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The State of the HPC World in 2005–2010
2005–2010: the Rise of Multi-Core Systems

2004–2005: Apparition of Multi-Core Systems

I The power wall leads to the first multi-core processors

I Memory wall: a major performance issue (See Wulf and McKee 1995)

I GPUs become more programmable (but still through dirty hacks)

2006–2007: Real Multi-Core Processors Appear

I Intel proposes “real” multi-core processors (but still use a front-side bus)

I AMD provides an efficient interconnect for NUMA architectures

I IBM unveils the POWER6, Cell B.E. and Cyclops-64

I Nvidia uncovers CUDA (No need to resort to dirty hacks anymore)

2008–2010: Toward “Many-Core” Compute Nodes

I Compute nodes start to propose a large number of cores
I e.g., 8-Core Intel Nehalem EX: 4×16 threads per node, with a NUMA Interconnect

I Nvidia commercializes boards dedicated to supercomputing
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Parallel Programming in 2005–2010

Meanwhile, in Versailles. . .

I 2006: Compiler transformation – Deep Jam

I 2007–2008: Methodology to fine-tune kernels on multicore systems

I 2009–2010: A balanced approach to application performance tuning

I 2010: Tackling cache line stealing in multicore systems

See Carribault et al. 2007; Zuckerman, Pérache, and Jalby 2008; Koliäı et al. 2009; Risio et al.

2009; Charif Rubial et al. 2009; Zuckerman and Jalby 2010

Main Parallel
Programming
Models

I MPI

I OpenMP

I CUDA
. . . for adventurers only

What to Expect for the Next Generation HPC
Systems?

I Core/thread count per processor is rising

I Amount of cache per core/thread is decreasing

I Memory is becoming a severe bottleneck
I Many people think coherence will have to go

How will we program the next parallel processors?
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2009; Charif Rubial et al. 2009; Zuckerman and Jalby 2010

Main Parallel
Programming
Models

I MPI

I OpenMP

I CUDA
. . . for adventurers only

What to Expect for the Next Generation HPC
Systems?

I Core/thread count per processor is rising

I Amount of cache per core/thread is decreasing

I Memory is becoming a severe bottleneck
I Many people think coherence will have to go

How will we program the next parallel processors?

S.Zuckerman Driving HPC Computing with Codelets 5 / 63



Outline

1 The State of the High-Performance Computing World in
2005–2010

2 A Short Introduction to Execution Models
The Von Neumann Model
The Dataflow Model

3 The Codelet Model: Harnessing Parallelism in Shared-Memory
Multi/Many Core Systems

4 DARTS: An Implementation of the Codelet Model
DARTS: Implementation of the Codelet Machine Model
DARTS: Experimental Results

Running DGEMM in DARTS
Running Graph500 in DARTS

5 Running DARTS on a Dataflow-Enabled Multi-Core Architecture
The TERAFLUX Project
Porting DARTS to COTSon
DARTS/COTSon: Experimental Results

6 The Future of Codelets
S.Zuckerman Driving HPC Computing with Codelets 6 / 63



A Short Introduction to Execution Models
The von Neumann Model – a High-Level View
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A Short Introduction to Execution Models
The von Neumann Model – Advantages and Limits

Advantages of the von Neumann Model

I Simple

I Can almost be implemented “directly”
I However nobody would design a processor this way nowadays

Limitations of the von Neumann Model

I Relies on a sequence of instructions

I Time is thus an integral part of the model

I Makes use of an accumulator: side-effects are inherent to the model
I Reduces the potential for parallelism

Working Around Those Limitations

I Duplicate several “von Neumann machines,” each with their own PC

I Add buses to share both memory and I/Os between processors

I . . . Is it still a von Neumann machine then?
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A Short Introduction to Execution Models
The (Static) Dataflow Model

t1

op

t2

op

t3

Static Dataflow Actors

Components of a regular actor:

I Input arcs which may contain at most 1 token each

I Output arcs which may contain at most 1 token each

I The operation provided by the actor

I Tokens

See Dennis, Fosseen, and Linderman 1972; Dennis 1974; Dennis and
Misunas 1974

Firing Rule: Static Dataflow

An actor may fire when:

I All of its input arcs contain a token, and

I Its output arcs are empty.
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A Short Introduction to Execution Models
An Example of Dataflow Program
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A Short Introduction to Execution Models
The Architecture Model of Static Dataflow

Opcode
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Figure : Inspired by J.Dennis’ article (Encyclopedia of Parallel Computing)
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A Short Introduction to Execution Models
Applying Our Example on the Static-DF Arch.
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The Codelet Model: Harnessing Parallelism
in Shared-Memory Multi/Many Core Systems

Objectives

I Fine-grain parallelism

I Scalable

I Expose maximal parallelism

I Limits non-determinism (determinate-by-default)

I Handles dynamic events (power, resiliency, resource constraints in
general)

Definition

A codelet is a sequence of machine instructions which act as an
atomically-scheduled unit of computation.

See DARPA-BAA-10-37 2010-2012; Carter et al. 2013; Department of Energy 2012–2014
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The Codelet Model: Harnessing Parallelism
in Shared-Memory Multi/Many Core Systems

Properties

I Event-driven (availability of data and resources)

I Communicates only through its inputs and
outputs

I Non-preemptive (with very specific exceptions)

I Requires all data and code to be “local”

See Zuckerman, Suetterlein, et al. 2011
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The Codelet Abstract Machine

See Zuckerman, Suetterlein, et al. 2011
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Codelet Graphs: Operational Semantics

Codelet Firing Rule

I Codelet actors are enabled once tokens are on each
input arc

I Codelet actors fire by
I consuming tokens
I performing the operations within the codelet
I producing a token on each of its output arcs

States of a Codelet

I Dormant: Not all tokens are available

I Enabled: All data tokens are available

I Ready: All tokens are available

I Active: The codelet is executing internal operations

See Zuckerman, Suetterlein, et al. 2011
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Threaded Procedures (TPs)

TPs are containers for codelet graphs, with additional meta-data.

Description

I Invoked in a control-flow manner

I Called by a codelet from
another CDG

I Feature a frame which contains
the context of the CDG

See Zuckerman, Suetterlein, et al. 2011
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An Example of Computation Using Threaded Procedures

See Zuckerman, Suetterlein, et al. 2011
S.Zuckerman Driving HPC Computing with Codelets 21 / 63
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DARTS: the Delaware Adaptive Run-Time System

Objectives

I Faithfulness to the codelet execution model

I Modularity
I So that portions of the runtime can be added or changed easily
I For example: we have several codelet schedulers from which to choose

I Portability: Object-oriented, written in C++98, and makes use of
open-source libraries:

I hwloc: to determine the topology of the underlying system (HW
threads/cores, caches, etc.)

I If present on the system, it uses Intel TBB’s lock-free queues

See Suetterlein, Zuckerman, and Gao 2013
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DARTS: Implementation of the Codelet Machine Model

I Computation Units (CUs) embed a single producer/consumer ring
buffer to store ready codelets

I Synchronization Units (SUs) embed two pools: Threaded Procedures
and ready codelets.

I Heavy reliance on lock-free data structures

I SUs can temporarily assume the role of CUs if all other CUs are busy
and there are ready codelets left to execute.
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See Suetterlein, Zuckerman, and Gao 2013
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Experimental Setup

AMD Opteron 6234 (Bulldozer) – Mills – 128 GiB DDR DRAM

Cache Level Shared By Size (KiB)

Clock (GHz) 2.4 L1 Data 1 core 16
Threads / core 1 L1 Instruction 1 core 64
Cores / socket 12 L2 Unified 2 cores 2048
Sockets / node 4 L3 Unified 6 cores 6144

Compiler gcc v4.6
Math Library AMD Core Math Library (ACML) v5.3

Note: FPUs are shared between 2 cores.

Intel Xeon E5-2670 (Sandy Bridge) – FatNode – 64 GiB DDR3 DRAM

Cache Level Shared By Size (KiB)

Clock (GHz) 2.6 L1 Data 2 threads 32
Threads / core 2 L1 Instruction 2 threads 32
Cores / socket 8 L2 Unified 2 threads 256
Sockets / node 2 L3 Unified 8 threads 20480

Compiler gcc v4.7
Math Library Intel Math Kernel Library (MKL) v11.1

Note: Functional units are shared between 2 threads.

S.Zuckerman Driving HPC Computing with Codelets 25 / 63



Running DGEMM in DARTS – Codelet Graph

Description of DGEMM

I Double precision GEneral Matrix Multiplication

I Used ACML or MKL as sequential building blocks (no tiling/blocking, etc.,
needed)

I We compared several codelet scheduling policies within a cluster of cores
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Figure : Our Codelet Graph decomposition for a parallel DGEMM

See Suetterlein, Zuckerman, and Gao 2013
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Running DGEMM in DARTS – Mills – Strong Scaling

Figure : 10000×10000 Square DGEMM – Strong Scaling.

See Suetterlein, Zuckerman, and Gao 2013

S.Zuckerman Driving HPC Computing with Codelets 27 / 63



Running DGEMM in DARTS – Mills – Weak Scaling

Figure : 48 cores – Square DGEMM – Weak Scaling.

See Suetterlein, Zuckerman, and Gao 2013
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Running DGEMM in DARTS – FatNode – Strong Scaling

Figure : 3072×3072 Square DGEMM – Strong Scaling.

S.Zuckerman Driving HPC Computing with Codelets 29 / 63



Running DGEMM in DARTS – FatNode – Weak Scaling

Figure : 32 threads – Square DGEMM – Weak Scaling.
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Running Graph500 in DARTS – Codelet Graph

Description of Graph500

I Reused reference code (http://graph500.org)

I Only modified the breadth-first search phase (BFS)

I Compared with reference OpenMP parallelization

I Unit: Traversed Edges Per Second (TEPS)
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See Suetterlein, Zuckerman, and Gao 2013
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Running Graph500 in DARTS – Mills – Strong Scaling

Figure : Scale = 218 – Graph500 – Strong Scaling

See Suetterlein, Zuckerman, and Gao 2013
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Running Graph500 in DARTS – Mills – Weak Scaling

Figure : 48 cores – Graph500 – Weak Scaling

See Suetterlein, Zuckerman, and Gao 2013
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Running Graph500 in DARTS – FatNode – Strong Scaling

Figure : Scale = 218 – Graph500 – Strong Scaling

See Suetterlein, Zuckerman, and Gao 2013
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Running Graph500 in DARTS – FatNode – Weak Scaling

Figure : 32 cores – Graph500 – Weak Scaling

See Suetterlein, Zuckerman, and Gao 2013
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A (Very!) Short Introduction to TERAFLUX

Project Objectives

Future Teradevice systems will expose a large amount of
parallelism (1000+ cores) that cannot be exploited efficiently by
current applications and programming models. The aim of this
project is to propose a complete solution that is able to harness
the large-scale parallelism in an efficient way. The main
objectives of the project are the programming model, compiler
analysis, and a scalable, reliable, architecture based mostly on
commodity components. Data-flow principles are exploited at all
levels as to overcome the current limitations.

For more details, see http://teraflux.eu

See Solinas et al. 2013; Giorgi et al. 2014; Zuckerman, Arteaga, et al. 2014
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The DF-Thread Model

I A DataFlow Thread (DF-Thread) is a non-preemptive piece of code
which is ready to be fired when all its data dependencies are met.

I I’ve heard that line somewhere. . .

I A DF-Frame contains all the data required by the DF-Thread to run.
I While there are dependencies left, a DF-Frame is write-only
I Once all dependencies are met, the frame becomes read-only

I The TERAFLUX abstract machine model features:
I A Thread Scheduling Unit (equivalent of the Codelet Model’s SU)
I A Fault-Detection Unit (to handle fault-tolerance)

See Solinas et al. 2013; Giorgi et al. 2014; Zuckerman, Arteaga, et al. 2014
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Porting DARTS to COTSon
Mapping Codelets to DF-Threads

I Two key differences:
I 1 level of parallelism (DF-Threads) vs. 2 (Codelets + TPs)
I Each DF-Thread has its own private frame
I All codelets belonging to a TP share the same TP frame (and data)

I DARTS maps each codelet to a DF-Thread, with a minimal DF-frame

I The TP frame shared by codelets siblings is allocated on the heap

I All codelets belonging to a TP are constrained to the same node

See Solinas et al. 2013; Giorgi et al. 2014; Zuckerman, Arteaga, et al. 2014
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Porting DARTS to COTSon
Implementation Details

I Adding a codelet to the graph during execution triggers the call to
df tschedule(&Fire,nb deps,sizeof(Codelet*))

I The Fire function is tasked to call the Codelet::fire() function and
then clean up after using df destroy()

I Threaded procedures are called using the
invoke<ThdProc>(parameters) function:

I Parameters are marshalled along with the TP type, and bundled within
a DF-Thread

I When firing, the DF-Thread allocates the TP on the heap, along with
all of its codelets

See Solinas et al. 2013; Giorgi et al. 2014; Zuckerman, Arteaga, et al. 2014
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DARTS/COTSon: Experimental Results
Experimental Setup

All latencies were obtained using CACTI. We used COTSon’s dynamic
samplers to measure time (sample = 5M instructions).

Private Size Number Cache Line Latency
/ Shared of Sets Size (Bytes)

L1D cache private 16 KiB 4 64 2
L1I cache private 32 KiB 4 64 2
L2U cache private 64 KiB 4 64 5
L3U cache shared 4 MiB 8 128 10

See Solinas et al. 2013; Giorgi et al. 2014; Zuckerman, Arteaga, et al. 2014
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Running Fibonacci in DARTS – TERAFLUX
Strong Scaling

Figure : Cutoff = 18 – Fibonacci – n = 36 – Strong Scaling

See Zuckerman, Arteaga, et al. 2014
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Running Fibonacci in DARTS – TERAFLUX
Weak Scaling

Figure : Cutoff = 18 – Fibonacci(n) – Weak Scaling

See Zuckerman, Arteaga, et al. 2014
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Running Merge Sort in DARTS – TERAFLUX
Strong Scaling

Figure : Cutoff = 18 – Merge Sort – n = 5M elements – Strong Scaling

See Zuckerman, Arteaga, et al. 2014
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Running Merge Sort in DARTS – TERAFLUX
Weak Scaling

Figure : Cutoff = 10000 – Merge Sort(n) – Weak Scaling

See Zuckerman, Arteaga, et al. 2014
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The Future of Codelets
The Story So Far

I We proposed the codelet execution model to answer the need for scalability, performance,
energy efficiency, fault-tolerance, and programmability

I Experimental results show that the Codelet Model can be competitive with current
multicore environments

I With hardware support, the Codelet Model displays very high potential to scale to large
numbers of cores
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Extending the Codelet Model
Extending Codelets to Self-Awareness

Codelet Graph
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See Zuckerman, Landwehr, et al. 2014 for more details.
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Extending the Codelet Model
Extending Codelets to Streams

Streaming Codelets Graph(SCG):  
Circles represent stream modules of 
codelets, arrows represent streams. 
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See Zuckerman, Wei, et al. 2014 for more details.
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Extending the Codelet Model
Extending Codelets to Streams
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A Short Introduction to Execution Models
The Synchronous Dataflow Model (Lee and Messerschmitt 1987)
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Synchronous Dataflow Actors

Components of a regular actor:

I Input arcs; each input arc il can contain a certain number
kl i of tokens

I Output arcs; each output arc o ′l can contain a certain
number k ′l ′ of tokens

I The operation provided by the actor

I Tokens

Firing Rule: Synchronous Dataflow (SDF)

An actor may fire when:

I Each of its input arcs in the tuple < i0, i1, · · · , ik−1 > contains at least
< n0,n1, · · · ,nk−1 > tokens, and

I The number of slots available on each of the output arcs
< o1,o2, · · · ,ok ′−1 > is sufficient to receive an additional count of n′ tokens.
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Other Dataflow Models

Dynamic Dataflow

I Allows for arbitrary recursions

I Relies on “color-matching:”
I Each iteration is assigned a “color,”
I An actor only fires if all tokens from the same color are present on its input arcs.

I Proved to provide maximum parallelism

I However: Color matching is slow (use of hash tables, . . . )

Macro-Dataflow

I Idea: Instead of relying on fine-grain, one-operation-at-a-time actors, let’s use a bunch of
instructions/operations in sequence within the actor

I Still relies on inputs and outputs, but now the buffers may become much bigger, due to
the amount of work and data required

I Offers a compromise to reduce the signaling overhead of fine-grain dataflow, token
matching, etc.

See Watson and Gurd 1982; Arvind and Culler 1986; Papadopoulos and Culler 1990; Arvind and
Gostelow 1982
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Extending the Codelet Model
Extending Codelets to Self-Awareness

Future extreme-scale systems will most likely feature thousands of cores on a chip, and deep
memory hierarchies. The Codelet Model was created with this in mind. However several
problems still need to be tackled:

I Memory movements are expected to cost much more than computations in terms of
energy consumption

I There will be a need for fine-grain resource management to target goals such as:

I Maximum or average power envelope during computation required by
the user

I Degree of parallelism in the application declared by the user
I Maximum acceptable temperature levels
I . . .

I We want to augment codelets and threaded procedures with meta-data which describe
their resource usage

I A low-level runtime will then be able to make smart decisions based on static meta-data
as well as updated data collected during the codelets executions

I The runtime will then be able to decide when to turn on/off parts of the manycore ships,
when to rely on DVFS techniques, etc.

See Zuckerman, Landwehr, et al. 2014 for more details.
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Extending the Codelet Model
Extending Codelets to Streams

Dataflow naturally maps to streams. However, the nature of future extreme-scale manycore
processors will most likely be widely different:

I Heterogeneity is already becoming a reality at the chip level

I AMD released its first Fusion processor (CPU+GPU on the same chip)
in 2013

I Next-generation Intel “co-processors” will be on package with
traditional multicore chips

I Nvidia just recently produced an accelerator board which embed arm
processors to deal with more control-heavy workloads

I We predict heterogeneity will be ingrained at a much deeper level in processors

I This is a great opportunity to do research in that direction — and in particular by
targeting streams

The NSF just accepted to provide funding to explore this venue. A high-level view of our

objectives was recently published. See Zuckerman, Wei, et al. 2014 for more details.
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