NIVERSITY of DELAWARE

Architecture and Programming Model
for High Performance Interactive
Computation

—Based on “Air Force Project—DDDAS”

UD Collaborates with MIT
Jack B. Dennis, Arvind, Guang R. Gao , Xiaoming Li and Lian-Ping Wang

Haitao Wei
CAPSL at UDEL

ECE Seminar 91714

1) UNIVERSITY of DELAWARE

Outline

Introduction to DDDAS/Interaction Computation
— An Example and Problems

Fresh Breeze Execution Model and Architecture

— Execution Model
— Memory Model
— Task Model

— Architecture
Compiler Framework for Fresh Breeze

Streaming and Transactions
— Stream Type and Operations
— Concurrency Operations of Transaction Style

NIVERSITY of DELAWARE

An Example of DDDAS/Interaction
Computation —Radio Astronomy

Receipt Filter signals Analvze
signals and control signgls

__

Make decision and
change parameters 2

UNIVERSITY of DELAWARE

Dynamic Data Driven Application System
(DDDAS)—Challenges

 real time interaction with parts of the physical
environment.

* management of processing and memory resources
according to dynamic needs generated by local events

 input and output devices process streams of data items

* make decisions about the work using transaction
processing

UNIVERSITY of DELAWARE

Our Solutions: Programming Model and
Architecture Support
 Fresh Breeze Execution Model and Architecture

— based on codelet execution model
— support fine-grained execution and memory management

« Streaming
— support streaming data expression and operations

« Transaction
— support concurrency operations of transaction style

1) UNIVERSITY of DELAWARE

Outline

Introduction to DDDAS/Interaction Computation
— An Example and Problems
Fresh Breeze Execution Model and Architecture

— Execution Model
— Memory Model
— Task Model

— Architecture
Compiler Framework for Fresh Breeze

Streaming and Transactions
— Stream Type and Operations
— Concurrency Operations of Transaction Style

) UNIVERSITY of DELAWARE

Case Studies of
Fine-Gran Execution Models

« Dataflow Model (1970s -)
 EARTH Model (1993 -2006)
« HTVM Model (2000 -2010)
* Fresh Breeze Model (2000 -)
« Codelet Model (2010-)

UNIVERSITY of DELAWARE

Fresh Breeze Execution Model

Task Model

A set of rules for creating, destroying and managing threads

Execution

Synchronization Model

Provide a set of mechanisms to protect from data races

Memory Model

Dictate the ordering of memory operations

The Abstract Machine

UNIVERSITY of DELAWARE

Fresh Breeze Memory Model

-- Main Features and Vision
Global shared name space with “one-level store”

A single-update storage model to eliminate the
cache-coherence problem

Concept of “sealed” memory chunks/sections
with single assigned property

Trees of fixed-sized chuncks
Fine-Grain memory management support

memory allocation and data transfer is performed
entirely by architecture/hardware mechanisms

8

1) UNIVERSITY of DELAWARE

Fresh Breeze Memory Model

Master
Chunk Data

—— Chunk

Arrays as Trees of Chunks

» Write Once then Read only

* Fix chunk size: 128 Bytes: 16
doubles, 32 integers,...

* Chunk handle: 64 bits unique

identifier

Arrays: Three levels yields 4096

elements(longs) 9

DAG heap

[] dataitem [chunk handle

UNIVERSITY of DELAWARE

Task/Concurrency Model

Master Task
l - Asynchronous
Spawned Tasks .
P tasking
spawn(n) =) e ~))
i - Continuation
: l | Task receives
I [Worker n-@ children’s results
| I l. - Non-blocking
! join_update join_update C(.)n t’ nua t:’ on
' - Light-Weight
join_fetch ¢m Join
Tasks

!

ContinuationTask

10

UNIVERSITY of DELAWARE

Example—Dot Product

sum=0;
for(i-0;i<16*16*16;i++)
sum+=A[i]*BJi];

Step1: BUI|d
Build Join-update Chun k

Vector Data Chunk

16 elements

\\ -~

11

UNIVERSITY of DELAWARE

Example—Dot Product

sum

sum=0;
for(i=0;i<16*%16*16;i++) partial
sum+=A[i]*BJi]; -

Traverse Traverse
~Vector Vector
- - - - b ~ -~ - ” ~ ~ ~
Computer - Compute - Compute - Compute
SN // \ /
LL X} LL X} eoee \ / LL X}
S / \ /7

N Vi /

Step2:
Compute

12

UNIVERSITY of DELAWARE

Fresh Breeze Architecture
-= a Massively Parallel Computing System

Mwwm“!!!! !!!! !!!! !!!!
ips

L2 Cache L2 Cache L2 Cache L2 Cache
Switch Switch
Main Memory:
Associative Directories and AD SRAM AD SRAM AD SRAM AD SRAM
DRAM
Switch
Archive Memory Level:
AD | FLASH AD | FLASH AD | FLASH AD | FLASH AD | FLASH
Access Controllers and Flash

* Many-core architecture with shared memory

« Argument Fetching Dataflow Processor Design

* Instruction Scheduler can be Sequential (single thread)
or Parallel (multithread)

« The cache memories are organized around chunks

 Memory system maps chunk handle to physical location

13

1) UNIVERSITY of DELAWARE

Outline

Introduction to DDDAS/Interaction Computation
— An Example and Problems

Fresh Breeze Execution Model and Architecture

— Execution Model
— Memory Model
— Task Model

— Architecture
Compiler Framework for Fresh Breeze

Streaming and Transactions
— Stream Type and Operations
— Concurrency Operations of Transaction Style

14

UNIVERSITY of DELAWARE

Fresh Breeze Compiler Framework

[Bytecode Class Files]—l Class Files Reader | - Javac compiles the source
code into java byte code
T J’ Class File Reader translates
| javac | [DFGS of Methods] bytecode into linear internal
3 representation and constructs
| | | Transform Graphs | data flow graph
[java] [sca|a] T * Transform identifies the data
parallelism, transform it into
[DFGS for Code|ets] for all parallel structure
I Construct Code converts

each DFG representing a

Construct Code .
| | codelet into FreshBreeze ISA

Processor +
Simulator Fresh Breeze Codelets]

15

NIVERSITY of DELAWARE

Data Flow Graph for Dot Product

g

G
_

¥

_

Sink

Intermediate representation in
the compiler

Hierarchical graph structure
Each structure has source
and sink node

Using ports to connect
different components

16

UNIVERSITY of DELAWARE

(oo T)

_——

DFG for a loop in
one codelet

ey)

Transform Component

DFG for parallelized
multiple codelets

* Analyze the loop to extract

the data parallelism

Create codelets to construct
the chunk tree for the data
representation

Create codelets to traverse
the tree and compute using
fork-join parallel pattern

17

UNIVERSITY of DELAWARE

Code Generation

DFG of one
codelet

)
v
.

Build Attribute Tree: notate
constant node, literal
operands ect.

« Perform Variable Assignment:

0] ISetLV: 0; ->D: 8 similar to register allocation
1]: 1SetLV:1;->D: 9 .

o Lot LV: G D 10 « Build Codelet: convert each
3]: IMove S0: 8; -> D: 12 :

4]: LMove S0: 10; -> D: 14 dataﬂOW nOde |nt0

5]: IflLeq SO: 12; S1: 3; Lab: 12 inStrUCtionS

6]: LoadFull H: 4; Off: 12; -> D: 16

7]: LoadFull H: 6; Off: 12; -> D: 18

8]: LMul S0: 16; S1: 18; -> D: 16

9]: LAdd S0O: 14; S1: 16; -> D: 14

10]: IAdd S0: 12; S1: 9; -> D: 12

11]: Jump Lab: 5

12]: SyncUpdate Sync: 0; Off: 2; Data: 14
13]: TaskQuit

Instruction of 18
FreshBreeze codelet

1) UNIVERSITY of DELAWARE

Outline

Introduction to DDDAS/Interaction Computation
— An Example and Problems

Fresh Breeze Execution Model and Architecture

— Execution Model
— Memory Model
— Task Model

— Architecture
Compiler Framework for Fresh Breeze

Streaming and Transactions
— Stream Type and Operations
— Concurrency Operations of Transaction Style

19

UNIVERSITY of DELAWARE

Stream Type and Operations

Stream: A sequence of values of type, maybe infinite

Define a stream

— Stream <Dataltem> inStream = new Stream <Dataltem>();
Dateltem can be any data type

Concatenate two streams

— Stream <Dataltem> strm1 =
strmO + new Stream <Dataltem>{i0, i1, ... }

Get first element in stream
— strm.first();

20

NIVERSITY of DELAWARE

Stream Type and Operations (cont’d)

 Remove the first element in stream
— Stream <Dataltem> strm1 = strmO.rest ()
— Stream <Dataltem> strm = strm.first () + strm.rest ()

* Append an data item to stream
— strm.append(item) ;

It is the end of data stream
— if (strm.moreData ()) { statement }

21

NIVERSITY of DELAWARE

Stream Implementation in FreshBreeze

« Stream representation

— alinear chain of chunks, each chunk holds data items and a
reference to the next chunk

« Stream operations

— FIFO queue operations on chain of chunks

— read from the head of the chain of chunks, write to the tail of the
chain of chunks

« Synchronization between Producer and Consumer
— Special Object: Future

22

UNIVERSITY of DELAWARE

Future

* A future is a memory cell with a state waiting to receive
a data value: status: undefined, defined, waiting

 Future Read and Future Write are Atomic

1. create future 2. T1 write future 3. T2 read future

undef | W) Dpata |defined W) | Data defined

T2 gets
Data

Read After Write

23

UNIVERSITY of DELAWARE

Future (Cont’d)

* A future is a memory cell with a state waiting to receive
a data value: status: undefined, defined, waiting

 Future Read and Future Write are Atomic

1. create future 2. T1 read future 3. T2 read future 4. T3 write future
undef [> [> iti [> Data | defined
T1 Data
T2 Read T2 Data

Write After Read

24

UNIVERSITY of DELAWARE

Stream Operation Based on Future

* Fresh Breeze Instruction Set Support 4 stream
operations

— New, Append, First and Rest

1. new stream

\) undef

25

NIVERSITY of DELAWARE

Stream Operation Based on Future

* Fresh Breeze Instruction Set Support 4 stream
operations

— New, Append, First and Rest

1. new stream 2. append

\)@ defined —> undef

26

NIVERSITY of DELAWARE

Stream Operation Based on Future

* Fresh Breeze Instruction Set Support 4 stream
operations

— New, Append, First and Rest

1. new stream 2. append 3. first

\)@ defined —> undef Datal

27

NIVERSITY of DELAWARE

Stream Operation Based on Future

* Fresh Breeze Instruction Set Support 4 stream
operations

— New, Append, First and Rest

1. new stream 2. append 3. first 4. rest

Datal \ undef

28

UNIVERSITY of DELAWARE

Concurrent Transactions

« Scenario: A Simple Shared Hash Table

— Shared by two concurrent users. Either user may search the
value corresponding to a key, and either user may add or delete
entries

— Using concurrent shared queue

UserA —>

Enter
—_—

Requests

Request Process
Queue Queue

UserB —

29

NIVERSITY of DELAWARE

Support Transaction Using Guard In
FreshBreeze

 Guard object

— special data object which can only be accessed by
GuardSwap instruction

 GuardSwap

— atomic instruction

— put the new data object into guard, and return the old data
object in guard

* For the Concurrent Request Example
— using a guard to “lock” the tail of the queue

— each request needs to get the guard before be added to the tail
of the queue

30

=) UNIVERSITY of DELAWARE

Concurrent Requests

Two requests arrive Request A

RA defined —> undef

head

>|RA defined —> undef

RB defined —> undef

Request B

31

) UNIVERSITY of DELAWARE

Concurrent Requests

Contend the guard

head

>|RA defined —>

guardSwap"’— Request A
(atomic),”
/
III RA defined —> undef
|
|
1
undef s
/
\\ RB defined —> undef
\

\
guardSwap,
(atomic)

~==-Request B

32

=) UNIVERSITY of DELAWARE

Concurrent Requests

and old tail

Request A gets the guard

head

guardSwap

(atomic)

{RA defined —>

undef

-

-

Request A
defined —> undef
defined —> undef

Request B

33

=) UNIVERSITY of DELAWARE

Concurrent Requests

Request A substitute the old
tail with the new request

head

>|RA defined

WriteFuture

(atomic)

RA

w

Request A

defined —>

undef

o

defined —>

undef

Request B

34

=) UNIVERSITY of DELAWARE

Concurrent Requests

Request B gets guard and Request A
add to the tail

RA defined

head

>|RA defined

defined —> undef

o

Request B

35

UNIVERSITY of DELAWARE

Project Status and Future Work

* Project Status
— SystemOne, the simulator of FreshBreeze with one core.

— Compiler framework which can handle perfect loop
transformation

e Future Work

— SystemTwo is under developing, simulator with multi-core

— Compiler framework is under developing which tries to handle
nested loops and complicated loops

— Stream and Transaction
— ISA improvements, for now only support integer
— New benchmarks

36

UNIVERSITY of DELAWARE

Acknowledgement

MIT : Prof. Jack Dennis, Prof. Arvind

UDEL: Prot. GuangR. Gao, Prof. Xiaoming Li and
Prof. Lian-Ping Wang

Students who worked and is working on the
project : Xiaoxuan Meng, Tom St. John, Yao Wu,
Chao Yang

And all CAPSL members who helped...

