
University of DelawareDepartment of Electrical and Computer EngineeringComputer Architecture and Parallel Systems LaboratoryLamport Order Revisit: A Study on How to E�cientlyAchieve Sequential Consistency on a ModernMultiprocessor-on-a-chip ArchitectureYuan ZhangyWeirong ZhuFei ChenZiang HuGuang R. GaoCAPSL Technical Memo 53March 01, 2004Copyright c
 2004 CAPSL at the University of Delaware

yDept. of Electrical and Computer EngineeringUniversity of Delawarezhangy,weirong,fchen,hu,ggao@capsl.udel.eduUniversity of Delaware � 140 Evans Hall �Newark, Delaware 19716 � USAhttp://www.capsl.udel.edu � ftp://ftp.capsl.udel.edu � capsladm@capsl.udel.edu

AbstractIn his seminal paper in 1979 [1] on memory consistency, Lamport proposed two re-quirements for a multiprocessor system to be sequentially consistent. The second conditionstated that memory \requests from all processors issued to an individual memory moduleare serviced from a single FIFO queue. Issuing a memory request consists of entering therequest on this queue". Recently, the authors have the opportunity to revisit Lamport'sconditions in the context of a design study of the IBM Cyclops multiprocessor-on-a-chiparchitecture (known as BG/C) from the system software angle. We �nd that when a mul-tiprocessor system employs a network to communicate with its shared memory modules {such as in the BG/C architecture - we need to carefully elaborate Lamport's requirementsto cover the network. Thus we have extended the Lamport's second requirement along thisline and demonstrated that the revised conditions are su�cient for ensuring the sequentiallyconsistent behaviors for a class of BG/C-like architectures.

i

Contents1 Introduction 12 Motivation 33 Problem Formulation 43.1 Target Architecture Model . 43.2 Problem Statement . 54 Cyclops Memory Model 65 Discussion and Future Work 105.1 More About Cyclops Architecture . 105.2 Future Work . 126 Related Work 127 Conclusions 138 Acknowledgments 13Index19List of Figures1 General Dance-hall Architecture Model . 32 Base Cyclops Architecture Model . 53 Illustration of Di�erent Orders and Reordering Transformations 94 Actual Cyclops Architecture Model . 115 Cyclops Architecture Model with Dual Virtual Channel Crossbar 116 Case #1 . 187 Case #2 . 19

ii

1 IntroductionA memory model de�nes how memory system behaves in a computer system. A sequentialcomputer's memory model is straightforward: every read operation returns the value of the lastwrite operation to the same location, and every write binds its value to the subsequent readoperations until the next write to the same location. However, the memory model of a shared-memory multi-processor machine is complicated, since the de�nitions such as \subsequent read"and "last write" need to be rede�ned when there are multiple processors reading and writingthe same memory location.The most widely accepted memory model for the multiprocessor machine is Lamport'ssequential consistency (SC) model - a simple extension of that of uniprocessor machine. It wasdescribed by Lamport in the following well-known statement [1]:[A system is sequentially consistent if] the result of any execution is the sameas if the operations of all the processors were executed in some sequential order,and the operations of each individual processor appear in this sequence in the orderspeci�ed by its program order.The above quote becomes the commonly used de�nition of sequential consistency in most text-books and research papers.In his 1979 paper cited above, Lamport also illustrated how to satisfy SC using a simple hy-pothetical shared-memory multiprocessor system [1]. This hypothetical multiprocessor systemwill be described in more detail in Section 2, but brie
y, it consists of a collection of processorsand shared memory modules, and the processors communicate with each other only throughshared memory read and write operations. Lamport posted the following two requirements assu�cient to ensure this system to be sequentially consistent:1. R1: Each processor issues memory requests in the order speci�ed by its program.2. R2: Memory requests from all processors issued to an individual memory module areserviced from a single FIFO queue. Issuing a memory request consists of entering therequest on this queue.The work described below is mostly inspired by a suggestion from Henry Warren from IBMT.J. Watson Center [2] to consider a proof of sequential consistency for the BG/C multiproces-sor machine designed by Monty Denneau [3]. Denneau's multiprocessor-on-a-chip architectureemploys a switch network between the processors and memory modules in a so-called dance-hallcon�guration [4]. Compared with Lamport's hypothetical multiprocessor, the queue attachedto each memory module is now on the \memory" side of the network. Denneau believes that thebase BG/C chip architecture is sequentially consistent and there is no need to issue fence-likeinstructions after each memory operation to ensure SC.1

Although Dennear's conjecture is, at �rst glance, quite obvious, it took us much longer toconstruct a proof to be presented in this paper. A major issue is: a memory operation needsto go through the network between \issued" by the processor and entering the correspondingmemory module, instead of as in condition R2 \... Issuing a memory request consists of enteringthe request on this queue".Therefore, the proof process will need to understand what features of the BG/C on-chipnetwork satisfy the requirement of the original Lamport's R2 condition. We end up with are�ned R2 condition that will be illustrated in Section 3. Another challenge in the proof is toshow that the condition R2 (or the re�ned R2) is su�cient to lead the validity of the widelyreferred Lamport's SC de�nition (see the quotation in Section 1). In a real multiprocessorsystem, the lifetimes of memory operations may actually be overlapped - a fact also pointedout by Lamport. Therefore, the \total order" in Lamport's SC de�nition, in the mathematicalsense, needs more deliberation. We believe that to construct a \total order" as described inLamport's de�nition, it appears to be much easier for the programmers to use or think about theissuing order, i.e., the order of memory requests described by their issuing time from processors.To this end, our proof shows that in the context of the BG/C chip architecture, which satis�esour re�ned R2 condition, and begin with a total order based on the completion time, wecan actually perform a series of \result-preserving" reordering transformations back to a totalorder based on the issuing order. Therefore, we can show that the base BG/C architecture issequentially consistent compliant - a concept introduced later in Section 4.Let us put this paper in a broader context. We have witnessed the emerging technology trendon multiprocessor-on-a-chip architecture with 10s-100s processing/thread units. In the general-purpose parallel computing arena, a representative multiprocessor-on-a-chip architecture is theclass of cellular architectures (IBM BG/C architecture [5, 6, 7, 8] is one example of this class).At the chip level, the cellular architecture employs a decentralized microprocessor design {using a cellular organization interconnecting a large number of very light-weight processorscalled processing cells. A thread running on the processing cell carries very little state { theprocessor is very simple and employs simple in-order issue to reduce the hardware complexity.The on-chip communication network provides rich interconnection and su�cient bandwidth forinterprocessor communication among the processing cells and their shared memory. Anotherclass, in the domain of application-speci�c architectures, is called extreme chips [9]. As manyas 300+ RISC processors are integrated within one chip to perform process communicationtasks. Therefore, designing such a chip and establishing its memory consistency requirementhave a practical signi�cance. We are not aware of any de facto standard on how to prove a realarchitecture to be sequentially consistent. To this end, we wish to share our initial experiencewith BG/C to the readers and hope it may help to foster more discussions.This paper is organized as follows. Section 2 �rst revisits Lamport's two requirements inthe context of a multiprocessor with a dance-hall organization of its shared memory modulesand network, then proposes our re�ned requirements. In section 3 we �rst introduce the baseIBM BG/C Cyclops multiprocessor-on-a-chip architecture, which is referred to as base Cyclopsarchitecture (or simply Cyclops architecture when no confusion may occur) when we discuss2

the memory model in section 4, and then give the problem formulation. In section 4 we presentan outline of our proof that the Cyclops architecture behaves like a sequentially consistentsystem, and leave some of the details in the Appendix I and Appendix II. In section 5, we givea brief discussion of some extensions to the base Cyclops architecture and discuss how they mayin
uence the underline memory model. We then discuss our future work in the same section.The related work is listed is section 6. Section 7 summarizes the whole paper work and givesthe conclusions.2 MotivationThe architecture model we concern, as shown in �gure 1, consists of a collection of processorsand memory models, and the processors communicate with one another only through readingor writing shared data in memory modules. Processors and memory modules are connected bya single bus or general network. We called it a \dance-hall" con�guration (much inspired bypast literature).
MMM

memory

buffer

memory

......

......

P P Pprocessor

General connection
(network or single bus)

Figure 1: General Dance-hall Architecture ModelLet us �rst examine the su�cient condition for this system to be sequentially consistent.As mentioned in the previous section, Lamport has proposed two requirements in 1979, andthe second requirement is \R2: Memory requests from all processors issued to an individualmemory module are serviced from a single FIFO queue. Issuing a memory request consistsof entering the request on this queue." R2 implies that an operation is issued only when ithas reached the memory bu�er. When the R2 condition was explained using his hypotheticalmultiprocessor system, Lamport did not elaborate what requirements the network should followin order to ensure the sequential consistency.In real architecture models, networks cause some delay in transmitting a memory request,i.e. a delay from the time it is issued by the processor to the time it arrives at the destinationmemory queue after travelling through the network. If no restriction on the distribution of suchdelay is imposed, a network design may violate the R2 condition. Let's consider the followingexample: 3

Initially x = flag = 0P1: P2:i1: x = 1; i3: while(flag==0) {;}i2: flag = 1; i4: read x;We expect that in most \reasonable" memory models i4 returns x = 1. Programmers mayreason this example (say, under Lamport's hypothetical multiprocessor model) as follows. Weknow that i1 is issued before i2, and i3 is issued before i4 - from the condition R1. Since thewhile loop in i3 exits only when the check of flag returns value 1, i2 must have been performedat that time. Consequently, when i4 is issued, i1 has already been issued. Thus i4 will beperformed after i1 and return the value written by i1.However, suppose in a real dance-hall system x and flag are in di�erent memory modules,and the delay occurs in the network such that although i1 is issued to the network before i4, itmay arrive at the memory bu�er for x later than i4. If this happens, then i4 returns the wrongvalue 0 - a contradiction to sequential consistency!This inspires us to re-consider the su�cient requirements for a general dance-hall system tobe sequentially consistent, and propose the following re�ned R2 requirement:R2-re�ned: Two operations designated to the same memory model M will bedelivered to M 's FIFO queue in the same order as they entered into the network.We will prove later that, in the context of a class of multiprocessor-on-a-chip architecturesuch as the IBM BG/C architecture, R1 and R2-re�ned together are su�cient to ensure thesequentially consistent behavior of a general dance-hall system.3 Problem Formulation3.1 Target Architecture ModelFigure 2 illustrates the base Cyclops multiprocessor-on-a-chip architecture model. The basearchitecture model simpli�es the actual Cyclops architecture and only contains the featuresrelevant to our study of the memory model. In section 5 we will present a more \complete"Cyclops architecture model, and discuss how our results derived from the base model may alsobe applicable.The base Cyclops architecture is composed of a collection of processors and memory banksconnected by a crossbar. The memory banks could be either on-chip memory or o�-chip memory.Each processor issues its memory operations in program order into a FIFO queue called the\issuing bu�er". The design of the processor guarantees that memory requests are issued intothe issuing bu�er in program order. 11In fact, a memory request cannot be issued unless its uniprocessor data dependence and control dependenceare satis�ed. 4

PP

M M M

P

......

......

......

......

mb

cm

cp

t

t

t

memory

crossbar

buffer

memory

buffer

issuing

processor

Figure 2: Base Cyclops Architecture ModelThe crossbar provides the following nice property, which we name as the \equal latency"property. Once a memory operation, which accesses memory bank M , is \admitted" (from theissuing queue) to the network, the time it takes to travel the network and reach M 's memorybu�er is a constant, regardless its speci�c origination. This constant latency applies to allmemory requests to M - hence the term \equal latency" property. If two memory requests havethe same memory destination are ready to be issued at the same time, one of them, determinedby arbitration, will be stalled at its issuing bu�er until the con
ict is resolved.The programming model is rather simple { only \read" and \write" operations are con-cerned. In section 5 we will discuss other memory operations like synchronization operations.3.2 Problem StatementAs described in the introduction, it has been conjectured that the base Cyclops architectureobeys the sequential consistency, and this is true even without using an explicit \sync" or \fence"[10] instruction after each read or write instruction. The problem statement of this paper is:can we establish the validity of this conjecture and how?Before we proceed to present our proof, we wish to discuss why the answer, although mightlook intuitive, is not trivial.Intuitively, the equal-latency property of the Cyclops architecture should satisfy the R2-re�ned condition we have outlined earlier. And it is easy to see that Cyclops satis�es both R1and R2-re�ned, hence the system appears to be sequentially consistent without elaboration -as Lamport did in his 1979 paper. However, as we have discussed earlier in the introduction,the relation between lifetimes of two memory operations in a real architecture cannot be char-acterized as \happen-before". In reality, in the construction of the \total order" mentioned inthe Lamport de�nition of the sequential consistency, two operations may be ordered (in thesense of Lamport order) by their issuing time, or their completion time. Other possibilitiesalso exist, but let us limit to these two which are the most intuitive ones used. It is our be-lief that it is often easier for a programmer to think about the order of memory operations5

characterized by the time when they leave a processor, instead of worrying about the ordercharacterized by their execution time at the memory end - as that may be \very far away" andthe operations may travel through various stages, or queues, etc. To this end, our proof showsthat in the context of the base Cyclops architecture (that satis�ed our re�ned R2 condition)and begin with a total order based on the completion time, we can actually perform a series of\result-preserving" reordering transformation back to a total order based on the issuing order.Therefore, we can show that the base BG/C architecture is sequentially consistency compliant(a concept introduced later in Section 4).4 Cyclops Memory ModelIn this section, we will outline the proof that the base Cyclops architecture model, as presentedin the previous section, obeys sequential consistency. This section is assisted by Appendix Iand Appendix II, where some details of the proof is described.The main body of the proof consists of Theorem I and Theorem II . Theorem I statesthat Cyclops is not sequentially consistent in the classical sense, and Theorem II states that,nonetheless, Cyclops architecture is sequentially consistent compliant, a notion we will introducelater.The classical sequential consistency (SC) is de�ned by Lamport as:[A system is sequentially consistent if] the result of any execution is the sameas if the operations of all the processors were executed in some sequential order,and the operations of each individual processor appear in this sequence in the orderspeci�ed by its program order [1].There are two conditions indicated in this de�nition:(1) Operations of all processors are executed in some sequential order (i.e., a total order).(2) In that total order, operations from an individual processor are executed in the programorder.We call the total order which satis�es condition (2) the \Lamport order".Theorem I: Cyclops is not sequentially consistent in the classical sense.Proof:Consider the following example: Initially x=y=0P1: P2:i1: write x=1 i3: read yi2: write y=1 i4: read x6

Suppose memory location x is in memory bank Mx, and memory location y is in memorybank My, Mx 6= My. Let � denotes the program order, then i1 � i2, and i3 � i4. Becausethe processor in Cyclops issues its memory operations in program order, we have tcp(i1) <tcp(i2) and tcp(i3) < tcp(i4) (please refer to �gure 2 for the de�nition of tcp). Then tcm(i1) =tcp(i1)+C(Mx), and tcm(i2) = tcp(i2)+C(My). Without any loss of generality, we assume thatbefore i1 there are already Wx operations waiting at Mx's bu�er, and Wy operations waitingat My's bu�er. Also assume that in average it takes Sx units of time and Sy units of time forMx and My, respectively, to process a memory request, then tmb(i1) = tcm(i1) +Wx � Sx =tcp(i1) + C(Mx) +Wx � Sx, and tmb(i2) = tcm(i2) +Wy � Sy = tcp(i2) + C(My) +Wy � Sy.Suppose Wx > Wy, Sx > Sy and C(Mx) > C(My) (this probably happens in real machine), wehave tmb(i1) > tmb(i2). That means, i1 will be performed after i2, which breaks the programorder speci�ed by P1. The same thing may also happen between i3 and i4. Therefore thecondition (2) in Lamport's de�nition may not be satis�ed. Thus in the classical sense, Cyclopsis not sequentially consistent, i.e., not obeying the Lamport order.Proof done.Although Cyclops is not sequentially consistent in classical sense, it behaves like sequentialconsistency. If executing the above example in a sequentially consistent system, i3 and i4 mayreturn the result for (x; y) as one of (0; 0), (1; 0) or (1; 1), but not (0; 1). In Cyclops, the readersmay wish to be convinced that the same results will be obtained. (Hint: to show that (0; 1) isnot possible { note that i3 will happen after i2 to read y = 1. This implies that i1 is de�nitelyissued before i4 to Mx, thus i1 is served by Mx before i2.)In this sense, we call Cyclops \sequentially consistent compliant", a notion to be introducedlater. We will try to prove this assertion in Theorem II. But before that, let us consider theintuitive reasoning behind the rigorous proof. Note that the \total order" in Lamport senseimplicitly implies an ideal scenario that there is no overlapping between operations in the totalorder. In reality, such as in the case of Cyclops architecture model, however, this \lifetime" ofan operation may be overlapped with others, i.e., an operation may start earlier than another,but �nish (perform) later. This is re
ected, in fact, in the counter example shown in the proofof Theorem I. So we need to have a formalism to handle the above overlapping situation.Our proof of Theorem II proceeds as follows: we �rst represent all operations executedfor a parallel program Prog as a multi-set 	. On 	 we build up two total orders, oneis �, based on the performing time (i.e.,tmb) of operations, and the other is �, based onthe issuing time (i.e.,tcp) of operations. Then the \execution" is conceptually representedas the (; �) pair. We also introduce another \pseudo" execution (; �). We prove inLemma 1 that � is a Lamport order, thus (; �) is a sequentially consistent execution.Then in Lemma 3, we show that the order � can be transformed { through a series ofreordering steps that preserve \equivalence" (based on Lemma 2) under the guidance oforder � { into a Lamport order, hence (; �) is equivalent to a sequentially consistent execution.7

The two total orders on 	 are mathematically de�ned as:� � = f< i; j > ji 2 	^ j 2 	^ (tmb(i) < tmb(j)_ (tmb(i) = tmb(j)^Mem(i) �Mem(j)))g� � = f< i; j > ji 2 	 ^ j 2 	 ^ (tcp(i) < tcp(j) _ (tcp(i) = tcp(j) ^Mem(i) �Mem(j)))gwhereMem(i) shows which memory bank the operation i accesses, assume every memory bankhas a unique ID. Although in a real system two operations with the same tmb may be executedsimultaneously (by di�erent memory banks), forcing an order here neither loses any gener-ality nor in
uences the validity of the proof and conclusions. From Theorem I we know � 6= �.Our proof is based on some important de�nitions:De�nition 1: An execution of a parallel program Prog at system S is a (M;O) pair, whereM is the multiset of operations executed, and O is an order on M .De�nition 2: An execution (M;O) is a sequentially consistent execution ifO is a Lamportorder.De�nition 3: Two executions (M1; O1) and (M2; O2) of a parallel program Prog are equiv-alent if:(1) They have the same set of memory operations, i.e.,M1 =M2 1;(2) Any memory read operation in (M1; O1) returns the same value as (M2; O2), andvice versa;It is obvious that an execution is equivalent to itself.De�nition 4: A shared-memory system S is sequentially consistent compliant if any ex-ecution of a program Prog on S is equivalent to a sequentially consistent execution ofProg.Lemma 1: Execution (; �) is a sequentially consistent execution.Proof:1The need for this condition may not be obvious. It is needed when there are some reads whose return valuesdetermine whether an operation is executed or not, or what memory address will be accessed. Let us look at thefollowing example: r1 = read x;if(r1 == 0)write y = 1;else write z = 1;Here the return value of \read x" determines whether then-branch or else-branch is executed. If two executionshave di�erent return values of \read x",they are not equivalent because they have di�erent execution paths.8

Let i and j be two memory operations issued from processor P , and i � j, then tcp(i) <tcp(j). According to the de�nition of �, we have < i; j >2 �. Program order is preserved in �.According to De�nition 2, we know (; �) is a sequentially consistent execution.Proof Done.Readers can think of this pseudo execution (; �) as executing 	 on a \ideal Lamportmachine", in which operations are executed one by one in a sequential order. For each operationits issuing time is its performing time, therefore there is no lifetime overlapping between anypair of operations. This case is illuestrated in �gure 3(a). However, in Cyclops, memoryoperations may be out-of-order executed, because of network delay, for instance; their lifetimesare overlapped with each other. The order based on their performing time is �, which is di�erentfrom �.
cycle 1

cycle 2

cycle 3

cycle 4

cycle 5

cycle 6

A

B

C

A

B

C

Machine
CyclopsLamport

Machine

(a) Di�erence BetweenTwo Orders
C

B

A

C

B

A

B

C

A

B

C

A

χ χ 1 χ2 χ3

Τ(χ ,1) Τ(χ ,1)Τ(χ ,1) 1 2(b) ReorderingTransformationFigure 3: Illustration of Di�erent Orders and Reordering TransformationsIn order to prove (; �) and (; �) are equivalent, we introduce a reordering transformationT . Given a total order, say �, T (�; i) transforms � into �0 by \percolating" the ith operationO(i) in � upward and insert it in a position that do not violate the corresponding orderingspeci�ed by �. We have developed a pseudo code (see Appendix I) to describe this process.Set �0 = � and begin from i = 1, we apply a sequence of T s on � with increasing values of i,i.e.,�1 = T (�0; 1); �2 = T (�1; 2); : : : ; �n = T (�n�1; n). Finally we reach the order �n = �. Wewill proof that � = �1 = : : : = �n = � (where \=" denotes equivalence).Readers will notice that after �i = T (�i�1; i), the order of the �rst i operations in �i areconsistent with �, and the rest operations are ordered in the same way as �. Figure 3(b)gives a simple example of this series of transformations. We also assume that the multi-set 	is changed to 	0 due to T . We will proof later that 	 = 	0.Lemma 2: Execution (0; �i) is equivalent to (; �i�1), after the transformation �i =T (�i�1; i), which reorders O(i) in �i�1.The details of this proof is shown in Appendix II. But brie
y, this proof is proceeded by9

contradiction. We �rst assume that reordering operation O(i) in �i�1, which is either read orwrite, will cause at least one read operation to return di�erent value. Then a con
ict with anobvious fact will occur.Lemma 3 (; �) is equivalent to a sequentially consistent execution.Proof:Because � = �1 = �2 = : : : = �n�1 = �n = �, then � = �. From Lemma 1, we know (; �)is a sequentially consistent execution. From De�nition 3, we know that (; �) is equivalentto a sequentially consistent execution.Proof Done.Theorem II: Cyclops is sequentially consistent compliant.Proof:Lemma 3 can be applied to every execution of a parallel program Prog at Cyclops. Ac-cording to De�nition 4, Cyclops is sequentially consistent compliant.Proof Done.5 Discussion and Future Work5.1 More About Cyclops ArchitectureIn section 3 we introduce a base Cyclops architecture and then discuss its memory model insection 4. In this section we present the actual Cyclops architecture models with extendedfeatures and show they are still sequentially consistent compliant.The extended architecture model is shown in �gure 4. There are the same number ofprocessors and memory banks in the system. Compared with the base model shown in �gure 2,we take into account the acknowledgments for read operations, which are issued to processorsfrom memory banks, and are bu�ered before entering the crossbar and corresponding processors.Another extension is that each pair of processor and memory bank share the same crossbar portin order to utilize the ports e�ciently.Under these extensions, a memory request, either read or write, is �rst issued by the proces-sor into bu�er �. From there it enters bu�er � of its destination memory bank after travellingthrough the crossbar. On the other hand, a read acknowledgment �rst enters bu�er �, thenarrives in bu�er � of its destination processor through the crossbar. A write operation needsno acknowledgment. Therefore, both bu�er � and bu�er � are shared by read/write requestsand read acknowledgments. 10

M P

0

M P

95

......

crossbar

buffer

α αβ β

Figure 4: Actual Cyclops Architecture ModelThis architecture still behaves like sequential consistency. Although read acknowledgmentsshare same bu�ers with memory requests, they just cause more delay but do not change the rel-ative performing order of memory requests. Moreover, in a system without cache, an operationis globally performed [11, 12] when it has �nished taking action on the memory. In this sensehow the processor is acknowledged does not change the memory model, suppose uniprocessordata dependence and control dependence are preserved.The architecture model shown in �gure 5 tries to improve the system performance further bygrouping the memory operations into two classes: class 0 and class 1, and providing each classwith a separate set of bu�ers. The crossbar serves both classes in the manner that wheneverpossible, it chooses one operation from the Least Recent Used (LRU) class to send. Thus wecall it dual virtual channel crossbar. This model provides more e�cient network
ow controlmechanism, and avoids system deadlocks caused by overwhelming network tra�c 2.
Mem Proc

MP

class−
0

class−
0

Mem Proc

class−
0

class−
0

MP

0 95

dual virtual channel crossbar

......

......

......

MP: 2−to−1 Multiplexer

class−
1

class−
1

class−
1

class−
1

Figure 5: Cyclops Architecture Model with Dual Virtual Channel CrossbarHow to group the memory operations here determines the type of memory model. We havethree options:(a). class 0: read request and write request;class 1: read acknowledgment;2For example, processor P1 stops and waits at shared variable flag. By polling repeatedly, it may congestthe network. At the same time, process P2 attempts to change the value of flag thereby processor P1 can catchand continue to work, but is stalled by the network congestion.11

(b). class 0: read request and read acknowledgment;class 1: write request;(c). class 0: read request;class 1: write request and read acknowledgment;Option (a) is in e�ect similar as the model shown in �gure 4, thus it is sequentially consistent.Option (b) will break the sequential consistency in two ways: break the uniprocessor datadependence, and break the inter-processor synchronization. For the former case, consider aprocessor issues n read operations followed by a write operation, which depends on the ith readoperation, i � n. For some reason channel 0 is congested, so the write operation is executedbefore the ith read operation, uniprocessor data dependence is broken. For the latter case,consider the following code piece:Initially x = flag = 0P1: P2:read x; while(flag==0){;}flag = 1; write x=1;Suppose P1's class 0 bu�er is stalled by previous operations, then its \read x" operationmay get the value written by P2's writex = 1, which breaks the sequential consistency.Option (c) has the same problems as option (b), so is not sequential consistency either.5.2 Future WorkIn present Cyclops architecture, there is no explicit synchronization operation like acquire andrelease etc. The exclusive access to a memory location is achieved by applying spin-locks in usercode. As one direction of future work, we are considering to add explicit synchronization oper-ations into Cyclops' instruction set, and see how we can take advantage of Cyclops' sequentialconsistency to e�ciently implement those synchronization operations.6 Related WorkMemory consistency model is an intensively studied �eld in parallel computer architecture,with a large amount of research work published in the literature. Sequential consistency was�rst de�ned by Lamport [1, 13] for shared-memory multiprocessor system with network but nocache. Afterwards, a number of cache coherence protocols, which ensure sequential consistency,have been proposed for single bus cache-based systems [14, 15, 16, 17]. Scheurich and Duboisproposed a su�cient condition for sequential consistency at a cache-based system [11, 12].Shasha and Snir also proposed a software algorithm to ensure sequential consistency [18].12

Besides, a lot of research work were conducted to relax the strong condition of sequentialconsistency to allow more performance optimization. They include processor consistency [19],weak consistency [20], release consistency [10], etc. All of the above discuss the memory modelfrom the system point of view. Adve proposed two memory models from the programmer'spoint of view [21, 22], and stated that if software obeys the synchronization model de�ned bythe memory model, then the hardware appears sequentially consistent. Some researchers try to�nd the weakest memory model [23, 24, 25]. Gao and Sarkar proposed the location consistencymodel (LC) and a cache coherence protocol in 2000 [26], which does not rely on the memorycoherence assumption.At the contex of memory consistency model proof, Lamport proposed a method based onlogical clock and time [27]. Based on Lamport's work, Plakal proposed a reasoning techniqueto verify a directory cache coherence protocol [28, 29].7 ConclusionsIn this paper we specify the memory model of Cyclops multiprocessor-on-a-chip architecture(known as BG/C). We �rst check Lamport's two requirements for a dance-hall architectureto be sequentially consistent. We �nd that Lamport's two requirements R1 and R2 need tobe carefully elaborated when we take into account the network delay. Then we proposed therevised requirement { R2-re�ned. We informally prove that the base Cyclops architecture, whichsatis�es both R1 and R2-re�ned conditions, obeys sequential consistency. We also discuss thereal Cyclops architecture and show it is also sequentially consistent compliant.8 AcknowledgmentsWe would like to acknowledge Monty Denneau and Henry S. Warren from IBM T.J. WatsonResearch Center for their suggestions on this topic and the many communications withoutwhich the progress of this research would not be possible. We also thank useful discussions frommembers of the CAPSL group at the University of Delaware, in particular Hongbo Rong, Juandel Cuvillo and Andres Marquez. Finally, the last author wish to acknowledge the support inpart by NSF, under the NGS grant 0103723, DOE, under grant number DE-FC02-01ER25503,DARPA, under the HPCS program, and other funding agencies.References[1] Leslie Lamport. How to make a multiprocessor computer that correctly executes multi-process programs. IEEE Transactions on Computers, 28(9):690{691, September 1979.[2] Henry S. Warren. Personal communication, February 2004.13

[3] Monty Denneau. Personal communication, February 2004.[4] Jaswinder Pal Singh David E. Culler and Anoop Gupta. Parallel Computer Architecture,a Hardware/Software Approach. Morgan Kaufmann, 1998.[5] George S. Almasi, C�alin Ca�scaval, Jos�e G. Casta~nos, Monty Denneau, Wilm Donath, MariaEleftheriou, Mark Giampapa, Howard Ho, Derek Lieber, Jos�e E. Moreira, Dennis Newns,Marc Snir, and Henry S. Warren, Jr. Demonstrating the scalability of a molecular dynam-ics application on a peta
ops computer. International Journal of Parallel Programming,30(4):317{351, August 2002.[6] George S. Almasi, Daniel K. Beece, Ralph Bellofatto, Gyan Bhanot, and EtAl. Bluegene/l, a system-on-a-chip. In 2002 IEEE International Conference on Cluster Computing(CLUSTER 2002), Chicago, IL, U.S.A, 2002. IEEE Computer Society.[7] Calin Cascaval, Jos G. Castaos, Luis Ceze, Monty Denneau, Manish Gupta, Derek Lieber,Jos E. Moreira, Karin Strauss, and Henry S. Warren Jr. Evaluation of a multithreadedarchitecture for cellular computing. In Proceedings of the Eighth International Symposiumon High-Performance Computer Architecture (HPCA'02), Boston, Massachusettes, USA,2002.[8] Hirofumi Sakane, Levent Yakay, Vishal Karna, Clement Leung, and Guang R. Gao. Dimes:An iterative emulation platform for multiprocessor-system-on-chip designs. In IEEE In-ternational Conference on Field-Programmable Technology (FPT'03), Tokyo, Japan, 2003.[9] Steven J. Vaughan-Nichols. Vendors go to extreme lengths for new chips. Computer, pages18{20, Jan 2004.[10] Kourosh Gharachorloo, Daniel Lenoski, James Laudon, Phillip Gibbons, Anoop Gupta,and John Hennessy. Memory consistency and event ordering in scalable shared-memorymultiprocessors. In Proceedings of the 17th Annual International Symposium on ComputerArchitecture [30], pages 15{26.[11] Christoph Scheurich and Michel Dubois. Correct memory operation of cache-based mul-tiprocessors. In Proceedings of the 14th Annual International Symposium on ComputerArchitecture, pages 234{243, Pittsburgh, Pennsylvania, June 1987.[12] C. E. Scheurich. Access Ordering and Coherence in Shared Memory Multiprocessors. PhDthesis, University of Southern California, 1989.[13] Leslie Lamport. Proving the correctness of multiprocess programs. IEEE Transactions onSoftware Engineering, 3(2):125{143, 1977.[14] James Archibald and Jean-Loup Baer. An economical solution to the cache coherence prob-lem. In Proceedings of the 11th Annual International Symposium on Computer Architecture[31], pages 355{362. 14

[15] Larry Rudolph and Zary Segall. Dynamic decentralized cache schemes for MIMD parallelprocessors. In Proceedings of the 11th Annual International Symposium on ComputerArchitecture [31], pages 340{347.[16] W. C. Brantley, K. P. McAuli�e, and J. Weiss. RP3 processor-memory element. InProceedings of the 1985 International Conference on Parallel Processing [32], pages 782{789.[17] G. F. P�ster, W. C. Brantley, D. A. George, S. L. Harvey, W. J. Kleinfelder, K. P.McAuli�e, E. A. Melton, V. A. Norton, and J. Weiss. The IBM Research Parallel ProcessorPrototype (RP3): Introduction and architecture. In Proceedings of the 1985 InternationalConference on Parallel Processing, pages 764{771.[18] Dennis Shasha and Marc Snir. E�cient and correct execution of parallel programs thatshare memory. ACM TOPLAS, 10(2):282{312, April 1988.[19] J. R. Goodman. Cache consistency and sequential consistency. Technical Report 1006,Department of Computer Science, University of Wisconsin, Madison, February 1991.[20] Michel Dubois, Christoph Scheurich, and Faye Briggs. Memory access bu�ering in mul-tiprocessors. In Proceedings of the 13th Annual International Symposium on ComputerArchitecture, pages 434{442, Tokyo, Japan, June 1986.[21] Sarita V. Adve and Mark D. Hill. Weak ordering|a new de�nition. In Proceedings of the17th Annual International Symposium on Computer Architecture [30], pages 2{14.[22] Sarita V. Adve and Mark D. Hill. A uni�ed formalization of four shared-memory models.IEEE Transactions on Parallel and Distributed Systems, pages 613{624, June 1993.[23] R. D. Blumofe, M. Frigo, C. F. Joerg, C. E. Leiserson, and K. H. Randall. Dag-consistentdistributed shared memory. In Proc. 10th Int. Parallel Processing Symp. (IPPS'96) CD-ROM, Honolulu, HA, April 1996. IEEE.[24] Robert D. Blumofe, Matteo Frigo, Christopher F. Joerg, Charles E. Leiserson, and Keith H.Randall. An analysis of dag-consistent distributed shared-memory algorithms. In Proceed-ings of the 8th Annual ACM Symposium on Parallel Algorithms and Architectures, pages297{308, Padua, Italy, June 1996.[25] M. Frigo. The weakest reasonable memory model. Master's thesis, Department of ElectricalEngineering and Computer Science, MIT, 1998.[26] Guang R. Gao and Vivek Sarkar. Location consistency - a new memory model and cacheconsistency protocol. IEEE Trans. on Computers, 49(8):798{813, August 2000.[27] Leslie Lamport. Time, clocks, and the ordering of events in a distributed system. Com-munications of the ACM, 21(7):558{565, July 1978.15

[28] Anne Condon, Mark D. Hill, Manoj Plakal, and Daniel J. Sorin. Using lamport clocks toreason about relaxed memory models. In Proceedings of the Fifth International Symposiumon High-Performance Computer Architecture (HPCA1999), pages 270{278, Orlando, FL,USA, January 1999.[29] Manoj Plakal, Daniel J. Sorin, Anne Condon, and Mark D. Hill. Lamport clocks: Verifyinga directory cache-coherence protocol. In Proceedings of the Tenth Annual ACM Symposiumon Parallel Algorithms and Architectures (SPAA98), pages 67{76, Puerto Vallarta, Mexico,June 1998.[30] Proceedings of the 17th Annual International Symposium on Computer Architecture, Seat-tle, Washington, May 1990.[31] Proceedings of the 11th Annual International Symposium on Computer Architecture, AnnArbor, Michigan, June 1984.[32] Proceedings of the 1985 International Conference on Parallel Processing, St. Charles, Illi-nois, August 1985.

16

Appendix IAlgorithm 1. Reordering Transformation �0 = T (�; i)input: � { total order; i { position of the operation being reorderedoutput: �0 { new total orderBEGINnewpos 1/* �nd the position (newpos) where the O�(i) should go in �0 */while(newpos < i) doif(tcp(O�(i)) < tcp(O�(newpos)) _ (tcp(O�(i)) = tcp(O�(newpos)) ^Mem(O�(i)) �Mem(O�(newpos))))break;else newpos newpos+ 1end while/* the �rst newpos-1 operations are kept unchanged, copy them to �0*/for j 1 to newpos� 1 doO�0(j) = O�(j)end forO�0(newpos) = O�(i) /*move the ith operation in � to be the (newpos)thoperation in �0 */j j + 1/* for all operations between O�(i) and O�(newpos), move them one operationbehind, because we have inserted O�(i) at newpos */for j to i doO�0(j) = O�(j � 1)end for/* copy all operations after O�(i) in � into �0 */for j to n doO�0(j) = O�(j)end forENDAppendix IILemma 2: Execution (0; �i) is equivalent to (; �i�1), after the transformation �i =T (�i�1; i), which reorders O(i) in �i�1.Proof:let's �rst check the second condition in De�nition 3 { all read operations in �i return thesame results as in �i�1. Suppose the ith operation O(i) in �i�1 is moved backward to position17

j in �i, 0 < j � i. We consider two cases:Case #1: O(i) is a read operation;Case #2: O(i) is a write operation;Case #1 is proved by contradiction. We assume that O(i) reads a di�erent value after it isreordered. Suppose in �i�1, O(i) returns the value written by a write operation O(k), as shownin �gure 6, then k < i. It means:tmb(O(k)) < tmb(O(i)) _ (tmb(O(k)) = tmb(O(i)) ^Mem(O(k)) �Mem(O(i)))Since O(k) and O(i) access the same memory bank, O(k) must arrive earlier than O(i) at thememory bank, we have: tmb(O(k)) < tmb(O(i)) (1)And only when O(i) is moved before O(k) in �i can O(i)'s value be changed. \O(i) is movedbefore O(k)" means:tcp(O(i)) < tcp(O(k)) _ (tcp(O(i)) = tcp(O(k)) ^Mem(O(i)) �Mem(O(k)))that is, tcp(O(i)) < tcp(O(k))tcp(O(i)) + C = tcm(O(i)) < tcp(O(k)) + C = tcm(O(k))Because each memory bank has a single point tcm(O(i)) < tcm(O(k)) is equivalent totmb(O(i)) < tmb(O(k)) (2)But, (1) and (2) are in con
ict, a contradiction. Thus O(i) still returns the same result. Noteother read operations' values cannot be changed by reordering O(i), all read operations returnthe same values before and after the reordering.
write x

...
...

...
...

......

......

...
...

write x

j−1:

j:

...
...

i−1:

i:

k:

read x

...
...

χ i−1

read

move

write x

...
...

j−1:

j: read x

j+1:

...
...

k+1: write x

...
...

i:

...
...

χ i

read

Figure 6: Case #118

For Case #2, O(i) is a write. Again, proof proceeds by contradiction. We consider twosub-cases below.Sub-Case #1: Assuming that there is a read O(q) later than O(i) (q > i) in �i�1 that willread a di�erent value after the reordering. It implies the existence of a write O(p), i > p � j, asshown in �gure 7(a), and that O(q) reads the value written by O(p) (other than O(i)) after thereordering. By reordering O(i) to position j in �i, O(i)'s value will be killed by O(p) and thenO(q) returns O(p)'s value, instead of O(i). The proof of a contradiction can follow a similarargument as in Case #1 by comparing tmb and tcp of O(p) and O(i).Sub-Case #2: Assuming that there is a read O(q) earlier than O(i) (q < i) in �i�1 thatwill read a di�erent value after the reordering. It implies that on �i�1, there is a write O(p),p < j and j � q < i, as shown in �gure 7(b), and O(q) returns the value written by O(p). Byreordering O(i) to position j in �i, O(i) will kill O(p) so that O(q) will return O(i)'s value.Again and similarly, this can generate the contradiction.
...

...

χ i−1

read

χ i

j−1:
......

...
...

write xp:

...
...

i−1:
i: write x

...
...

read xq:

...
...

move

...
...

j−1:
j: j: write x

j+1:

write x

...
...

...
...

i:

...
...

read x

...
...

q:

p+1:

read

(a) Case #2 - Subcase #1
...

...

χ i−1 χ i

...
...

...
...

write xp:

...
...

......j−1:

j:
...

...

read xq:

...
...

i−1:

i:

...
...

write x

read

write xp:

...
...

j−1:

j: write x

......j+1:

read x

...
...

......i:

...
...

q+1:

read

(b) Case #2 - Subcase #2Figure 7: Case #2Now we can draw the conclusion that in �i all reads return the same values as in �i�1.Now let us look at the condition 1 in De�nition 3. Because all reads on the �rst i operationsin �i return the same values as in �i�1, any if the branch after i operations which depends on theread values in the �rst i operations will have the same execution path in �i�1. This guaranteesthat �i and �i�1 execute the same operations, i.e.,	0 = 	.Therefore both conditions inDe�nition 3 are satis�ed, thus (0; �i) is equivalent to (; �i�1).Proof Done.
19

