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❖Definitions 

❖Basic Use 

❖Applications: Social Network Analysis 

❖Applications: Learning Analytics

6/2014



Christine Task -- Purdue University
4

Definitions

6/2014



Christine Task -- Purdue University

You’re handed a survey…
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1) Do you like listening to Justin Bieber? 

2) How many Justin Bieber albums do you own? 

3) What is your gender? 

4) What is your age?

The researcher tells you the data from the surveys will be collected into a data-
set, then some analysis will be done and the results released to the public.  She 
says it’s perfectly safe to submit a survey:   it’s anonymous and the analysis will 
be privatized. 

What do you do?
6/2014
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is the result released 
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What do we want?

13

I would feel safe submitting a survey if…
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What do we want?
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I would feel safe submitting a survey if…

❖ I knew that my answer 
had no impact on the 
released results.

❖ Q(D(I-me)) = Q(DI) 
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What do we want?
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I would feel safe submitting a survey if…

❖ I knew that my answer 
had no impact on the 
released results. 

❖ I knew that any attacker 
looking at the published 
results R couldn’t learn 
(with high probability) 
any new information 
about me personally. 

❖ Q(D(I-me)) = Q(DI) 

❖ Prob(secret(me) | R) = 
       Prob(secret(me))
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Why can’t we have it?
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Why can’t we have it?
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❖ If individual answers had 
no impact on the 
released results… Then 
the results would have no 
utility 

❖By induction,                 
     Q(D(I-me)) = Q(DI)  ⇒      
     Q(DI) = Q(D∅)  
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Why can’t we have it?
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❖ If individual answers had 
no impact on the 
released results… Then 
the results would have no 
utility 

❖ If R shows there’s a 
strong trend in my 
population, then with 
high probability, the 
trend is true of me too 
(even if I don’t submit a 
survey).

❖By induction,                 
     Q(D(I-me)) = Q(DI)  ⇒      
     Q(DI) = Q(D∅)  

❖ Prob(secret(me) | 
secret(Pop) ) > 
Prob(secret(me))
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Why can’t we have it?
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❖ Even worse, if an attacker 
knows a function about me 
that’s dependent on 
general facts about the 
population: 

  
• I’m twice the average age  
• I’m in the minority gender 

Then releasing just those 
general facts gives the 
attacker specific 
information about me.  
(Even if I don’t submit a 
survey!)

❖   (age(me) = 2*mean_age) ∧
       (gender(me) ≠ mode_gender) ∧
       (mean_age = 14) ∧
       (mode_gender = F)   ⇒

       (age(me) = 28) ∧ 
       (gender(me) = M) 

6/2014
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One more try…
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So we can’t promise that my data won’t affect the results, 
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One more try…
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So we can’t promise that my data won’t affect the results, 
  
And we can’t promise that an attacker won’t be able to 
learn new information about me from looking at the 
results. 
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One more try…
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So we can’t promise that my data won’t affect the results, 
  
And we can’t promise that an attacker won’t be able to 
learn new information about me from looking at the 
results,  

So what can we do? 
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One more try…
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I’d feel safe submitting a survey if…. 

When the researchers published the (privatized, noisy) 
result R, I knew they were: 
"just about as likely to get R for their answer whether 
or not I submitted my information" 
... so I might as well submit 
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Differential Privacy
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Differential Privacy
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Possible World where 
I submit a survey

Possible World where 
I don’t submit a survey
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Differential Privacy
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Possible World where 
I submit a survey

Possible World where 
I don’t submit a survey

Result 
R
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Differential Privacy
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Possible World where 
I submit a survey

Possible World where 
I don’t submit a survey

Result 
R

Prob(R) = AProb(R) = B
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28

 

Possible World where 
I submit a survey

Possible World where 
I don’t submit a survey

Result 
R

Prob(R) = AProb(R) = B

A ≅ B
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Differential Privacy
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Possible World where 
I submit a survey

Possible World where 
I don’t submit a survey

Result 
R

Prob(R) = AProb(R) = B

A ≅ B

Given R, how can anyone guess which possible world it came 
from? 
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Basic Use
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How do we do it?
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Possible World where 
I submit a survey

Possible World where 
I don’t submit a survey

38 people 
like Bieber

37 people 
like Bieber

Result 
R = ?

We want to get nearly the same distribution of answers from 
both possible worlds.   How do we bridge the gap? 
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Global Sensitivity
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Global Sensitivity
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Possible World where 
i submits a survey

Possible World where 
i doesn’t submit a survey

X people 
like Bieber

X+1 people 
like Bieber

How many  people in the data set like Justin Bieber?
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Global Sensitivity
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M  Males 
F   Females

M+1 Males   or  M Males 
F Females    F+1 Females

How many males and females are there in the data set?

Possible World where 
i submits a survey

Possible World where 
i doesn’t submit a survey
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Global Sensitivity
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X like Bieber 
M  Males 
F   Females

X+1 like Bieber 
M+1 Males   or  M Males 
F Females         F+1 Females

 

        How many males and females are there in the data set? 
And How many people in the data set like Justin Bieber?

Possible World where 
i submits a survey

Possible World where 
i doesn’t submit a survey
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Laplacian Noise
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In order for our two worst-case  
neighboring data sets to produce 
a similar distribution of privatized 
answers, we need to add noise 
to span the sensitivity gap.  
What noise?   
Random values taken from a  
Laplacian distribution with standard 
deviation large enough to “cover” 
the gap.  This isn’t the only way to achieve differential privacy, but it’s the 
easiest. 

Privatizing by adding noise from the Laplacian Distribution:  

 

6/2014



Laplacian Noise
 

Adding Laplacian noise to the true answer means that the  
distribution of possible results from any data set overlaps 
heavily with the distribution of results from its neighbors.
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Laplacian Noise

R

D1 D2 D3D0

Just by looking at the released result R,  
it’s very hard to guess which world it came 
from and who exactly was in the data set. 
We know the general neighborhood of the 
right answer, for utility.  But the impact of 
specific individuals on the data set is hidden.
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Applications
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Random Forests of Binary Decision Trees: counts of randomly 
selected parameters are used to effectively build partitions in 
random decision trees.  
Geetha Jagannathan, Krishnan Pillaipakkamnatt, and Rebecca N. Wright. 2009. A Practical 
Differentially Private Random Decision Tree Classifier. In Proceedings of the 2009 IEEE International 
Conference on Data Mining Workshops (ICDMW '09). IEEE Computer Society, Washington, DC   

Click Query Graphs: counts of (search query, result chosen) pairs 
are privatized, so search patterns can be analyzed.  
Aleksandra Korolova, Krishnaram Kenthapadi, Nina Mishra, and Alexandros Ntoulas. 2009. Releasing 
search queries and clicks privately. In Proceedings of the 18th international conference on World 
wide web (WWW '09). ACM, New York, NY

Generalizing Counts

6/2014
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Beyond counting….
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K-core Clustering: Individuals mapped as points in a parameter 
space are clustered into a reduced, robust set of points whose 
distribution varies little between neighboring data sets.  
Dan Feldman, Amos Fiat, Haim Kaplan, and Kobbi Nissim. 2009. Private coresets. InProceedings of the 
41st annual ACM symposium on Theory of computing (STOC '09). ACM, New York, NY 

Combinatorial Optimization:  Differentially private 
approximation algorithms for a variety of NP-complete 
problems.  
Anupam Gupta, Katrina Ligett, Frank McSherry, Aaron Roth, and Kunal Talwar. 2010. Differentially 
private combinatorial optimization. In Proceedings of the Twenty-First Annual ACM-SIAM Symposium 
on Discrete Algorithms (SODA '10). Society for Industrial and Applied Mathematics, Philadelphia, PA 

Frequent Item Set Mining: Item sets are sampled along a 
probability distribution which reduces the number of necessary 
frequency counts.  
Raghav Bhaskar, Srivatsan Laxman, Adam Smith, and Abhradeep Thakurta. 2010. Discovering frequent 
patterns in sensitive data. In Proceedings of the 16th ACM SIGKDD international conference on 
Knowledge discovery and data mining (KDD '10). ACM, New York, NY
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Engineering Applications
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Location/Transit Data: Geographical spaces are recursively 
partitioned using quadtrees, with areas of interest partitioned 
more finely.  
Shen-Shyang Ho and Shuhua Ruan. 2011. Differential privacy for location pattern mining.  SPRINGL '11 
Proceedings of the 4th ACM SIGSPATIAL International Workshop on Security and Privacy in GIS and LBS 
Pages 17-24 ACM New York, NY 

Network Trace Analysis: Counts of messages sent between 
network nodes are privatized and used to privately learn about 
network usage patterns.  
Frank McSherry and Ratul Mahajan. 2010. Differentially-private network trace analysis. InProceedings 
of the ACM SIGCOMM 2010 conference (SIGCOMM '10). ACM, New York, NY 

  

Traffic Congestion Data:  Streaming congestion counts at a 
location are sampled/estimated, privatized, post-
processed to improve accuracy, and published in real time.  
Fan, Liyue, and Li Xiong. "Real-time aggregate monitoring with differential privacy." In Proceedings of 
the 21st ACM international conference on Information and knowledge management, ACM, 2012
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Social Network Analysis
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All of the preceding work has assumed the data set was in 
tabular format, comprised of a list of attribute values for each 
individual.  

Applying Differential Privacy to Social Network data, however,  
introduces unique challenges.   
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Social Network Analysis
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Differential privacy protects the individuals participating in the 
survey, but not the subjects of the survey.
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Social Network Analysis
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In network data, 
individuals give 
information about 
each other and  
can be both 
participants and 
subjects of a 
survey. 

Adapting 
differential 
privacy to 
networks is not 
straightforwards.
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Social Network Analysis
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Differential Privacy: Four Adaptations for Network Data
A privatized query Q satisfies node-privacy if it satisfies differential privacy for all pairs of graphs 
G1 = (V1, E1), G2 = (V2, E2) where V2 = V1 − x and E2 =E1 − {(v1, v2)|v1 = x ∨ v2 = x} for x ∈ V

A privatized query Q satisfies k-edge-privacy if it satisfies differential privacy for all pairs of 
graphs G1 = (V1, E1), G2 = (V2, E2) where V1 = V2 and E2 = E1 − Ex where |Ex| = k
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Social Network Analysis
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Differential Privacy: Four Adaptations for Network Data
A privatized query Q satisfies node-privacy if it satisfies differential privacy for all pairs of graphs 
G1 = (V1, E1), G2 = (V2, E2) where V2 = V1 − x and E2 =E1 − {(v1, v2)|v1 = x ∨ v2 = x} for x ∈ V

A privatized query Q satisfies k-edge-privacy if it satisfies differential privacy for all pairs of 
graphs G1 = (V1, E1), G2 = (V2, E2) where V1 = V2 and E2 = E1 − Ex where |Ex| = k

Define PoI to be the Population of Interest, and C ⊆ PoI to be the set of people who contribute 
information to the data-set. A privatized query Q satisfies contributor-privacy if it satisfies 
differential privacy for all pairs of data-sets D1 = {(Info(Vi), Info(i))}, ∀i ∈ C1, and D2 = {(Info(Vi), 
Info(i))}, ∀i ∈ C2 where C1 = C2 - i, for some i ∈ C1.
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Social Network Analysis
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Differential Privacy: Four Adaptations for Network Data
A privatized query Q satisfies node-privacy if it satisfies differential privacy for all pairs of graphs 
G1 = (V1, E1), G2 = (V2, E2) where V2 = V1 − x and E2 =E1 − {(v1, v2)|v1 = x ∨ v2 = x} for x ∈ V

A privatized query Q satisfies k-edge-privacy if it satisfies differential privacy for all pairs of 
graphs G1 = (V1, E1), G2 = (V2, E2) where V1 = V2 and E2 = E1 − Ex where |Ex| = k

Define PoI to be the Population of Interest, and C ⊆ PoI to be the set of people who contribute 
information to the data-set. A privatized query Q satisfies contributor-privacy if it satisfies 
differential privacy for all pairs of data-sets D1 = {(Info(Vi), Info(i))}, ∀i ∈ C1, and D2 = {(Info(Vi), 
Info(i))}, ∀i ∈ C2 where C1 = C2 - i, for some i ∈ C1.

Define a partitioned graph to be comprised of separate components such that G = {gi} for disjoint 
subgraphs gi. A privatized query Q satisfies partition-privacy if it satisfies differential privacy for 
all pairs of graphs G1, G2 where G1 = G2 − gi for some gi ∈ G1.
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Social Network Analysis
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Differential Privacy: Four Adaptations for Network Data

Increasing Strength of Privacy Guarantee

Node PrivacyEdge Privacy

Contributor Privacy

Partition Privacy

Protects 
existence of one 

node

Protects 
existence of one 

edge

Protects 
existence of one 

subgraph

Protects information 
contributed by one 

individual
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Social Network Analysis
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Degree Distribution

Node Privacy: 
∆F is unbounded  

  
Global sensitivity is  

unbounded if d 
 is unbounded.

Edge Privacy: 
∆F = 2 

  
Post-processing may 

improve results.  
[Hay 2009]
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Social Network Analysis
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Degree Distribution
Contributor Privacy: 

∆F =1 
  

Degree distribution 
records nodes' 

perceived friend count 
(out-degree).
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Social Network Analysis
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Degree Distribution
Contributor Privacy: 

∆F =1 
  

Degree distribution 
records nodes' 

perceived friend count 
(out-degree).

Partition Privacy: 
∆F =1 

  
Histogram records 
degree distribution 

types over collection of 
disjoint graphs.
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Social Network Analysis
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Node Privacy: 
∆F is unbounded  
  
Global sensitivity is unbounded if d 
is unbounded. 
Smooth sensitivity is bounded, but 
quite high: O(d^2) [Blocki 2012]

Triangle Counts 

 Edge Privacy: 
∆F is unbounded  
  
Global sensitivity is unbounded if d is  
unbounded. 
Smooth sensitivity is bounded, but 
added noise can be very high: 10*T 
[Karwa 2011]



Christine Task -- Purdue University

Social Network Analysis
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Social Network Analysis
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Learning Analytics
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Learning Analytics
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Learning Analytics
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Learning Analytics
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Learning Analytics
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Questions?
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