P U call proc1

ret target A I-cache miss!
read False positive

SN [ i proc

ret target B

Procedure 1

ret target B

Procedure 2
other ins

P e e T e e e e e T T
e

-

________________________
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Event 2: Enhance I-cache with Prefetching

Goal: decrease miss rate of a legal return target ~ --------o-oooooooo .
Control flow

main

Approach: prefetch the target into I-cache at !'I
procedure call. |

m memory Procedure 1

call proc 2
fetch i ret target B
C P U call proc1 :V 7

ret target A s
read P

_ Procedure 2
s 1
SN [ i proc - :

________________________
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Event 2: Enhance I-cache with Prefetching

Goal: decrease miss rate of a legal return target ~ --------o-oooooooo .
Control flow

Approach: prefetch the target into I-cache at !" .
procedure call. | main

However, this target may still being replaced by
other instructions before being used.

m memory Procedure 1
fetch @ call proc 2
etc .

C P U call proc1

ret target A

read

Procedure 2
SN [ iprecs ; other ins

ret target B

________________________
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Event 2: Enhance I-cache with Cache-line Locking

Goal: decrease miss rate of a legal return target ~ --------o-oooooooo .
Control flow

main

Approach: Add a lock bit to each cache line to .’I
prevent useful return targets from being replaced

M‘ memory I |
Procedure 1

fetch

I-cache call proc 2
lock instruction i { rettargetB
read : : Stepl: R
w prefetch _« 1
° Procedure 2
0 call proc 2 Pl |
& Y

________________________
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Event 2: Enhance I-cache with Cache-line Locking

Goal: decrease miss rate of a legal return target ~ --------o-oooooooo .
Control flow

main

Approach: Add a lock bit to each cache line to .’I
prevent useful return targets from being replaced

Y ‘ memory I |
Procedure 1
fetch
|-cache call proc 2
lock. instruction i
CPU read : : Stepl: /’:(
w prefetch , «*
//’ Procedure 2
0 call proc 2 07 :
7
Step2: ret address B &
setlock( . & ., ... o~
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Event 2: Enhance I-cache with Cache-line Locking

Goal: decrease miss rate of a legal return target ~ --------o-oooooooo .
Control flow

main

Approach: Add a lock bit to each cache line to .’I
prevent useful return targets from being replaced

M‘ memory I |
Procedure 1

fetch

lock instruction

CPU

read

m N Procedure 2
0 call proc 2 __LA--| otherins
pap—— '*-’ 1
1 ret address B \ | :

________________________
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Event 2: Enhance I-cache with Cache-line Locking

Goal: decrease miss rate of a legal return target P — .

Approach: Add a lock bit to each cache line to .’I Control flow

prevent useful return targets from being replaced i

Unlock the return target after access

M‘ memory I |
Procedure 1

fetch

lock instruction i ret target B

N Procedure 2
call proc 2 _ T W
ret address B \ | :

________________________

CPU

read

NS
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Event 2: Enhance I-cache with Cache-line Locking

Cache locking also reduces false negative rate! I CRELOEEEEEER N
. E.g., for ROP, even if a gadget is in I-cache, its lock /  Control flow \

will not be set main
call proc 1
return to: gadget ret target A

M‘ memory I

fetch

Procedure 1

call proc 2
ret target B

lock instruction

CPU

read return

NS

Procedure 2

call proc 2

P e e T e e e e e T T
e

ret address B

-
7’

________________________
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Outline

* Micro-architectural event monitoring:

— Alarm condition
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Answers to the Three Critical Questions

1. Which events to monitor?
e Event 1: RAS mis-prediction of return addresses
* Event 2: return target missed in I-cache OR return target not locked in
I-cache

2. How do further improve prediction accuracy?

RAS call counter
|-cache prefetching

I-cache locking

; 3. What is the alarm condition?
= * Jointly monitoring both events
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Jointly Monitoring Both Events

l, False Positive (FP): no attack, false alarm
False Negative (FN): has attack, no alarm

I:Pjointz I:PEventl n I:PEventz

Event

Reduced!

I:Njointz I:NEventl U I:NEventZ

No I:NEvent1!

FP1 U FP2

Unchanged!
= FP2

Monitoring Flowchart
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 Experimental evaluation
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Experimental Setup

Schemes to evaluate 1. Original benchmark (no protection)

Attacks simulated

Benchmarks

Simulator

2. Monitoring only RAS
3. Jointly monitoring both RAS and I-cache
4. Jointed events with hardware enhancement

Code injection: malicious code in stack segment
Return-to-libc: malicious code in C library
ROP: chain malicious gadgets in original code

From SPEC2000, MiBench, and Mediabench

SimpleScalar:
cycle accurate, micro-architectural level

RAS size 8 entries
RAS call counter 3 bits

L1 I-cache sets 512

L1 I-cache block size 32

L1 I-cache associativity 2
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Reduction in False Positive Count

* Results collected by running detection scheme without performing attack

| RAS-only Jointed events Jointed+HW enhanced

Count Count Reduction Count Reduction
art 14 4 71% 0 100%
crafty 96174 15259 84% 3944 96%
dijkstra 781 0 100% 0 100%
fft 22 11 50% 0 100%
galgel 111 38 66% 1 99%
gcc 143981 38060 74% 8244 94%
gzip 32 3 91% 0 100%
jpeg 17 9 47% 0 100%
mcf 13728 2 100% 97 99%
mpeg2 28 13 54% 0 100%
Average 74% 99%

e Both the jointly monitoring strategy and the hardware enhancements
effectively reduce false positives
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False Negative Rate Evaluation

Methodology

Run detection scheme together with the benchmark, perform attacks
randomly in the following way:

 Code injection
Hijacked return address = randomly picked address in stack segment

* return-to-libc
Hijacked return address = randomly picked address in code segment
except for the current program text

* return-oriented programming (ROP)
Chain of gadgets = 31 addresses randomly picked from program code
Perform detection on these gadget heads one by one,
Report an attack if any gadget head triggers the alarm condition.
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False Negative Rate Evaluation

Return-oriented

Code Return-to-

Injection libc RAS-only  Joint-event HW enhanced

art 0 0 0 5.11E-28 4.49E-101
crafty 0 0 0 1.23E-35 7.07E-103
dijkstra 0 0 0 4.36E-21 1.07E-77
fft 0 0 0 2.93E-14 1.10E-92
galgel 0 0 0 1.09E-49 0
gcc 0 0 0 5.76E-56 9.84E-117
gzip 0 0 0 6.22E-26 7.39E-114
jpeg 0 0 0 1.50E-34 0
mcf 0 0 0 3.74E-23 1.24E-94
mpeg2 0 0 0 2.95E-23 1.30E-79

* Except for ROP, no other false negatives observed

* The false negative rates of ROP are extremely low since it is very
hard for all the gadgets to escape from triggering the alarm
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Impact on RAS Mis-prediction Rates

RAS mis-predictions per 108 returns

1.00E+06

1.00E+05

1.00E+04

1.00E+03 M Original
1.00E+02 B HW enhanced
1.00E+01 ] I

1.00E+00 -

art crafty dljkstra fft galgel gcc  gzip  jpeg mcf mpeg2

* Programs originally with many RAS mis-predictions benefit
significantly from the call counter — these mis-predictions are caused
by recursive procedure calls
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Impact on |I-cache Miss Rate

I-cache misses per 107 instructions

1.00E+06

1.00E+05

1.00E+04

1.00E+03 M Original
1.00E+02 B HW enhanced
1.00E+01 I

1.00E+00 —

art crafty dljkstra fft galgel gcc  gzip  jpeg mcf mpeg2

* Prefetching and cache-line locking may:
* reduce miss rate — misses of useful return targets are eliminated
* increase miss rate —locked lines may have conflicts with hot lines

e OQOverall, the two enhancements have negligible impact on I-cache misses
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Summary

* Stack buffer overflow is a common cyber security vulnerability
* Qur approach: monitor micro-architectural events at runtime to
detect such attacks.
* Event 1: RAS mis-prediction of a return address

e Event 2: I-cache miss of a return target OR the target is not locked in
I-cache

* Qur approach works well in embedded systems:

* Low cost: hardware-based scheme requires little runtime overhead;
reuse performance-driven enhancements for security purpose

* High accuracy: jointly event monitoring flow and the proposed
hardware enhancements eliminate most of the false positives and
false negatives
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Thank you!

Questions?



