Data Types
Value Set

Figure 3-0
Example 3-0
Syntax 3-0
Table 3-0

Data Types

3.1

The set of Verilog HDL data types is designed to represent the data
storage and transmission elements found in digital hardware.

Value Set

June 1993

The Verilog HDL value set consists of four basic values:

O - represents a logic zero, or false condition
1 - represents a logic one, or true condition
X - represents an unknown logic value

Z - represents a high-impedance state

The values 0 and 1 are logical complements of one another.

When the z value is present at the input of a gate, or when it is
encountered in an expression, the effect is usually the same as an X
value. Notable exceptions are the MOS primitives, which can pass the z
value.

Almost all of the data types in the Verilog language store all four basic
values. The exceptions are the event type, which has no storage, and
thetrireg net data type, which retains its first state when all of its
drivers go to the high impedance value, and z. All bits of vectors can be
independently set to one of the four basic values.

The language includes strength information in addition to the basic
value information for scalar net variables. This is described in detail in
Chapter 6, Gate and Switch Level Modeling.

3-1

Data Types

Registers and Nets

3.2

Registers and Nets

3.2.1
Nets

3.2.2

There are two main groups of data types: the register data types and the
net data types. These two groups differ in the way that they are assigned
and hold values. They also represent different hardware structures.

The net data types represent physical connections between structural
entities, such as gates. A net does not store a value (except for the
trireg net, discussed in Section 3.7.3). Instead, it must be driven by a
driver, such as a gate or a continuous assignment. See Chapter 6, Gate
and Switch Level Modeling, and Chapter 5, Assignments, for definitions
of these constructs. If no driver is connected to a net, its value will be
high-impedance (z)—unless the net isatrireg.

Registers

3-2

A register is an abstraction of a data storage element. The keyword for
the register data type is r eg. A register stores a value from one
assignment to the next. An assignment statement in a procedure acts as
a trigger that changes the value in the data storage element. The Verilog
language has powerful constructs that allow you to control when and if
these assignment statements are executed. These control constructs are
used to describe hardware trigger conditions, such as the rising edge of
a clock, and decision-making logic, such as a multiplexer. Chapter 8,
Behavioral Modeling, describes these control constructs.

The default initialization value for a r eg data type is the unknown value,
X.

CAUTION

Registers can be assigned negative values, but, when a
register is an operand in an expression, its value is treated
as an unsigned (positive) value. For example, a minus one
in a four-bit register functions as the number 15 if the
register is an expression operand. See Section 4.1.2 for
more information on numeric conventions in expressions.

June 1993

Data Types
Registers and Nets

3.2.3
Declaration Syntax

The syntax for net and register declarations is as follows:

<net_declaration>
1= <NETTYPE> <expandrange>? <delay>? <list_of variables> ;
| = trireg <charge_strength>? <expandrange>? <delay>? <list_of variables> ;
| |= <NETTYPE> <drive_strength>?
<expandrange>? <delay>? <list_of _assignments> ;

<reg_declaration>
1= reg <range>? <list_of _register_variables> ;

<list_of variables>
::= <name_of variable> <,<name_of variable>>*

<name_of variable>
= <IDENTIFIER>

<list_of register_variables>
1= <register_variable> <,<register_variable>>*

<register_variable>
;1= <name_of _register>

<name_of_register>
= <IDENTIFIER>

<expandrange>
;1= <range>
| | = scalared <range>
| iff [the data type is not a trireg] the following syntax is available:
| | = vectored <range>

<range>
::= [<constant_expression> : <constant_expression>]

<list_of assignments>
1= <assignment> <,<assignment>>*

<charge_strength>
::= (<CAPACITOR_SIZE>)

<drive_strength>
2= (<STRENGTHO> , <STRENGTH1>)
I 1= (<STRENGTH1>, <STRENGTHO>)

Syntax 3-1: Syntax for <net_declaration>

June 1993 3-3

Data Types

Registers and Nets

3.2.4

<NETTYPE> is one of the following keywords:
wire tri tril supplyO
wand triand tri O supplyl
wor trior trireg

<IDENTIFIER> is the name of the net that is being declared. See
Chapter 2, Lexical Conventions, for a discussion of
identifiers.

<delay> specifies the propagation delay of the net (as explained in
Chapter 6, Gate and Switch Level Modeling), or, when
associated with a <list_of_assignments>, it specifies
the delay executed before the assignment (as
explained in Chapter 5, Assignments).

<CAPACITOR_SIZE> is one of the following keywords:
smal | nmedium | ar ge

<STRENGTHO> is one of the following keywords:
supply0 strong0 pull0 weakO highzO

<STRENGTH1> is one of the following keywords:
supplyl strongl pulll weakl highzl

Syntax 3-2: Definitions for <net_declaration> syntax

Declaration Examples

The following are examples of register and net declarations:

3-4

reg a; /1 a scal ar register
wand w; /1 a scalar net of type 'wand
reg[3:0] v; /1 a 4-bit vector register nade up of

tri

/1 (fromnost to | east significant)
/1 v[3], v[2], v[1] and v[O]

[15:0] busa; // a tri-state 16-bit bus

reg [1:4] b; /1l a 4-bit vector register
trireg (small) storeit; /1 a charge storage node

/1 of strength small

Example 3-1: Register and net declarations

June 1993

3.3

Data Types
Vectors

If a set of nets or registers shares the same characteristics, they can be
declared in the same declaration statement. The following is an example:

wire wl, w2; /1l declares 2 wres
reg [4:0] x, y, z; [// declares 3 5-bit registers

Vectors

3.3.1

A net orreg declaration without a <range> specification is one bit wide;
that is, it is scalar. Multiple bit net and r eg data types are declared by
specifying a <range>, and are known as vectors.

Specifying Vectors

3.3.2

The <range> specification gives addresses to the individual bits in a
multi-bit net or register. The most significant bit (msb) is the left-hand
value in the <range> and the least significant bit (Isb) is the right-hand
value in the <range>.

The range is specified as follows:
[msb_expr : |sb_expr]

Both nsb_expr and | sb_expr are non-negative constant expressions.
There are no restrictions on the values of the indices. The msb and Isb
expressions can be any value, and | sb_expr can be a greater value than
nmsb_expr, if desired.

Vector nets and registers obey laws of arithmetic modulo 2 to the power
n, where n is the number of bits in the vector. Vector nets and registers
are treated as unsigned quantities.

Vector Net Accessibility

June 1993

A vector can be used as a single entity or as a group of n scalars, where
n is the number of bits in the vector. The keyword vect or ed allows you
to specify that a vector can be modified only as an indivisible entity. The
keyword scal ar ed explicitly allows access to bit and parts. This is also
the default case. The Verilog-XL process of accessing bits within a vector
is known as vector expansion.

3-5

Data Types
Strengths

Only when a net is not specified as vect or ed can bit selects and part
selects be driven by outputs of gates, primitives, and modules—or be on
the left-hand side of continuous assignments. You cannot declare a
trireg with the vect or ed keyword.

The following are examples of vector net declarations:

tril scalared [63:0] bus64;//a bus that will be expanded
tri vectored [31:0] data; //a bus that will not be expanded

Example 3-2: Vector net declarations

3.4
Strengths

There are two types of strengths that can be specified in a net
declaration. They are as follows:

» charge strength used when declaring a net of type trireg

» drive strength used when placing a continuous assignment
on a net in the same statement that declares
the net

Gate declarations can also specify a drive strength. See Chapter 6, Gate
and Switch Level Modeling, for more information on gates and for
important information on strengths.

3.4.1
Charge Strength

The <charge_strength> specification can be used only with tri r eg nets.
Atrireg netis used to model charge storage; <charge_strength>
specifies the relative size of the capacitance. The <CAPACITOR_SIZE>
declaration is one of the following keywords:

« smal |
« medi um
 large
When no size is specified ina trireg declaration, its size is medi um

The following is a syntax example of a strength declaration:

trireg (small) stl ;

3-6 June 1993

Data Types
Implicit Declarations

Atrireg netcan model acharge storage node whose charge decays over
time. The simulation time of a charge decay is specified in the trireg
net’s delay specification (see Section 6.16.2).

3.4.2
Drive Strength

The <drive_strength> specification allows a continuous assignment to be
placed on a net in the same statement that declares that net. See
Chapter 5, Assignments, for more details.

Net strength properties are described in detail in Chapter 6, Gate and
Switch Level Modeling.

3.5
Implicit Declarations

The syntax shown in Section 3.2.3, Declaration Syntax, is used to
explicitly declare variables. In the absence of an explicit declaration of a
variable, statements for gate, user-defined primitive, and module
instantiations assume an implicit variable declaration. This happens if
you do the following: in the terminal list of an instance of a gate, a
user-defined primitive, or a module, specify a variable that has not been
explicitly declared previously in one of the declaration statements of the
instantiating module.

These implicitly declared variables are scalar nets of type wire.

3.6
Net Initialization

The default initialization value for a netis the value z. Nets with drivers
assume the output value of their drivers, which defaults to X. The
trireg netis an exception to these statements. The tri r eg defaults to
the value X, with the strength specified in the net declaration (snal | ,
medi um or | ar ge).

June 1993 3-7

Data Types
Net Types

3.7

Net Types

3.7.1

There are several distinct types of nets. Each is described in the sections
that follow.

wireandtri Nets

3.7.2

Thewi re and tri nets connect elements. The net typeswire and tri

are identical in their syntax and functions; two names are provided so
that the name of a net can indicate the purpose of the net in that model.
A Wi re net is typically used for nets that are driven by a single gate or
continuous assignment. Thetri net type might be used where multiple
drivers drive a net.

Logical conflicts from multiple sourcesonaw re or atri netresult in
unknown values unless the net is controlled by logic strength.

Table 3-1 is a truth table for wi re and tri nets. Note that it assumes
equal strengths for both drivers. Please refer to Section 6.10 for a
discussion of logic strength modeling.

wre/

tri 0O 1 x z
0 0O x x O
1 x 1 x 1
X X X X X
z 0O 1 x z

Table 3-1: Truth table forwi re andt ri nets

Wired Nets

3-8

Wired nets are of type wor, wand, trior, andtri and, and are used to
model wired logic configurations. Wired nets resolve the conflicts that
result when multiple drivers drive the same net. The wor andtri or nets
create wired or configurations, such that when any of the drivers is 1,
the netis 1. Thewand and t ri and nets create wired and configurations,
such that if any driver is 0, the net is 0.

June 1993

Data Types
Net Types

The net types wor and tri or are identical in their syntax and
functionality—as are the wand and tri and. Table 3-2 gives the truth
tables for wired nets. Note that it assumes equal strengths for both
drivers. Please refer to Section 6.10 for a discussion of logic strength

modeling.
wand/ wor /
triand| 0 1 x z trior {0 1 x z
0 0O 0 O O 0 0 1 x O
1 0 1 x 1 1 1 1 1 1
X 0 x x X X X 1 x X
z 0 1 x z z 0 1 x z

Table 3-2: Truth tables forwand/ t ri and and wor/ tri or nets

3.7.3
trireg Net

Thetrireg net stores a value and is used to model charge storage
nodes. Atriregcan be one of two states:

The Driven State When at least one driver ofatrireghas avalue
of 1, 0, or X, that value propagates into the
triregandis thetrireg’s driven value.

Capacitive State When all the drivers of atrireg net are at the
high impedance value (z), thetrireg net
retains its last driven value; the high impedance
value does not propagate from the driver to the
trireg.

The strength of the value on the tri r eg net in the capacitive state is
smal | , medi um or | ar ge, depending on the size specified in the
declaration of the trireg. The strength of atrireg in the driven state
is strong, pull, or weak depending on the strength of the driver. You
cannot declare atrireg with the vect or ed keyword.

June 1993 3-9

Data Types
Net Types

Figure 3-1 shows a schematic that includes the following items: a
trireg net whose size is nedi um its driver, and the simulation results.

B %trireg d
simulation time wre awreb wrec trireg d
0 1 1 strong 1 strong 1
10 0 1 H Z medi um 1

Figure 3-1: Simulation values ofa t ri r eg and its driver

Simulation of the design in Figure 3-1 reports the following results:

1. Atsimulation time O,wi re aand w re b have avalue of 1. A value
of 1 with a st rong strength propagates from the AND gate through
the NMOS switches connected to each other by wi re c, into
trireg d.

2. At simulation time 10, Wi re a changes value to 0, disconnecting
Wi re c from the AND gate. When Wi re c is no longer connected
to the AND gate, its value changes to Hi Z. Thewi re b's value
remains 1 sow re ¢ remains connectedtotrireg dthrough the
NMOS2 switch. The Hi Z value does not propagate fromw re c into
trireg d. Instead, trireg d enters the capacitive state, storing
its last driven value of 1. It stores the 1 with a medi umstrength.

Capacitive networks

A capacitive network is a connection between two or more triregs. Ina
capacitive network whosetrireg’s are in the capacitive state, logic and
strength values can propagate between trir egs. Figure 3-2 shows a
capacitive network in which the logic value of some tri r egs change the
logic value of othertriregs of equal or smaller size.

3-10 June 1993

June 1993

Data Types

Net Types
wre a
wire b
wire c |—|__1 t |—|___f1 .
nnos rani
’Jf) %
1 | triteg la trireg sm
mre c tranifl 2
trireg mel trireg me2
simulation
time wirea wireb wirec wire d triregla trireg sm trireg mel trireg me2
0 1 1 1 1 1 1 1 1
10 1 [0] 1 1 1 1 1 1
20 1 0 [0] 1 [0] 1 1 1
30 1 0 0 [0] 0 1 [0] 1
40 [0] 0 0 0 0 1 0 1
50 0 1] 0 0 0 [0]

Figure 3-2: Simulation results of a capacitive network

In Figure 3-2, trireg | a'ssizeisl arge,triregs melandne2 are size
medi um andtrireg smssizeissmal | . Simulation reports the following
sequence of events:

1.

At simulation time O, wire aandw re b have a value of 1. The
Wi re cdrives avalue of lintotriregs!|laandsmw re ddrives
a value of 1 intotriregs nel and ne2.

At simulation time 10, wi re b’s value changes to 0, disconnecting
trireg smand ne2 from their drivers. These tri r egs enter the
capacitive state and store the value 1, their last driven value.

At simulation time 20, wi re c drives avalue of O intotrireg | a.
At simulation time 30, wi re ddrives a value of O intotrireg nmel.
At simulation time 40, wi re a’s value changes to 0, disconnecting
trireg | aand nmel from their drivers. These tri r egs enter the
capacitive state and store the value 0.

3-11

Data Types
Net Types

3-12

6. At simulation time 50, the wi r e b’'s value changes to 1. This change
of value inwire b connectstrireg smtotrireg | a; these
triregs have different sizes and stored different values. This
connection causes the smaller tri r eg to store the larger trireg’s
value and tri reg smnow stores a value of 0.This change of value
inwi re b also connectstrireg neltotrireg ne2; these
triregs have the same size and stored different values. The
connection causes bothtrireg nel and ne2 to change value to X.

In a capacitive network, charge strengths propagate from a larger
triregtoasmallertrireg. Figure 3-3 shows a capacitive network and
its simulation results.

wre b wirec
wre a [|
tranifl tranif
«—> 1 «> S
~T~trireg la ~T™ trireg sm
imulation :
St tiumaelo wire a wire b wire ¢ trireg la trireg sm
0 strong 1 1 1 strong 1 strong 1
10 strong 1 0 1 large 1 large 1
20 strong 1 0 0 large 1 small 1
30 strong 1 0 1 large 1 large 1
40 strong 1 0 0 large 1 small 1
Figure 3-3: Simulation results of charge sharing
June 1993

Data Types
Net Types

In Figure 3-3, trireg | a'ssizeisl argeandtrireg smssizeissmal | .
Simulation reports the following results:

1. At simulation time O, the valueofwire a,b,andcislandwre
a drivesastrong lintotrireg laandsm

2. At simulation time 10, Wi re b’s value changes to 0, disconnecting
trireglaandsmfromwi re a. Thetriregs | aand smenter the
capacitive state. Both triregs share the | ar ge charge of
trireg | abecause they remain connected through t rani f 2.

3. At simulation time 20, Wi re c’s value changes to 0, disconnecting
trireg smfromtrireg la. Thetrireg smno longer shares
trireg | a'slarge charge and now stores a smal | charge.

4. Atsimulation time 30, Wi re c’svalue changes to 1, connecting the
twotriregs. Thesetriregs nowshare the same charge.

5. At simulation time 40, Wi re c’s value changes again to O,
disconnectingtrireg smfromtrireg | a. Once again,trireg sm
no longer sharestrireg | a's large charge and now stores asnal |
charge.

Ideal capacitive state and charge decay

Atrireg net can retain its value indefinitely or its charge can decay
over time. The simulation time of charge decay is specifiedinthetrireg
net’s delay specification.

3.7.4
triOandtri 1l Nets

ThetriOandtril nets model nets with resistive pul | down and
resistive pul | up devices on them. When no driver drives atri O net, its
value is 0. When no driver drives atri 1 net, its value is 1. The strength
of this value is pul | . See Chapter 6, Gate and Switch Level Modeling, for
a description of strength modeling.

3.7.5
supply Nets

The suppl yO and suppl y1 nets model the power supplies in a circuit.
The suppl y0 nets are used to model Vss (ground) and suppl y1 nets are
used to model vVdd or Vcc (power). These nets should never be connected
to the output of a gate or continuous assignment, because the strength
they possess will override the driver. They have suppl y0 or suppl y1
strengths.

June 1993 3-13

Data Types
Memories

3.8
Memories

The Verilog HDL models memories as an array of register variables.
These arrays can be used to model read-only memories (ROMs), random
access memories (RAMs), and register files. Each register in the array is
known as an element or word and is addressed by a single array index.
There are no multiple dimension arrays in the Verilog Language.

Memories are declared in register declaration statements by specifying
the element address range after the declared identifier. Syntax 3-3 gives
the syntax for a register declaration statement. Note that this syntax
extends the <register_variable> definition given in Section 3.2.3,
Declaration Syntax.

<register_variable>
;1= <name_of _register>
| |= <name_of_memory> [<constant_expression> : <constant_expression>]

<constant_expression>
;1=<expression>

<name_of_memory>
= <IDENTIFIER>

Syntax 3-3: Syntax for <register_variable>

The following example illustrates a memory declaration:
reg[7:0] nmema[0: 255];

This example declares a memory called mema consisting of 256 eight-bit
registers. The indices are 0 through 255. The expressions that specify
the indices of the array must be constant expressions.

Note that within the same declaration statement both registers and
memories can be declared. This makes it convenient to declare both a
memory and some registers that will hold data to be read from and
written to the memory in the same declaration statement, as in
Example 3-3.

3-14 June 1993

June 1993

Data Types
Memories

par amet er /] paraneters are run-tine

// constants - see Section 3.11
wor dsi ze = 16,
nmemnsi ze = 256;

/1 Declare 256 words of 16-bit nmenmory plus two registers

reg [wordsize-1:0] /1 equivalent to [15:0]
mem [mensi ze-1:0], // equivalent to [255:0]
writereg,
readr eg;

Example 3-3: Declaring memory

Note that a memory of n 1-bit registers is different from an n-bit vector
register, as shown in the following example:

reg [1:n] rega; an n-bit register is not
-) ‘
the same as a memory

/ of n 1-bit registers
reg nema [1:n];

An n-bit register can be assigned a value in a single assignment, but a
complete memory cannot; thus the following assignment to r ega is legal
and the succeeding assignment that attempts to clear all of the memory
mema is illegal, as shown in the following example:

legal syntax

rega
mema

illegal syntax

To assign a value to a memory element, an index must be specified, as
shown in the following example:

assigns 0 to the first
element of mema

mema[1] = 0; «a——

3-15

Data Types

Integers and Times

3.9

The index can be an expression. This option allows you to reference
different memory elements, depending on the value of other registers and
nets in the circuit. For example, a program counter register could be
used to index into a RAM.

Integers and Times

3-16

In addition to modeling hardware, there are other uses for variables in
an HDL model. Although you can use the r eg variables for general
purposes such as counting the number of times a particular net changes
value, the i nt eger and ti ne register data types are provided for
convenience and to make the description more self-documenting.

The syntax for declaring i nt eger and ti e variables is as follows:

<time_declaration>
::=time <list_of _register_variables> ;

<integer_declaration>
::= integer <list_of _register_variables> ;

Syntax 3-4: Syntax for time and integer declarations

The <list_of_register_variables> item is defined in Section 3.2.3,
Declaration Syntax.

A tinme variable is used for storing and manipulating simulation time
gquantities in situations where timing checks are required and for
diagnostics and debugging purposes. This data type is typically used in
conjunction with the $t i ne system function. The size of a t i ne variable
is 64 bits.

An i nt eger is a general purpose variable used for manipulating
quantities that are not regarded as hardware registers. The size of an
i nt eger variable is 32 bits.

Arrays of i nt eger and ti ne variables are allowed. They are declared in
the same manner as arrays of r eg variables, as in the following example:

integer a[1:64]; // an array of 64 integers
ti me change_history[1:1000]; // an array of 1000 ti nes

The i nt eger and ti me variables are assigned values in the same
manner as r eg variables. Procedural assignments are used to trigger
their value changes.

June 1993

3.10

Data Types
Real Numbers

Ti me variables behave the same as 64 bit r eg variables. They are
unsigned quantities, and unsigned arithmetic is performed on them. In
contrast,i nt eger variables are signed quantities. Arithmetic operations
performed on i nt eger variables produce 2's complement results.

Real Numbers

3.10.1

The Verilog HDL supports real number constants and variables in
addition to integers and time variables. The syntax for real numbers is
the same as the syntax for register types, and is described in

Section 3.10.1. Except for the following restrictions, real number
variables can be used in the same places that integers and time variables
are used.

* Not all Verilog HDL operators can be used with real number values.
See the tables in Section 4.1 for lists of valid and invalid operators
for real numbers.

» Ranges are not allowed on real number variable declarations.

* Real number variables default to an initial value of zero.

Declaration Syntax for Real Numbers

3.10.2

The syntax for declaring real number variables is as follows:

<real_declaration>
::=real<list_of variables>;

Syntax 3-5: Syntax for real number variable declarations

The <list_of variables> item is defined in Section 3.2.3, Declaration
Syntax.

Specifying Real Numbers

June 1993

Real numbers can be specified in either decimal notation (for example,
14.72) or in scientific notation (for example, 39e8, which indicates 39
multiplied by 10 to the 8th power). Real numbers expressed with a
decimal point must have at least one digit on each side of the decimal
point.

3-17

Data Types
Real Numbers

The following are some examples of valid real numbers in the Verilog
language:

1.2

0.1

2394.26331

1.2E12 (the exponent symbol can be e or E)
1.30e-2

0.1e-0

23E10

29E-2

236.123 763_e-12 (underscores are ignored)

The following are invalid real numbers in the Verilog HDL because they
do not have a digit to the left of the decimal point:

12
.3E3
.2e-7

3.10.3
Operators and Real Numbers

The result of using logical or relational operators on real numbers is a
single-bit scalar value. Not all Verilog operators can be used with real
number expressions. Table 4-2 in Section 4.1 lists the valid operators
for use with real numbers. Real number constants and real number
variables are also prohibited in the following contexts:

» edge descriptors (posedge, negedge) applied to real number
variables

» bit-select or part-select references of variables declared as r eal

* real number index expressions of bit-select or part-select
references of vectors

* real number memories (arrays of real numbers)

3.10.4
Conversion

The Verilog language converts real numbers to integers by rounding a
real number to the nearest integer, rather than by truncating it. For
example, the real numbers 35.7 and 35.5 both become 36 when
converted to an integer, and 35.2 becomes 35. Implicit conversion takes
place when you assign a real to an integer.

3-18 June 1993

3.11

Data Types
Parameters

Parameters

June 1993

Verilog parameters do not belong to either the register or the net group.
Parameters are not variables, they are constants. The syntax for
parameter declarations is as follows:

<parameter_declaration>
::= parameter <list_of _assignments> ;

Syntax 3-6: Syntax for <parameter_declaration>

The <list_of_assignments> is a comma-separated list of assignments,
where the right-hand side of the assignment must be a constant
expression, thatis, an expression containing only constant numbers and
previously defined parameters. Example 3-4 shows examples of
parameter declarations:

parameter nsb = 7; // defines nsb as a constant value 7
parameter e = 25, f = 9;// defines two constant nunbers
par amet er average_delay = (r + f) / 2;

paranmeter byte size = 8, byte nask = byte_size - 1;

parameter r = 5.7, //declares r as a 'real’
/] paraneter

Example 3-4: Parameter declarations

Even though they represent constants, Verilog parameters can be
modified at compilation time to have values that are different from those
specified in the declaration assignment. This allows you to customize
module instances. You can modify the parameter with the def param
statement, or you can modify the parameter in the module instance
statement. Typical uses of parameters are to specify delays and width of
variables. See Chapter 12, Hierarchical Structures, for complete details
on parameter value assignment.

3-19

