
Toward Extreme-Scale High-Performance
Computing Using a Fine-Grain Dataflow-Inspired

Execution Model

Stéphane Zuckerman

Computer Architecture & Parallel Systems Laboratory
Electrical & Computer Engineering Dept.

University of Delaware
140 Evans Hall Newark,DE 19716, United States

September 10, 2014

S.Zuckerman Driving HPC Computing with Codelets 1 / 63

Outline

1 The State of the High-Performance Computing World in
2005–2010

2 A Short Introduction to Execution Models
The Von Neumann Model
The Dataflow Model

3 The Codelet Model: Harnessing Parallelism in Shared-Memory
Multi/Many Core Systems

4 DARTS: An Implementation of the Codelet Model
DARTS: Implementation of the Codelet Machine Model
DARTS: Experimental Results

Running DGEMM in DARTS
Running Graph500 in DARTS

5 Running DARTS on a Dataflow-Enabled Multi-Core Architecture
The TERAFLUX Project
Porting DARTS to COTSon
DARTS/COTSon: Experimental Results

6 The Future of Codelets
S.Zuckerman Driving HPC Computing with Codelets 2 / 63

Outline

1 The State of the High-Performance Computing World in
2005–2010

2 A Short Introduction to Execution Models
The Von Neumann Model
The Dataflow Model

3 The Codelet Model: Harnessing Parallelism in Shared-Memory
Multi/Many Core Systems

4 DARTS: An Implementation of the Codelet Model
DARTS: Implementation of the Codelet Machine Model
DARTS: Experimental Results

Running DGEMM in DARTS
Running Graph500 in DARTS

5 Running DARTS on a Dataflow-Enabled Multi-Core Architecture
The TERAFLUX Project
Porting DARTS to COTSon
DARTS/COTSon: Experimental Results

6 The Future of Codelets
S.Zuckerman Driving HPC Computing with Codelets 3 / 63

The State of the HPC World in 2005–2010
2005–2010: the Rise of Multi-Core Systems

2004–2005: Apparition of Multi-Core Systems

I The power wall leads to the first multi-core processors

I Memory wall: a major performance issue (See Wulf and McKee 1995)

I GPUs become more programmable (but still through dirty hacks)

2006–2007: Real Multi-Core Processors Appear

I Intel proposes “real” multi-core processors (but still use a front-side bus)

I AMD provides an efficient interconnect for NUMA architectures

I IBM unveils the POWER6, Cell B.E. and Cyclops-64

I Nvidia uncovers CUDA (No need to resort to dirty hacks anymore)

2008–2010: Toward “Many-Core” Compute Nodes

I Compute nodes start to propose a large number of cores
I e.g., 8-Core Intel Nehalem EX: 4×16 threads per node, with a NUMA Interconnect

I Nvidia commercializes boards dedicated to supercomputing

S.Zuckerman Driving HPC Computing with Codelets 4 / 63

The State of the HPC World in 2005–2010
2005–2010: the Rise of Multi-Core Systems

2004–2005: Apparition of Multi-Core Systems

I The power wall leads to the first multi-core processors

I Memory wall: a major performance issue (See Wulf and McKee 1995)

I GPUs become more programmable (but still through dirty hacks)

2006–2007: Real Multi-Core Processors Appear

I Intel proposes “real” multi-core processors (but still use a front-side bus)

I AMD provides an efficient interconnect for NUMA architectures

I IBM unveils the POWER6, Cell B.E. and Cyclops-64

I Nvidia uncovers CUDA (No need to resort to dirty hacks anymore)

2008–2010: Toward “Many-Core” Compute Nodes

I Compute nodes start to propose a large number of cores
I e.g., 8-Core Intel Nehalem EX: 4×16 threads per node, with a NUMA Interconnect

I Nvidia commercializes boards dedicated to supercomputing

S.Zuckerman Driving HPC Computing with Codelets 4 / 63

The State of the HPC World in 2005–2010
2005–2010: the Rise of Multi-Core Systems

2004–2005: Apparition of Multi-Core Systems

I The power wall leads to the first multi-core processors

I Memory wall: a major performance issue (See Wulf and McKee 1995)

I GPUs become more programmable (but still through dirty hacks)

2006–2007: Real Multi-Core Processors Appear

I Intel proposes “real” multi-core processors (but still use a front-side bus)

I AMD provides an efficient interconnect for NUMA architectures

I IBM unveils the POWER6, Cell B.E. and Cyclops-64

I Nvidia uncovers CUDA (No need to resort to dirty hacks anymore)

2008–2010: Toward “Many-Core” Compute Nodes

I Compute nodes start to propose a large number of cores
I e.g., 8-Core Intel Nehalem EX: 4×16 threads per node, with a NUMA Interconnect

I Nvidia commercializes boards dedicated to supercomputing

S.Zuckerman Driving HPC Computing with Codelets 4 / 63

Parallel Programming in 2005–2010

Meanwhile, in Versailles. . .

I 2006: Compiler transformation – Deep Jam

I 2007–2008: Methodology to fine-tune kernels on multicore systems

I 2009–2010: A balanced approach to application performance tuning

I 2010: Tackling cache line stealing in multicore systems

See Carribault et al. 2007; Zuckerman, Pérache, and Jalby 2008; Koliäı et al. 2009; Risio et al.

2009; Charif Rubial et al. 2009; Zuckerman and Jalby 2010

Main Parallel
Programming
Models

I MPI

I OpenMP

I CUDA
. . . for adventurers only

What to Expect for the Next Generation HPC
Systems?

I Core/thread count per processor is rising

I Amount of cache per core/thread is decreasing

I Memory is becoming a severe bottleneck
I Many people think coherence will have to go

How will we program the next parallel processors?

S.Zuckerman Driving HPC Computing with Codelets 5 / 63

Parallel Programming in 2005–2010

Meanwhile, in Versailles. . .

I 2006: Compiler transformation – Deep Jam

I 2007–2008: Methodology to fine-tune kernels on multicore systems

I 2009–2010: A balanced approach to application performance tuning

I 2010: Tackling cache line stealing in multicore systems

See Carribault et al. 2007; Zuckerman, Pérache, and Jalby 2008; Koliäı et al. 2009; Risio et al.

2009; Charif Rubial et al. 2009; Zuckerman and Jalby 2010

Main Parallel
Programming
Models

I MPI

I OpenMP

I CUDA
. . . for adventurers only

What to Expect for the Next Generation HPC
Systems?

I Core/thread count per processor is rising

I Amount of cache per core/thread is decreasing

I Memory is becoming a severe bottleneck
I Many people think coherence will have to go

How will we program the next parallel processors?

S.Zuckerman Driving HPC Computing with Codelets 5 / 63

Parallel Programming in 2005–2010

Meanwhile, in Versailles. . .

I 2006: Compiler transformation – Deep Jam

I 2007–2008: Methodology to fine-tune kernels on multicore systems

I 2009–2010: A balanced approach to application performance tuning

I 2010: Tackling cache line stealing in multicore systems

See Carribault et al. 2007; Zuckerman, Pérache, and Jalby 2008; Koliäı et al. 2009; Risio et al.

2009; Charif Rubial et al. 2009; Zuckerman and Jalby 2010

Main Parallel
Programming
Models

I MPI

I OpenMP

I CUDA
. . . for adventurers only

What to Expect for the Next Generation HPC
Systems?

I Core/thread count per processor is rising

I Amount of cache per core/thread is decreasing

I Memory is becoming a severe bottleneck
I Many people think coherence will have to go

How will we program the next parallel processors?

S.Zuckerman Driving HPC Computing with Codelets 5 / 63

Outline

1 The State of the High-Performance Computing World in
2005–2010

2 A Short Introduction to Execution Models
The Von Neumann Model
The Dataflow Model

3 The Codelet Model: Harnessing Parallelism in Shared-Memory
Multi/Many Core Systems

4 DARTS: An Implementation of the Codelet Model
DARTS: Implementation of the Codelet Machine Model
DARTS: Experimental Results

Running DGEMM in DARTS
Running Graph500 in DARTS

5 Running DARTS on a Dataflow-Enabled Multi-Core Architecture
The TERAFLUX Project
Porting DARTS to COTSon
DARTS/COTSon: Experimental Results

6 The Future of Codelets
S.Zuckerman Driving HPC Computing with Codelets 6 / 63

A Short Introduction to Execution Models
The von Neumann Model – a High-Level View

Outputs (displays, LED, HDD, ...)

Inputs (kbd, mouse, HDD, ...)

I/Os

MAR MDR

Memory

Control
Unit

Processing
Unit

CPU
Central Processing Unit

A
d

dr
es

s
B

us

D
a

ta
 B

us

C
on

tr
ol

 B
us

S.Zuckerman Driving HPC Computing with Codelets 7 / 63

A Short Introduction to Execution Models
The von Neumann Model – Advantages and Limits

Advantages of the von Neumann Model

I Simple

I Can almost be implemented “directly”
I However nobody would design a processor this way nowadays

Limitations of the von Neumann Model

I Relies on a sequence of instructions

I Time is thus an integral part of the model

I Makes use of an accumulator: side-effects are inherent to the model
I Reduces the potential for parallelism

Working Around Those Limitations

I Duplicate several “von Neumann machines,” each with their own PC

I Add buses to share both memory and I/Os between processors

I . . . Is it still a von Neumann machine then?

S.Zuckerman Driving HPC Computing with Codelets 8 / 63

A Short Introduction to Execution Models
The (Static) Dataflow Model

t1

op

t2

op

t3

Static Dataflow Actors

Components of a regular actor:

I Input arcs which may contain at most 1 token each

I Output arcs which may contain at most 1 token each

I The operation provided by the actor

I Tokens

See Dennis, Fosseen, and Linderman 1972; Dennis 1974; Dennis and
Misunas 1974

Firing Rule: Static Dataflow

An actor may fire when:

I All of its input arcs contain a token, and

I Its output arcs are empty.

S.Zuckerman Driving HPC Computing with Codelets 9 / 63

A Short Introduction to Execution Models
The (Static) Dataflow Model

t1

op

t2

op

t3

Static Dataflow Actors

Components of a regular actor:

I Input arcs which may contain at most 1 token each

I Output arcs which may contain at most 1 token each

I The operation provided by the actor

I Tokens

See Dennis, Fosseen, and Linderman 1972; Dennis 1974; Dennis and
Misunas 1974

Firing Rule: Static Dataflow

An actor may fire when:

I All of its input arcs contain a token, and

I Its output arcs are empty.

S.Zuckerman Driving HPC Computing with Codelets 9 / 63

A Short Introduction to Execution Models
The (Static) Dataflow Model

t1

op

t2

op

t3

Static Dataflow Actors

Components of a regular actor:

I Input arcs which may contain at most 1 token each

I Output arcs which may contain at most 1 token each

I The operation provided by the actor

I Tokens

See Dennis, Fosseen, and Linderman 1972; Dennis 1974; Dennis and
Misunas 1974

Firing Rule: Static Dataflow

An actor may fire when:

I All of its input arcs contain a token, and

I Its output arcs are empty.

S.Zuckerman Driving HPC Computing with Codelets 9 / 63

A Short Introduction to Execution Models
The (Static) Dataflow Model

t1

op

t2

op

t3

Static Dataflow Actors

Components of a regular actor:

I Input arcs which may contain at most 1 token each

I Output arcs which may contain at most 1 token each

I The operation provided by the actor

I Tokens

See Dennis, Fosseen, and Linderman 1972; Dennis 1974; Dennis and
Misunas 1974

Firing Rule: Static Dataflow

An actor may fire when:

I All of its input arcs contain a token, and

I Its output arcs are empty.

S.Zuckerman Driving HPC Computing with Codelets 9 / 63

A Short Introduction to Execution Models
An Example of Dataflow Program

S.Zuckerman Driving HPC Computing with Codelets 10 / 63

A Short Introduction to Execution Models
An Example of Dataflow Program

S.Zuckerman Driving HPC Computing with Codelets 11 / 63

A Short Introduction to Execution Models
An Example of Dataflow Program

S.Zuckerman Driving HPC Computing with Codelets 12 / 63

A Short Introduction to Execution Models
The Architecture Model of Static Dataflow

Opcode

Operand A

Operand B

Destination 1

Destination 2

Activity Template

Function
Units

Send

Instruction Queue

Fetch
Unit

Activity
Store

Update
Unit

Receive

Interprocessor
Network

processor

processor

Interprocessor
Network

Figure : Inspired by J.Dennis’ article (Encyclopedia of Parallel Computing)

S.Zuckerman Driving HPC Computing with Codelets 13 / 63

A Short Introduction to Execution Models
Applying Our Example on the Static-DF Arch.

3 10

+

×
×
3
10
+

<empty>

Activity Template

+
3
30
out...
<empty>

Activity Template

propagate

3
<empty>

+
<empty>

Activity Template

Figure : Inspired by J.Dennis’ article (Encyclopedia of Parallel Computing)S.Zuckerman Driving HPC Computing with Codelets 14 / 63

Outline

1 The State of the High-Performance Computing World in
2005–2010

2 A Short Introduction to Execution Models
The Von Neumann Model
The Dataflow Model

3 The Codelet Model: Harnessing Parallelism in Shared-Memory
Multi/Many Core Systems

4 DARTS: An Implementation of the Codelet Model
DARTS: Implementation of the Codelet Machine Model
DARTS: Experimental Results

Running DGEMM in DARTS
Running Graph500 in DARTS

5 Running DARTS on a Dataflow-Enabled Multi-Core Architecture
The TERAFLUX Project
Porting DARTS to COTSon
DARTS/COTSon: Experimental Results

6 The Future of Codelets
S.Zuckerman Driving HPC Computing with Codelets 15 / 63

The Codelet Model: Harnessing Parallelism
in Shared-Memory Multi/Many Core Systems

Objectives

I Fine-grain parallelism

I Scalable

I Expose maximal parallelism

I Limits non-determinism (determinate-by-default)

I Handles dynamic events (power, resiliency, resource constraints in
general)

Definition

A codelet is a sequence of machine instructions which act as an
atomically-scheduled unit of computation.

See DARPA-BAA-10-37 2010-2012; Carter et al. 2013; Department of Energy 2012–2014

S.Zuckerman Driving HPC Computing with Codelets 16 / 63

The Codelet Model: Harnessing Parallelism
in Shared-Memory Multi/Many Core Systems

Properties

I Event-driven (availability of data and resources)

I Communicates only through its inputs and
outputs

I Non-preemptive (with very specific exceptions)

I Requires all data and code to be “local”

See Zuckerman, Suetterlein, et al. 2011

S.Zuckerman Driving HPC Computing with Codelets 17 / 63

The Codelet Abstract Machine

See Zuckerman, Suetterlein, et al. 2011

S.Zuckerman Driving HPC Computing with Codelets 18 / 63

Codelet Graphs: Operational Semantics

Codelet Firing Rule

I Codelet actors are enabled once tokens are on each
input arc

I Codelet actors fire by
I consuming tokens
I performing the operations within the codelet
I producing a token on each of its output arcs

States of a Codelet

I Dormant: Not all tokens are available

I Enabled: All data tokens are available

I Ready: All tokens are available

I Active: The codelet is executing internal operations

See Zuckerman, Suetterlein, et al. 2011

S.Zuckerman Driving HPC Computing with Codelets 19 / 63

Threaded Procedures (TPs)

TPs are containers for codelet graphs, with additional meta-data.

Description

I Invoked in a control-flow manner

I Called by a codelet from
another CDG

I Feature a frame which contains
the context of the CDG

See Zuckerman, Suetterlein, et al. 2011

S.Zuckerman Driving HPC Computing with Codelets 20 / 63

An Example of Computation Using Threaded Procedures

See Zuckerman, Suetterlein, et al. 2011
S.Zuckerman Driving HPC Computing with Codelets 21 / 63

Outline

1 The State of the High-Performance Computing World in
2005–2010

2 A Short Introduction to Execution Models
The Von Neumann Model
The Dataflow Model

3 The Codelet Model: Harnessing Parallelism in Shared-Memory
Multi/Many Core Systems

4 DARTS: An Implementation of the Codelet Model
DARTS: Implementation of the Codelet Machine Model
DARTS: Experimental Results

Running DGEMM in DARTS
Running Graph500 in DARTS

5 Running DARTS on a Dataflow-Enabled Multi-Core Architecture
The TERAFLUX Project
Porting DARTS to COTSon
DARTS/COTSon: Experimental Results

6 The Future of Codelets
S.Zuckerman Driving HPC Computing with Codelets 22 / 63

DARTS: the Delaware Adaptive Run-Time System

Objectives

I Faithfulness to the codelet execution model

I Modularity
I So that portions of the runtime can be added or changed easily
I For example: we have several codelet schedulers from which to choose

I Portability: Object-oriented, written in C++98, and makes use of
open-source libraries:

I hwloc: to determine the topology of the underlying system (HW
threads/cores, caches, etc.)

I If present on the system, it uses Intel TBB’s lock-free queues

See Suetterlein, Zuckerman, and Gao 2013

S.Zuckerman Driving HPC Computing with Codelets 23 / 63

DARTS: Implementation of the Codelet Machine Model

I Computation Units (CUs) embed a single producer/consumer ring
buffer to store ready codelets

I Synchronization Units (SUs) embed two pools: Threaded Procedures
and ready codelets.

I Heavy reliance on lock-free data structures

I SUs can temporarily assume the role of CUs if all other CUs are busy
and there are ready codelets left to execute.

Node Node

Node Node

Interconnect

...

...

.....
. Interconnect

Node

DRAMDRAM

ChipChip

...

...

Interconnect

Chip

ClusterCluster ...

ClusterCluster ...

Interconnect

SUMemory

CUCU

Cluster

Memory

...

Compute Unit
(Light Core)

Scheduling Unit
(Heavy Core)

See Suetterlein, Zuckerman, and Gao 2013

S.Zuckerman Driving HPC Computing with Codelets 24 / 63

Experimental Setup

AMD Opteron 6234 (Bulldozer) – Mills – 128 GiB DDR DRAM

Cache Level Shared By Size (KiB)

Clock (GHz) 2.4 L1 Data 1 core 16
Threads / core 1 L1 Instruction 1 core 64
Cores / socket 12 L2 Unified 2 cores 2048
Sockets / node 4 L3 Unified 6 cores 6144

Compiler gcc v4.6
Math Library AMD Core Math Library (ACML) v5.3

Note: FPUs are shared between 2 cores.

Intel Xeon E5-2670 (Sandy Bridge) – FatNode – 64 GiB DDR3 DRAM

Cache Level Shared By Size (KiB)

Clock (GHz) 2.6 L1 Data 2 threads 32
Threads / core 2 L1 Instruction 2 threads 32
Cores / socket 8 L2 Unified 2 threads 256
Sockets / node 2 L3 Unified 8 threads 20480

Compiler gcc v4.7
Math Library Intel Math Kernel Library (MKL) v11.1

Note: Functional units are shared between 2 threads.

S.Zuckerman Driving HPC Computing with Codelets 25 / 63

Running DGEMM in DARTS – Codelet Graph

Description of DGEMM

I Double precision GEneral Matrix Multiplication

I Used ACML or MKL as sequential building blocks (no tiling/blocking, etc.,
needed)

I We compared several codelet scheduling policies within a cluster of cores

Rows 4

Rows 3

Rows 2

Rows 1

Matrix A Matrix C

C
o

lu
m

n
s

3

M
at

ri
x

B

C
o

lu
m

n
s

2

C
o

lu
m

n
s

1

Col.
1

Col.
2

Col.
3

CD
Loop

Col.
1

Col.
2

Col.
3

CD
Loop

Col.
1

Col.
2

Col.
3

CD
Loop

Col.
1

Col.
2

Col.
3

CD
Loop

TP
Loop

Row 1 Row 2 Row 3 Row 4

Figure : Our Codelet Graph decomposition for a parallel DGEMM

See Suetterlein, Zuckerman, and Gao 2013

S.Zuckerman Driving HPC Computing with Codelets 26 / 63

Running DGEMM in DARTS – Mills – Strong Scaling

Figure : 10000×10000 Square DGEMM – Strong Scaling.

See Suetterlein, Zuckerman, and Gao 2013

S.Zuckerman Driving HPC Computing with Codelets 27 / 63

Running DGEMM in DARTS – Mills – Weak Scaling

Figure : 48 cores – Square DGEMM – Weak Scaling.

See Suetterlein, Zuckerman, and Gao 2013

S.Zuckerman Driving HPC Computing with Codelets 28 / 63

Running DGEMM in DARTS – FatNode – Strong Scaling

Figure : 3072×3072 Square DGEMM – Strong Scaling.

S.Zuckerman Driving HPC Computing with Codelets 29 / 63

Running DGEMM in DARTS – FatNode – Weak Scaling

Figure : 32 threads – Square DGEMM – Weak Scaling.

S.Zuckerman Driving HPC Computing with Codelets 30 / 63

Running Graph500 in DARTS – Codelet Graph

Description of Graph500

I Reused reference code (http://graph500.org)

I Only modified the breadth-first search phase (BFS)

I Compared with reference OpenMP parallelization

I Unit: Traversed Edges Per Second (TEPS)

Iter.
1

Iter.
...

Iter.
N

CD
Loop

Iter.
1

Iter.
...

Iter.
N

CD
Loop

Iter.
1

Iter.
N

CD
Loop

TP
Loop

Iter. 1

Iter. N

CodeletTP Dependence Conditional Signal

See Suetterlein, Zuckerman, and Gao 2013

S.Zuckerman Driving HPC Computing with Codelets 31 / 63

http://graph500.org

Running Graph500 in DARTS – Mills – Strong Scaling

Figure : Scale = 218 – Graph500 – Strong Scaling

See Suetterlein, Zuckerman, and Gao 2013

S.Zuckerman Driving HPC Computing with Codelets 32 / 63

Running Graph500 in DARTS – Mills – Weak Scaling

Figure : 48 cores – Graph500 – Weak Scaling

See Suetterlein, Zuckerman, and Gao 2013

S.Zuckerman Driving HPC Computing with Codelets 33 / 63

Running Graph500 in DARTS – FatNode – Strong Scaling

Figure : Scale = 218 – Graph500 – Strong Scaling

See Suetterlein, Zuckerman, and Gao 2013

S.Zuckerman Driving HPC Computing with Codelets 34 / 63

Running Graph500 in DARTS – FatNode – Weak Scaling

Figure : 32 cores – Graph500 – Weak Scaling

See Suetterlein, Zuckerman, and Gao 2013

S.Zuckerman Driving HPC Computing with Codelets 35 / 63

Outline

1 The State of the High-Performance Computing World in
2005–2010

2 A Short Introduction to Execution Models
The Von Neumann Model
The Dataflow Model

3 The Codelet Model: Harnessing Parallelism in Shared-Memory
Multi/Many Core Systems

4 DARTS: An Implementation of the Codelet Model
DARTS: Implementation of the Codelet Machine Model
DARTS: Experimental Results

Running DGEMM in DARTS
Running Graph500 in DARTS

5 Running DARTS on a Dataflow-Enabled Multi-Core Architecture
The TERAFLUX Project
Porting DARTS to COTSon
DARTS/COTSon: Experimental Results

6 The Future of Codelets
S.Zuckerman Driving HPC Computing with Codelets 36 / 63

A (Very!) Short Introduction to TERAFLUX

Project Objectives

Future Teradevice systems will expose a large amount of
parallelism (1000+ cores) that cannot be exploited efficiently by
current applications and programming models. The aim of this
project is to propose a complete solution that is able to harness
the large-scale parallelism in an efficient way. The main
objectives of the project are the programming model, compiler
analysis, and a scalable, reliable, architecture based mostly on
commodity components. Data-flow principles are exploited at all
levels as to overcome the current limitations.

For more details, see http://teraflux.eu

See Solinas et al. 2013; Giorgi et al. 2014; Zuckerman, Arteaga, et al. 2014

S.Zuckerman Driving HPC Computing with Codelets 37 / 63

http://teraflux.eu

The DF-Thread Model

I A DataFlow Thread (DF-Thread) is a non-preemptive piece of code
which is ready to be fired when all its data dependencies are met.

I I’ve heard that line somewhere. . .

I A DF-Frame contains all the data required by the DF-Thread to run.
I While there are dependencies left, a DF-Frame is write-only
I Once all dependencies are met, the frame becomes read-only

I The TERAFLUX abstract machine model features:
I A Thread Scheduling Unit (equivalent of the Codelet Model’s SU)
I A Fault-Detection Unit (to handle fault-tolerance)

See Solinas et al. 2013; Giorgi et al. 2014; Zuckerman, Arteaga, et al. 2014

S.Zuckerman Driving HPC Computing with Codelets 38 / 63

The DF-Thread Model

I A DataFlow Thread (DF-Thread) is a non-preemptive piece of code
which is ready to be fired when all its data dependencies are met.

I I’ve heard that line somewhere. . .

I A DF-Frame contains all the data required by the DF-Thread to run.
I While there are dependencies left, a DF-Frame is write-only
I Once all dependencies are met, the frame becomes read-only

I The TERAFLUX abstract machine model features:
I A Thread Scheduling Unit (equivalent of the Codelet Model’s SU)
I A Fault-Detection Unit (to handle fault-tolerance)

See Solinas et al. 2013; Giorgi et al. 2014; Zuckerman, Arteaga, et al. 2014

S.Zuckerman Driving HPC Computing with Codelets 38 / 63

Porting DARTS to COTSon
Mapping Codelets to DF-Threads

I Two key differences:
I 1 level of parallelism (DF-Threads) vs. 2 (Codelets + TPs)
I Each DF-Thread has its own private frame
I All codelets belonging to a TP share the same TP frame (and data)

I DARTS maps each codelet to a DF-Thread, with a minimal DF-frame

I The TP frame shared by codelets siblings is allocated on the heap

I All codelets belonging to a TP are constrained to the same node

See Solinas et al. 2013; Giorgi et al. 2014; Zuckerman, Arteaga, et al. 2014

S.Zuckerman Driving HPC Computing with Codelets 39 / 63

Porting DARTS to COTSon
Implementation Details

I Adding a codelet to the graph during execution triggers the call to
df tschedule(&Fire,nb deps,sizeof(Codelet*))

I The Fire function is tasked to call the Codelet::fire() function and
then clean up after using df destroy()

I Threaded procedures are called using the
invoke<ThdProc>(parameters) function:

I Parameters are marshalled along with the TP type, and bundled within
a DF-Thread

I When firing, the DF-Thread allocates the TP on the heap, along with
all of its codelets

See Solinas et al. 2013; Giorgi et al. 2014; Zuckerman, Arteaga, et al. 2014

S.Zuckerman Driving HPC Computing with Codelets 40 / 63

DARTS/COTSon: Experimental Results
Experimental Setup

All latencies were obtained using CACTI. We used COTSon’s dynamic
samplers to measure time (sample = 5M instructions).

Private Size Number Cache Line Latency
/ Shared of Sets Size (Bytes)

L1D cache private 16 KiB 4 64 2
L1I cache private 32 KiB 4 64 2
L2U cache private 64 KiB 4 64 5
L3U cache shared 4 MiB 8 128 10

See Solinas et al. 2013; Giorgi et al. 2014; Zuckerman, Arteaga, et al. 2014

S.Zuckerman Driving HPC Computing with Codelets 41 / 63

Running Fibonacci in DARTS – TERAFLUX
Strong Scaling

Figure : Cutoff = 18 – Fibonacci – n = 36 – Strong Scaling

See Zuckerman, Arteaga, et al. 2014

S.Zuckerman Driving HPC Computing with Codelets 42 / 63

Running Fibonacci in DARTS – TERAFLUX
Weak Scaling

Figure : Cutoff = 18 – Fibonacci(n) – Weak Scaling

See Zuckerman, Arteaga, et al. 2014

S.Zuckerman Driving HPC Computing with Codelets 43 / 63

Running Merge Sort in DARTS – TERAFLUX
Strong Scaling

Figure : Cutoff = 18 – Merge Sort – n = 5M elements – Strong Scaling

See Zuckerman, Arteaga, et al. 2014

S.Zuckerman Driving HPC Computing with Codelets 44 / 63

Running Merge Sort in DARTS – TERAFLUX
Weak Scaling

Figure : Cutoff = 10000 – Merge Sort(n) – Weak Scaling

See Zuckerman, Arteaga, et al. 2014
S.Zuckerman Driving HPC Computing with Codelets 45 / 63

Outline

1 The State of the High-Performance Computing World in
2005–2010

2 A Short Introduction to Execution Models
The Von Neumann Model
The Dataflow Model

3 The Codelet Model: Harnessing Parallelism in Shared-Memory
Multi/Many Core Systems

4 DARTS: An Implementation of the Codelet Model
DARTS: Implementation of the Codelet Machine Model
DARTS: Experimental Results

Running DGEMM in DARTS
Running Graph500 in DARTS

5 Running DARTS on a Dataflow-Enabled Multi-Core Architecture
The TERAFLUX Project
Porting DARTS to COTSon
DARTS/COTSon: Experimental Results

6 The Future of Codelets
S.Zuckerman Driving HPC Computing with Codelets 46 / 63

The Future of Codelets
The Story So Far

I We proposed the codelet execution model to answer the need for scalability, performance,
energy efficiency, fault-tolerance, and programmability

I Experimental results show that the Codelet Model can be competitive with current
multicore environments

I With hardware support, the Codelet Model displays very high potential to scale to large
numbers of cores

S.Zuckerman Driving HPC Computing with Codelets 47 / 63

The Future of Codelets
The Story So Far

I We proposed the codelet execution model to answer the need for scalability, performance,
energy efficiency, fault-tolerance, and programmability

I Experimental results show that the Codelet Model can be competitive with current
multicore environments

I With hardware support, the Codelet Model displays very high potential to scale to large
numbers of cores

S.Zuckerman Driving HPC Computing with Codelets 47 / 63

The Future of Codelets
The Story So Far

I We proposed the codelet execution model to answer the need for scalability, performance,
energy efficiency, fault-tolerance, and programmability

I Experimental results show that the Codelet Model can be competitive with current
multicore environments

I With hardware support, the Codelet Model displays very high potential to scale to large
numbers of cores

S.Zuckerman Driving HPC Computing with Codelets 47 / 63

The Future of Codelets
The Story So Far

I We proposed the codelet execution model to answer the need for scalability, performance,
energy efficiency, fault-tolerance, and programmability

I Experimental results show that the Codelet Model can be competitive with current
multicore environments

I With hardware support, the Codelet Model displays very high potential to scale to large
numbers of cores

S.Zuckerman Driving HPC Computing with Codelets 47 / 63

The Future of Codelets
The Story So Far

I We proposed the codelet execution model to answer the need for scalability, performance,
energy efficiency, fault-tolerance, and programmability

I Experimental results show that the Codelet Model can be competitive with current
multicore environments

I With hardware support, the Codelet Model displays very high potential to scale to large
numbers of cores

S.Zuckerman Driving HPC Computing with Codelets 47 / 63

Extending the Codelet Model
Extending Codelets to Self-Awareness

Codelet Graph

SU

CU

Interconnect
Observe

Decide

Act

...

...

...

SU

CU

 .

 .

Cluster

Cluster

Interconnect

Cluster

Cluster

 .

 .

Chip

Chip

Interconnect

Chip

Chip

 .

 .
Interconnect

Node

Node

Node

Node

...

...

Codelet Metadata

...

...

TP Metadata

SU

See Zuckerman, Landwehr, et al. 2014 for more details.

S.Zuckerman Driving HPC Computing with Codelets 48 / 63

Extending the Codelet Model
Extending Codelets to Streams

Streaming Codelets Graph(SCG):
Circles represent stream modules of
codelets, arrows represent streams.

Streaming Codelet
Program + Hints

Compiler Filter
Type2

Filter
Type3

Join

High-level Runtime
System: inter-tile

Optimization
Hints for
 Runtime	+

Optimization Hints

GPCPU
Cores	

Local

Memory	

C3 C2 C1

Local

NoC	

Accelerator2

Accelerator3

C1

C2
Accelerator	

FPGAs	GPUs	

C3

Intra-tile
 Runtime
 System

•  Coarse-grained Parallelism
•  Stream Channel Mapping
•  Stream Buffer Allocation
•  Bandwidth Allocation
•  Energy Efficiency

• 
• 
• 

	

•  Fine-grained
 Parallelism

•  Buffer Allocation
•  Bandwidth

 Allocation
•  Energy Efficiency

• 
• 
• 

	

•  General Optimization
•  Generate

 Optimization Hints
 for Runtime

• 
• 
• 

Stream Module2 (3 codelets):
assigned to Tile 1

Tile organization:
Each tile contains various compute capabilities,
a local NoC and local memory.

Stream Module2

Stream
Module1

Stream
Module5 Stream Module3

Stream Module4

D
R

A
M

Tile M

SM1&5

Global NoC

DRAM

 Heterogeneous Tile-Based Architecture

…
…

…

DRAM
…

Tile3

SM3

Tile2

Tile N
Tile1

SM2

SM4

Tile4

Heterogeneous Tile-Based
Architecture: Each tile represents a
compute engine.

C1 C2
C3

Split

See Zuckerman, Wei, et al. 2014 for more details.

S.Zuckerman Driving HPC Computing with Codelets 49 / 63

Extending the Codelet Model
Extending Codelets to Streams

	

TILE 1
(Compute
Engine) NIC

TILE 2

NIC

TILE 3

NIC

TILE 4

NIC
R R R R

TILE 5

NIC

TILE 6

NIC

TILE 7

NIC

TILE 8

NIC
R R R R

TILE 9

NIC

TILE 10

NIC

TILE 11

NIC

TILE 12

NIC
R R R R

TILE 13

NIC

TILE 14

NIC

TILE 15

NIC

TILE 16

NIC
R R R R

D
R
A
M

(a)

GPCPUs
cores GPUs FPGAs

TSM Local
NoC

BMTU NIC

Accelerator1

Accelerator2

Accelerator3

Accelerator4

D R A M

D R A M

(b)

Reconfigurable/Adaptable NoC

Multi-functional links: act as
storage & transfer channels

See Zuckerman, Wei, et al. 2014 for more details.

S.Zuckerman Driving HPC Computing with Codelets 50 / 63

Acknowledgements

Past and present CAPSL members,

Brian Lucas Jaime Arteaga
Joseph Manzano Chen Chen
Daniel Orozco Elkin Garcia
Robert Pavel Souad Koliäı
Sergio Pino Aaron Landwehr
Jürgen Ributzka Josh Landwehr
Sunil Shrestha Kelly Livingston

Joshua Suetterlein
Pouya Fotouhi Haitao Wei
José Monsalve Yao Wu

. . . And of course, Professor Gao!

S.Zuckerman Driving HPC Computing with Codelets 51 / 63

A Short Introduction to Execution Models
The Synchronous Dataflow Model (Lee and Messerschmitt 1987)

t1

op

3

2

t2

4

t1t1 t2t2t2

op
2

3 4

t3t3

Synchronous Dataflow Actors

Components of a regular actor:

I Input arcs; each input arc il can contain a certain number
kl i of tokens

I Output arcs; each output arc o ′l can contain a certain
number k ′l ′ of tokens

I The operation provided by the actor

I Tokens

Firing Rule: Synchronous Dataflow (SDF)

An actor may fire when:

I Each of its input arcs in the tuple < i0, i1, · · · , ik−1 > contains at least
< n0,n1, · · · ,nk−1 > tokens, and

I The number of slots available on each of the output arcs
< o1,o2, · · · ,ok ′−1 > is sufficient to receive an additional count of n′ tokens.

S.Zuckerman Driving HPC Computing with Codelets 52 / 63

A Short Introduction to Execution Models
The Synchronous Dataflow Model (Lee and Messerschmitt 1987)

t1

op

3

2

t2

4

t1t1 t2t2t2

op
2

3 4

t3t3

Synchronous Dataflow Actors

Components of a regular actor:

I Input arcs; each input arc il can contain a certain number
kl i of tokens

I Output arcs; each output arc o ′l can contain a certain
number k ′l ′ of tokens

I The operation provided by the actor

I Tokens

Firing Rule: Synchronous Dataflow (SDF)

An actor may fire when:

I Each of its input arcs in the tuple < i0, i1, · · · , ik−1 > contains at least
< n0,n1, · · · ,nk−1 > tokens, and

I The number of slots available on each of the output arcs
< o1,o2, · · · ,ok ′−1 > is sufficient to receive an additional count of n′ tokens.

S.Zuckerman Driving HPC Computing with Codelets 52 / 63

A Short Introduction to Execution Models
The Synchronous Dataflow Model (Lee and Messerschmitt 1987)

t1

op

3

2

t2

4

t1t1 t2t2t2

op
2

3 4

t3t3

Synchronous Dataflow Actors

Components of a regular actor:

I Input arcs; each input arc il can contain a certain number
kl i of tokens

I Output arcs; each output arc o ′l can contain a certain
number k ′l ′ of tokens

I The operation provided by the actor

I Tokens

Firing Rule: Synchronous Dataflow (SDF)

An actor may fire when:

I Each of its input arcs in the tuple < i0, i1, · · · , ik−1 > contains at least
< n0,n1, · · · ,nk−1 > tokens, and

I The number of slots available on each of the output arcs
< o1,o2, · · · ,ok ′−1 > is sufficient to receive an additional count of n′ tokens.

S.Zuckerman Driving HPC Computing with Codelets 52 / 63

A Short Introduction to Execution Models
The Synchronous Dataflow Model (Lee and Messerschmitt 1987)

t1

op

3

2

t2

4

t1t1 t2t2t2

op
2

3 4

t3t3

Synchronous Dataflow Actors

Components of a regular actor:

I Input arcs; each input arc il can contain a certain number
kl i of tokens

I Output arcs; each output arc o ′l can contain a certain
number k ′l ′ of tokens

I The operation provided by the actor

I Tokens

Firing Rule: Synchronous Dataflow (SDF)

An actor may fire when:

I Each of its input arcs in the tuple < i0, i1, · · · , ik−1 > contains at least
< n0,n1, · · · ,nk−1 > tokens, and

I The number of slots available on each of the output arcs
< o1,o2, · · · ,ok ′−1 > is sufficient to receive an additional count of n′ tokens.

S.Zuckerman Driving HPC Computing with Codelets 52 / 63

Other Dataflow Models

Dynamic Dataflow

I Allows for arbitrary recursions

I Relies on “color-matching:”
I Each iteration is assigned a “color,”
I An actor only fires if all tokens from the same color are present on its input arcs.

I Proved to provide maximum parallelism

I However: Color matching is slow (use of hash tables, . . .)

Macro-Dataflow

I Idea: Instead of relying on fine-grain, one-operation-at-a-time actors, let’s use a bunch of
instructions/operations in sequence within the actor

I Still relies on inputs and outputs, but now the buffers may become much bigger, due to
the amount of work and data required

I Offers a compromise to reduce the signaling overhead of fine-grain dataflow, token
matching, etc.

See Watson and Gurd 1982; Arvind and Culler 1986; Papadopoulos and Culler 1990; Arvind and
Gostelow 1982

S.Zuckerman Driving HPC Computing with Codelets 53 / 63

Extending the Codelet Model
Extending Codelets to Self-Awareness

Future extreme-scale systems will most likely feature thousands of cores on a chip, and deep
memory hierarchies. The Codelet Model was created with this in mind. However several
problems still need to be tackled:

I Memory movements are expected to cost much more than computations in terms of
energy consumption

I There will be a need for fine-grain resource management to target goals such as:

I Maximum or average power envelope during computation required by
the user

I Degree of parallelism in the application declared by the user
I Maximum acceptable temperature levels
I . . .

I We want to augment codelets and threaded procedures with meta-data which describe
their resource usage

I A low-level runtime will then be able to make smart decisions based on static meta-data
as well as updated data collected during the codelets executions

I The runtime will then be able to decide when to turn on/off parts of the manycore ships,
when to rely on DVFS techniques, etc.

See Zuckerman, Landwehr, et al. 2014 for more details.

S.Zuckerman Driving HPC Computing with Codelets 54 / 63

Extending the Codelet Model
Extending Codelets to Streams

Dataflow naturally maps to streams. However, the nature of future extreme-scale manycore
processors will most likely be widely different:

I Heterogeneity is already becoming a reality at the chip level

I AMD released its first Fusion processor (CPU+GPU on the same chip)
in 2013

I Next-generation Intel “co-processors” will be on package with
traditional multicore chips

I Nvidia just recently produced an accelerator board which embed arm
processors to deal with more control-heavy workloads

I We predict heterogeneity will be ingrained at a much deeper level in processors

I This is a great opportunity to do research in that direction — and in particular by
targeting streams

The NSF just accepted to provide funding to explore this venue. A high-level view of our

objectives was recently published. See Zuckerman, Wei, et al. 2014 for more details.

S.Zuckerman Driving HPC Computing with Codelets 55 / 63

References I
Compiler Optimization, Performance Analysis,
and Code Transformations in Multicore Systems

I Patrick Carribault et al. (2007). “Deep Jam: Conversion of Coarse-Grain Parallelism to
Fine-Grain and Vector Parallelism.” In: J. Instruction-Level Parallelism 9. url:
http://www.jilp.org/vol9/v9paper11.pdf

I Stéphane Zuckerman, Marc Pérache, and William Jalby (2008). “Fine Tuning Matrix
Multiplications on Multicore.” In: High Performance Computing - HiPC 2008, 15th
International Conference, Bangalore, India, December 17-20, 2008. Proceedings. Ed. by
P. Sadayappan et al. Vol. 5374. Lecture Notes in Computer Science. Springer, pp. 30–41.
isbn: 978-3-540-89893-1. doi: 10.1007/978-3-540-89894-8_7. url:
http://dx.doi.org/10.1007/978-3-540-89894-8_7

I Souad Koliäı et al. (2009). “A Balanced Approach to Application Performance Tuning.”
In: Languages and Compilers for Parallel Computing, 22nd International Workshop, LCPC
2009, Newark, DE, USA, October 8-10, 2009, Revised Selected Papers. Ed. by
Guang R. Gao et al. Vol. 5898. Lecture Notes in Computer Science. Springer,
pp. 111–125. isbn: 978-3-642-13373-2. doi: 10.1007/978-3-642-13374-9_8. url:
http://dx.doi.org/10.1007/978-3-642-13374-9_8

S.Zuckerman Driving HPC Computing with Codelets 56 / 63

http://www.jilp.org/vol9/v9paper11.pdf
http://dx.doi.org/10.1007/978-3-540-89894-8_7
http://dx.doi.org/10.1007/978-3-540-89894-8_7
http://dx.doi.org/10.1007/978-3-642-13374-9_8
http://dx.doi.org/10.1007/978-3-642-13374-9_8

References II
Compiler Optimization, Performance Analysis,
and Code Transformations in Multicore Systems

I Benedetto Risio et al. (2009). “How to Accelerate an Application: a Practical Case Study
in Combustion Modelling.” In: Parallel Computing: From Multicores and GPU’s to
Petascale, Proceedings of the conference ParCo 2009, 1-4 September 2009, Lyon, France.
Ed. by Barbara M. Chapman et al. Vol. 19. Advances in Parallel Computing. IOS Press,
pp. 661–668. isbn: 978-1-60750-529-7. doi: 10.3233/978-1-60750-530-3-661. url:
http://dx.doi.org/10.3233/978-1-60750-530-3-661

I Andres Charif Rubial et al. (2009). “An Approach to Application Performance Tuning.”
In: Parallel Computing: From Multicores and GPU’s to Petascale, Proceedings of the
conference ParCo 2009, 1-4 September 2009, Lyon, France. Ed. by Barbara M. Chapman
et al. Vol. 19. Advances in Parallel Computing. IOS Press, pp. 653–660. isbn:
978-1-60750-529-7. doi: 10.3233/978-1-60750-530-3-653. url:
http://dx.doi.org/10.3233/978-1-60750-530-3-653

I Stéphane Zuckerman and William Jalby (2010). “Tackling Cache-Line Stealing Effects
Using Run-Time Adaptation.” In: Languages and Compilers for Parallel Computing - 23rd
International Workshop, LCPC 2010, Houston, TX, USA, October 7-9, 2010. Revised
Selected Papers. Ed. by Keith D. Cooper, John M. Mellor-Crummey, and Vivek Sarkar.
Vol. 6548. Lecture Notes in Computer Science. Springer, pp. 62–76. isbn:
978-3-642-19594-5. doi: 10.1007/978-3-642-19595-2_5. url:
http://dx.doi.org/10.1007/978-3-642-19595-2_5

S.Zuckerman Driving HPC Computing with Codelets 57 / 63

http://dx.doi.org/10.3233/978-1-60750-530-3-661
http://dx.doi.org/10.3233/978-1-60750-530-3-661
http://dx.doi.org/10.3233/978-1-60750-530-3-653
http://dx.doi.org/10.3233/978-1-60750-530-3-653
http://dx.doi.org/10.1007/978-3-642-19595-2_5
http://dx.doi.org/10.1007/978-3-642-19595-2_5

References – Codelet Model I
Specification and Implementation

I Guang R. Gao, Joshua Suetterlein, and Stéphane Zuckerman (Apr. 2011). Toward an
Execution Model for Extreme-Scale Systems-Runnemede and Beyond. Technical Memo
104. University of Delaware, 140 Evans Hall, Newark,DE 19716: Computer Architecture &
Parallel Systems Laboratory, Electrical & Computer Engineering Departement

I Stéphane Zuckerman, Joshua Suetterlein, et al. (2011). “Using a ”Codelet” Program
Execution Model for Exascale Machines: Position Paper”. In: Proceedings of the 1st
International Workshop on Adaptive Self-Tuning Computing Systems for the Exaflop Era.
EXADAPT ’11. San Jose, California: ACM, pp. 64–69. isbn: 978-1-4503-0708-6. doi:
10.1145/2000417.2000424. url: http://doi.acm.org/10.1145/2000417.2000424

I Joshua Suetterlein, Stéphane Zuckerman, and Guang R. Gao (2013). “An Implementation
of the Codelet Model.” In: Euro-Par 2013 Parallel Processing - 19th International
Conference, Aachen, Germany, August 26-30, 2013. Proceedings. Ed. by Felix Wolf,
Bernd Mohr, and Dieter an Mey. Vol. 8097. Lecture Notes in Computer Science. Springer,
pp. 633–644. isbn: 978-3-642-40046-9. doi: 10.1007/978-3-642-40047-6_63. url:
http://dx.doi.org/10.1007/978-3-642-40047-6_63

S.Zuckerman Driving HPC Computing with Codelets 58 / 63

http://dx.doi.org/10.1145/2000417.2000424
http://doi.acm.org/10.1145/2000417.2000424
http://dx.doi.org/10.1007/978-3-642-40047-6_63
http://dx.doi.org/10.1007/978-3-642-40047-6_63

References – Codelet Model II
Specification and Implementation

I Haitao Wei et al. (2014). “A Dataflow Programming Language and its Compiler for
Streaming Systems.” In: Proceedings of the International Conference on Computational
Science, ICCS 2014, Cairns, Queensland, Australia, 10-12 June, 2014. Ed. by
David Abramson et al. Vol. 29. Procedia Computer Science. Elsevier, pp. 1289–1298. doi:
10.1016/j.procs.2014.05.116. url:
http://dx.doi.org/10.1016/j.procs.2014.05.116

I Stéphane Zuckerman, Aaron Landwehr, et al. (2014). “Toward a Self-Aware Codelet
Execution Model”. In: Proceedings of the Workshop on DataFlow Models for
extreme-scale computing (DFM’14). Edmonton, AB, Canada

I Stéphane Zuckerman, Haitao Wei, et al. (2014). “A Holistic Dataflow-Inspired System
Design”. In: Proceedings of the Workshop on DataFlow Models for extreme-scale
computing (DFM’14). Edmonton, AB, Canada

S.Zuckerman Driving HPC Computing with Codelets 59 / 63

http://dx.doi.org/10.1016/j.procs.2014.05.116
http://dx.doi.org/10.1016/j.procs.2014.05.116

References – TERAFLUX
Making Codelets converge with DF-Threads

I Marco Solinas et al. (2013). “The TERAFLUX Project: Exploiting the DataFlow Paradigm
in Next Generation Teradevices.” In: 2013 Euromicro Conference on Digital System
Design, DSD 2013, Los Alamitos, CA, USA, September 4-6, 2013. IEEE, pp. 272–279.
doi: 10.1109/DSD.2013.39. url: http://dx.doi.org/10.1109/DSD.2013.39

I Roberto Giorgi et al. (2014). “TERAFLUX: Harnessing dataflow in next generation
teradevices”. In: Microprocessors and Microsystems, issn: 0141-9331. doi:
http://dx.doi.org/10.1016/j.micpro.2014.04.001. url:
http://www.sciencedirect.com/science/article/pii/S0141933114000490

I Stéphane Zuckerman, Jaime Arteaga, et al. (Apr. 2014). D9.3 – Evaluation of the Codelet
Runtime System on a Teradevice. Deliverable 9.3. University of Delaware, 140 Evans
Hall, Newark,DE 19716: Computer Architecture & Parallel Systems Laboratory, Electrical
& Computer Engineering Departement

S.Zuckerman Driving HPC Computing with Codelets 60 / 63

http://dx.doi.org/10.1109/DSD.2013.39
http://dx.doi.org/10.1109/DSD.2013.39
http://dx.doi.org/http://dx.doi.org/10.1016/j.micpro.2014.04.001
http://www.sciencedirect.com/science/article/pii/S0141933114000490

Other Dataflow and Data-Driven Related Work

I Jaime Arteaga et al. (May 2014). “Position Paper: Locality-Driven Scheduling of Tasks
for Data-Dependent Multithreading”. In: Workshop on Multi-Threaded Architectures and
Applications (MTAAP 2014). Phoenix, USA

I Chen Chen et al. (2013). “Towards Memory-Load Balanced Fast Fourier Transformations
in Fine-Grain Execution Models.” In: 2013 IEEE International Symposium on Parallel &
Distributed Processing, Workshops and Phd Forum, Cambridge, MA, USA, May 20-24,
2013. IEEE, pp. 1607–1617. doi: 10.1109/IPDPSW.2013.47. url:
http://dx.doi.org/10.1109/IPDPSW.2013.47

S.Zuckerman Driving HPC Computing with Codelets 61 / 63

http://dx.doi.org/10.1109/IPDPSW.2013.47
http://dx.doi.org/10.1109/IPDPSW.2013.47

Other References I

I Jack B. Dennis, John B. Fosseen, and John P. Linderman (1972). “Data flow schemas”.
In: International Sympoisum on Theoretical Programming, Novosibirsk, Russia, August
7-11, 1972, Proceedings. Ed. by Andrei P. Ershov and V. A. Nepomniaschy. Vol. 5.
Lecture Notes in Computer Science. Springer, pp. 187–216. isbn: 3-540-06720-5. doi:
10.1007/3-540-06720-5_15. url: http://dx.doi.org/10.1007/3-540-06720-5_15

I Jack B. Dennis (1974). “First version of a data flow procedure language”. In:
Programming Symposium, Proceedings Colloque sur la Programmation, Paris, France,
April 9-11, 1974. Ed. by Bernard Robinet. Vol. 19. Lecture Notes in Computer Science.
Springer, pp. 362–376. isbn: 3-540-06859-7. doi: 10.1007/3-540-06859-7_145. url:
http://dx.doi.org/10.1007/3-540-06859-7_145

I Jack B. Dennis and David Misunas (1974). “A Preliminary Architecture for a Basic Data
Flow Processor”. In: Proceedings of the 2nd Annual Symposium on Computer
Architecture, December 1974. Ed. by Willis K. King and Oscar N. Garcia. ACM,
pp. 126–132. doi: 10.1145/642089.642111. url:
http://doi.acm.org/10.1145/642089.642111

I Arvind and Kim P. Gostelow (1982). “The U-Interpreter”. In: IEEE Computer 15.2,
pp. 42–49. doi: 10.1109/MC.1982.1653940. url:
http://doi.ieeecomputersociety.org/10.1109/MC.1982.1653940

I Ian Watson and John R. Gurd (Feb. 1982). “A Practical Data Flow Computer”. In:
Computer 15.2, pp. 51–57. issn: 0018-9162. doi: 10.1109/MC.1982.1653941

S.Zuckerman Driving HPC Computing with Codelets 62 / 63

http://dx.doi.org/10.1007/3-540-06720-5_15
http://dx.doi.org/10.1007/3-540-06720-5_15
http://dx.doi.org/10.1007/3-540-06859-7_145
http://dx.doi.org/10.1007/3-540-06859-7_145
http://dx.doi.org/10.1145/642089.642111
http://doi.acm.org/10.1145/642089.642111
http://dx.doi.org/10.1109/MC.1982.1653940
http://doi.ieeecomputersociety.org/10.1109/MC.1982.1653940
http://dx.doi.org/10.1109/MC.1982.1653941

Other References II

I Arvind and David E. Culler (1986). “Dataflow Architectures”. In: Annual Review of
Computer Science 1.1, pp. 225–253. doi: 10.1146/annurev.cs.01.060186.001301. url:
http://dx.doi.org/10.1146/annurev.cs.01.060186.001301

I E.A Lee and D.G. Messerschmitt (Sept. 1987). “Synchronous data flow”. In: Proceedings
of the IEEE 75.9, pp. 1235–1245. issn: 0018-9219. doi: 10.1109/PROC.1987.13876

I Gregory M. Papadopoulos and David E. Culler (1990). “Monsoon: An Explicit Token-store
Architecture”. In: Proceedings of the 17th Annual International Symposium on Computer
Architecture. ISCA ’90. Seattle, Washington, USA: ACM, pp. 82–91. isbn: 0-89791-366-3.
doi: 10.1145/325164.325117. url: http://doi.acm.org/10.1145/325164.325117

I DARPA-BAA-10-37 (2010-2012). “UHPC: Ubiquitous High Performance Computing”. In:
Arlington VA, USA: DARPA

I Nicholas P Carter et al. (2013). “Runnemede: An Architecture for Ubiquitous
High-Performance Computing”. In: HPCA. Shenzhen, China

I Department of Energy (2012–2014). X-Stack — Extreme Scale Software Stack. url:
http://www.xstack.org

S.Zuckerman Driving HPC Computing with Codelets 63 / 63

http://dx.doi.org/10.1146/annurev.cs.01.060186.001301
http://dx.doi.org/10.1146/annurev.cs.01.060186.001301
http://dx.doi.org/10.1109/PROC.1987.13876
http://dx.doi.org/10.1145/325164.325117
http://doi.acm.org/10.1145/325164.325117
http://www.xstack.org

	The State of the High-Performance Computing World in 2005–2010
	A Short Introduction to Execution Models
	The Von Neumann Model
	The Dataflow Model

	The Codelet Model: Harnessing Parallelism in Shared-Memory Multi/Many Core Systems
	DARTS: An Implementation of the Codelet Model
	DARTS: Implementation of the Codelet Machine Model
	DARTS: Experimental Results

	Running DARTS on a Dataflow-Enabled Multi-Core Architecture
	The TERAFLUX Project
	Porting DARTS to COTSon
	DARTS/COTSon: Experimental Results

	The Future of Codelets

