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Abstract

In his seminal paper in 1979 [1] on memory consistency, Lamport proposed two re-
quirements for a multiprocessor system to be sequentially consistent. The second condition
stated that memory “requests from all processors issued to an individual memory module
are serviced from a single FIFO queue. Issuing a memory request consists of entering the
request on this queue”. Recently, the authors have the opportunity to revisit Lamport’s
conditions in the context of a design study of the IBM Cyclops multiprocessor-on-a-chip
architecture (known as BG/C) from the system software angle. We find that when a mul-
tiprocessor system employs a network to communicate with its shared memory modules
such as in the BG/C architecture - we need to carefully elaborate Lamport’s requirements
to cover the network. Thus we have extended the Lamport’s second requirement along this
line and demonstrated that the revised conditions are sufficient for ensuring the sequentially
consistent behaviors for a class of BG/C-like architectures.
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1 Introduction

A memory model defines how memory system behaves in a computer system. A sequential
computer’s memory model is straightforward: every read operation returns the value of the last
write operation to the same location, and every write binds its value to the subsequent read
operations until the next write to the same location. However, the memory model of a shared-
memory multi-processor machine is complicated, since the definitions such as “subsequent read”
and ”last write” need to be redefined when there are multiple processors reading and writing
the same memory location.

The most widely accepted memory model for the multiprocessor machine is Lamport’s
sequential consistency (SC) model - a simple extension of that of uniprocessor machine. It was
described by Lamport in the following well-known statement [1]:

[A system is sequentially consistent if] the result of any execution is the same
as if the operations of all the processors were executed in some sequential order,
and the operations of each individual processor appear in this sequence in the order
specified by its program order.

The above quote becomes the commonly used definition of sequential consistency in most text-

books and research papers.

In his 1979 paper cited above, Lamport also illustrated how to satisfy SC using a simple hy-
pothetical shared-memory multiprocessor system [1]. This hypothetical multiprocessor system
will be described in more detail in Section 2, but briefly, it consists of a collection of processors
and shared memory modules, and the processors communicate with each other only through
shared memory read and write operations. Lamport posted the following two requirements as

sufficient to ensure this system to be sequentially consistent:

1. R1: Each processor issues memory requests in the order specified by its program.

2. R2: Memory requests from all processors issued to an individual memory module are
serviced from a single FIFO queue. Issuing a memory request consists of entering the
request on this queue.

The work described below is mostly inspired by a suggestion from Henry Warren from IBM
T.J. Watson Center [2] to consider a proof of sequential consistency for the BG/C multiproces-
sor machine designed by Monty Denneau [3]. Denneau’s multiprocessor-on-a-chip architecture
employs a switch network between the processors and memory modules in a so-called dance-hall
configuration [4]. Compared with Lamport’s hypothetical multiprocessor, the queue attached
to each memory module is now on the “memory” side of the network. Denneau believes that the
base BG/C chip architecture is sequentially consistent and there is no need to issue fence-like
instructions after each memory operation to ensure SC.



Although Dennear’s conjecture is, at first glance, quite obvious, it took us much longer to
construct a proof to be presented in this paper. A major issue is: a memory operation needs
to go through the network between “issued” by the processor and entering the corresponding
memory module, instead of as in condition R2 “... Issuing a memory request consists of entering
the request on this queue”.

Therefore, the proof process will need to understand what features of the BG/C on-chip
network satisfy the requirement of the original Lamport’s R2 condition. We end up with a
refined R2 condition that will be illustrated in Section 3. Another challenge in the proof is to
show that the condition R2 (or the refined R2) is sufficient to lead the validity of the widely
referred Lamport’s SC definition (see the quotation in Section 1). In a real multiprocessor
system, the lifetimes of memory operations may actually be overlapped - a fact also pointed
out by Lamport. Therefore, the “total order” in Lamport’s SC definition, in the mathematical
sense, needs more deliberation. We believe that to construct a “total order” as described in
Lamport’s definition, it appears to be much easier for the programmers to use or think about the
issuing order, i.e., the order of memory requests described by their issuing time from processors.
To this end, our proof shows that in the context of the BG/C chip architecture, which satisfies
our refined R2 condition, and begin with a total order based on the completion time, we
can actually perform a series of “result-preserving” reordering transformations back to a total
order based on the issuing order. Therefore, we can show that the base BG/C architecture is
sequentially consistent compliant - a concept introduced later in Section 4.

Let us put this paper in a broader context. We have witnessed the emerging technology trend
on multiprocessor-on-a-chip architecture with 10s-100s processing/thread units. In the general-
purpose parallel computing arena, a representative multiprocessor-on-a-chip architecture is the
class of cellular architectures (IBM BG/C architecture [5, 6, 7, 8] is one example of this class).
At the chip level, the cellular architecture employs a decentralized microprocessor design
using a cellular organization interconnecting a large number of very light-weight processors
called processing cells. A thread running on the processing cell carries very little state — the
processor is very simple and employs simple in-order issue to reduce the hardware complexity.
The on-chip communication network provides rich interconnection and sufficient bandwidth for
interprocessor communication among the processing cells and their shared memory. Another
class, in the domain of application-specific architectures, is called extreme chips [9]. As many
as 300+ RISC processors are integrated within one chip to perform process communication
tasks. Therefore, designing such a chip and establishing its memory consistency requirement
have a practical significance. We are not aware of any de facto standard on how to prove a real
architecture to be sequentially consistent. To this end, we wish to share our initial experience
with BG/C to the readers and hope it may help to foster more discussions.

This paper is organized as follows. Section 2 first revisits Lamport’s two requirements in
the context of a multiprocessor with a dance-hall organization of its shared memory modules
and network, then proposes our refined requirements. In section 3 we first introduce the base
IBM BG/C Cyclops multiprocessor-on-a-chip architecture, which is referred to as base Cyclops
architecture (or simply Cyclops architecture when no confusion may occur) when we discuss



the memory model in section 4, and then give the problem formulation. In section 4 we present
an outline of our proof that the Cyclops architecture behaves like a sequentially consistent
system, and leave some of the details in the Appendix I and Appendix II. In section 5, we give
a brief discussion of some extensions to the base Cyclops architecture and discuss how they may
influence the underline memory model. We then discuss our future work in the same section.
The related work is listed is section 6. Section 7 summarizes the whole paper work and gives
the conclusions.

2 Motivation

The architecture model we concern, as shown in figure 1, consists of a collection of processors
and memory models, and the processors communicate with one another only through reading
or writing shared data in memory modules. Processors and memory modules are connected by
a single bus or general network. We called it a “dance-hall” configuration (much inspired by
past literature).

| General connection |
| (network or single bus) |

memory —— [ ......
buffer

Figure 1: General Dance-hall Architecture Model

Let us first examine the sufficient condition for this system to be sequentially consistent.
As mentioned in the previous section, Lamport has proposed two requirements in 1979, and
the second requirement is “R2: Memory requests from all processors issued to an individual
memory module are serviced from a single FIFO queue. Issuing a memory request consists
of entering the request on this queue.” R2 implies that an operation is issued only when it
has reached the memory buffer. When the R2 condition was explained using his hypothetical
multiprocessor system, Lamport did not elaborate what requirements the network should follow
in order to ensure the sequential consistency.

In real architecture models, networks cause some delay in transmitting a memory request,
i.e. a delay from the time it is issued by the processor to the time it arrives at the destination
memory queue after travelling through the network. If no restriction on the distribution of such
delay is imposed, a network design may violate the R2 condition. Let’s consider the following
example:



Initially x = flag = 0

P1: P2:
il: x = 1; i3: while(flag==0) {;}
i2: flag = 1; i4: read x;

We expect that in most “reasonable” memory models 4 returns z = 1. Programmers may
reason this example (say, under Lamport’s hypothetical multiprocessor model) as follows. We
know that 1 is issued before i2, and 73 is issued before i4 - from the condition R1. Since the
while loop in 43 exits only when the check of flag returns value 1, 42 must have been performed
at that time. Consequently, when 4 is issued, i1 has already been issued. Thus i4 will be
performed after 71 and return the value written by 1.

However, suppose in a real dance-hall system = and flag are in different memory modules,
and the delay occurs in the network such that although 71 is issued to the network before 4, it
may arrive at the memory buffer for x later than ¢4. If this happens, then i4 returns the wrong

value 0 - a contradiction to sequential consistency!

This inspires us to re-consider the sufficient requirements for a general dance-hall system to
be sequentially consistent, and propose the following refined R2 requirement:

R2-refined: Two operations designated to the same memory model M will be
delivered to M’s FIFO queue in the same order as they entered into the network.

We will prove later that, in the context of a class of multiprocessor-on-a-chip architecture
such as the IBM BG/C architecture, R1 and R2-refined together are sufficient to ensure the

sequentially consistent behavior of a general dance-hall system.

3 Problem Formulation

3.1 Target Architecture Model

Figure 2 illustrates the base Cyclops multiprocessor-on-a-chip architecture model. The base
architecture model simplifies the actual Cyclops architecture and only contains the features
relevant to our study of the memory model. In section 5 we will present a more “complete”
Cyclops architecture model, and discuss how our results derived from the base model may also
be applicable.

The base Cyclops architecture is composed of a collection of processors and memory banks
connected by a crossbar. The memory banks could be either on-chip memory or off-chip memory.
Each processor issues its memory operations in program order into a FIFO queue called the
“issuing buffer”. The design of the processor guarantees that memory requests are issued into
the issuing buffer in program order. !

n fact, a memory request cannot be issued unless its uniprocessor data dependence and control dependence
are satisfied.



processor

issuing
buffer

buffer

Figure 2: Base Cyclops Architecture Model

The crossbar provides the following nice property, which we name as the “equal latency”
property. Once a memory operation, which accesses memory bank M, is “admitted” (from the
issuing queue) to the network, the time it takes to travel the network and reach M’s memory
buffer is a constant, regardless its specific origination. This constant latency applies to all
memory requests to M - hence the term “equal latency” property. If two memory requests have
the same memory destination are ready to be issued at the same time, one of them, determined
by arbitration, will be stalled at its issuing buffer until the conflict is resolved.

The programming model is rather simple — only “read” and “write” operations are con-
cerned. In section 5 we will discuss other memory operations like synchronization operations.

3.2 Problem Statement

As described in the introduction, it has been conjectured that the base Cyclops architecture
obeys the sequential consistency, and this is true even without using an explicit “sync” or “fence”
[10] instruction after each read or write instruction. The problem statement of this paper is:
can we establish the validity of this conjecture and how?

Before we proceed to present our proof, we wish to discuss why the answer, although might
look intuitive, is not trivial.

Intuitively, the equal-latency property of the Cyclops architecture should satisfy the R2-
refined condition we have outlined earlier. And it is easy to see that Cyclops satisfies both R1
and R2-refined, hence the system appears to be sequentially consistent without elaboration -
as Lamport did in his 1979 paper. However, as we have discussed earlier in the introduction,
the relation between lifetimes of two memory operations in a real architecture cannot be char-
acterized as “happen-before”. In reality, in the construction of the “total order” mentioned in
the Lamport definition of the sequential consistency, two operations may be ordered (in the
sense of Lamport order) by their issuing time, or their completion time. Other possibilities
also exist, but let us limit to these two which are the most intuitive ones used. It is our be-
lief that it is often easier for a programmer to think about the order of memory operations



characterized by the time when they leave a processor, instead of worrying about the order
characterized by their execution time at the memory end - as that may be “very far away” and
the operations may travel through various stages, or queues, etc. To this end, our proof shows
that in the context of the base Cyclops architecture (that satisfied our refined R2 condition)
and begin with a total order based on the completion time, we can actually perform a series of
“result-preserving” reordering transformation back to a total order based on the issuing order.
Therefore, we can show that the base BG/C architecture is sequentially consistency compliant
(a concept introduced later in Section 4).

4 Cyclops Memory Model

In this section, we will outline the proof that the base Cyclops architecture model, as presented
in the previous section, obeys sequential consistency. This section is assisted by Appendix I
and Appendix II, where some details of the proof is described.

The main body of the proof consists of Theorem I and Theorem II . Theorem I states
that Cyclops is not sequentially consistent in the classical sense, and Theorem 11 states that,
nonetheless, Cyclops architecture is sequentially consistent compliant, a notion we will introduce
later.

The classical sequential consistency (SC) is defined by Lamport as:

[A system is sequentially consistent if] the result of any execution is the same
as if the operations of all the processors were executed in some sequential order,
and the operations of each individual processor appear in this sequence in the order
specified by its program order [1].

There are two conditions indicated in this definition:

(1) Operations of all processors are executed in some sequential order (i.e., a total order).

2) In that total order, operations from an individual processor are executed in the program
order.

We call the total order which satisfies condition (2) the “Lamport order”.

Theorem I: Cyclops is not sequentially consistent in the classical sense.
Proof:

Consider the following example:

Initially x=y=0

P1: P2:
il: write x=1 i3: read y
i2: write y=1 i4: read x



Suppose memory location z is in memory bank M,, and memory location y is in memory
bank M,, M, # M,. Let < denotes the program order, then i1 < 72, and i3 < i4. Because
the processor in Cyclops issues its memory operations in program order, we have t.,(il) <
tep(i2) and t.(i3) < t.p(i4) (please refer to figure 2 for the definition of t.,). Then t.,,(il) =
tep(il) + C(My), and tey, (12) = te(i2) + C(M,,). Without any loss of generality, we assume that
before il there are already W, operations waiting at M,’s buffer, and W, operations waiting
at M,’s buffer. Also assume that in average it takes S, units of time and Sy units of time for
M, and M,, respectively, to process a memory request, then #,,,(il) = tey(il) + W, x S, =
tep(il) + C(My) + Wy xSy, and t,4(i2) = tem (12) + Wy % Sy = tp(i2) + C(My) + Wy * S,,.
Suppose W, > W,, S, > S, and C(M,) > C(M,) (this probably happens in real machine), we
have t,,5(i1) > t;p(i2). That means, i1 will be performed after i2, which breaks the program
order specified by P1. The same thing may also happen between i3 and i4. Therefore the
condition (2) in Lamport’s definition may not be satisfied. Thus in the classical sense, Cyclops
is not sequentially consistent, i.e., not obeying the Lamport order.

Proof done.

Although Cyclops is not sequentially consistent in classical sense, it behaves like sequential
consistency. If executing the above example in a sequentially consistent system, ¢3 and 4 may
return the result for (z,y) as one of (0,0), (1,0) or (1, 1), but not (0,1). In Cyclops, the readers
may wish to be convinced that the same results will be obtained. (Hint: to show that (0,1) is
not possible note that i3 will happen after 2 to read y = 1. This implies that i1 is definitely
issued before i4 to M,, thus il is served by M, before i2.)

In this sense, we call Cyclops “sequentially consistent compliant”, a notion to be introduced
later. We will try to prove this assertion in Theorem II. But before that, let us consider the
intuitive reasoning behind the rigorous proof. Note that the “total order” in Lamport sense
implicitly implies an ideal scenario that there is no overlapping between operations in the total
order. In reality, such as in the case of Cyclops architecture model, however, this “lifetime” of
an operation may be overlapped with others, i.e., an operation may start earlier than another,
but finish (perform) later. This is reflected, in fact, in the counter example shown in the proof
of Theorem 1. So we need to have a formalism to handle the above overlapping situation.

Our proof of Theorem II proceeds as follows: we first represent all operations executed
for a parallel program Prog as a multi-set ¥. On ¥ we build up two total orders, one
is x, based on the performing time (i.e.,t;,;;) of operations, and the other is A, based on
the issuing time (i.e.,te,) of operations. Then the “execution” is conceptually represented
as the (U, y) pair. We also introduce another “pseudo” execution (¥,)). We prove in
Lemma 1 that X is a Lamport order, thus (¥, \) is a sequentially consistent execution.
Then in Lemma 3, we show that the order y can be transformed — through a series of
reordering steps that preserve “equivalence” (based on Lemma 2) under the guidance of
order A — into a Lamport order, hence (¥, x) is equivalent to a sequentially consistent execution.



The two total orders on W are mathematically defined as:

o X =A{<u,i> [t € UAJ € WA (lmp(1) < tmp()V (Emp (i) = tmp(5) AMem(i) < Mem(j)))}

e A={<i,j > i€ VA EWUA(ty(t) <tep(y) V (tep(t) =tep(j) AN Mem(i) < Mem(j)))}
where Mem/(i) shows which memory bank the operation i accesses, assume every memory bank
has a unique ID. Although in a real system two operations with the same #,,;, may be executed

simultaneously (by different memory banks), forcing an order here neither loses any gener-
ality nor influences the validity of the proof and conclusions. From Theorem I we know x # A.

Our proof is based on some important definitions:

Definition 1: An execution of a parallel program Prog at system S is a (M, Q) pair, where
M is the multiset of operations executed, and O is an order on M.

Definition 2: Anexecution (M, Q) is a sequentially consistent execution if O is a Lamport
order.

Definition 3: Two executions (M, O1) and (My, O3) of a parallel program Prog are equiv-
alent if:
(1) They have the same set of memory operations, i.e.,M; = My ';
(2) Any memory read operation in (M;, O;) returns the same value as (My, O2), and
vice versa;

It is obvious that an execution is equivalent to itself.

Definition 4: A shared-memory system S is sequentially consistent compliant if any ex-
ecution of a program Prog on S is equivalent to a sequentially consistent execution of
Prog.

Lemma 1: Execution (¥, \) is a sequentially consistent execution.

Proof:

!The need for this condition may not be obvious. It is needed when there are some reads whose return values
determine whether an operation is executed or not, or what memory address will be accessed. Let us look at the
following example:

rl = read x;
if(rl == 0)
write y = 1;
else
write z = 1;
Here the return value of “read x” determines whether then-branch or else-branch is executed. If two executions
have different return values of “read x”,they are not equivalent because they have different ezecution paths.



Let ¢ and j be two memory operations issued from processor P, and i < j, then ¢.,(i) <
tep(7)- According to the definition of A, we have < 4,5 >€ A. Program order is preserved in .
According to Definition 2, we know (W, \) is a sequentially consistent execution.

Proof Done.

Readers can think of this pseudo execution (W, \) as executing ¥ on a “ideal Lamport
machine”, in which operations are executed one by one in a sequential order. For each operation
its issuing time is its performing time, therefore there is no lifetime overlapping between any
pair of operations. This case is illuestrated in figure 3(a). However, in Cyclops, memory
operations may be out-of-order executed, because of network delay, for instance; their lifetimes
are overlapped with each other. The order based on their performing time is y, which is different
from A.

Lamport  Cyclops
Machine Machine

cycle 1 A A
cycle2 7{}3 7777777 B C C B A
cycled  § c }797” B—~B—>C-—»B
cycle 4
—————————————————— A A A C
cycle 5
cyce6 TXD Tyl Tpd)
(a) Difference Between (b) Reordering
Two Orders Transformation

Figure 3: Illustration of Different Orders and Reordering Transformations

In order to prove (¥, \) and (¥, y) are equivalent, we introduce a reordering transformation
T. Given a total order, say 6, T'(6,1) transforms 6 into 6’ by “percolating” the ith operation
O(i) in € upward and insert it in a position that do not violate the corresponding ordering
specified by A\. We have developed a pseudo code (see Appendix I) to describe this process.
Set xo = x and begin from i = 1, we apply a sequence of T's on x with increasing values of i,
i.e.,x1 =T(x0,1)sx2 = T(x1,2),...,Xn = T(xXn-1,n). Finally we reach the order x, = A. We

will proof that xy = x1 = ... = xp = A (where “=" denotes equivalence).

Readers will notice that after x; = T'(x;_1,%), the order of the first i operations in y; are
consistent with A, and the rest operations are ordered in the same way as x. Figure 3(b)
gives a simple example of this series of transformations. We also assume that the multi-set W
is changed to ¥’ due to T. We will proof later that W = W',

Lemma 2: Execution (U, y;) is equivalent to (W, y; 1), after the transformation y; =
T(xi—1,1), which reorders O(i) in x;_1.

The details of this proof is shown in Appendix II. But briefly, this proof is proceeded by



contradiction. We first assume that reordering operation O(i) in x;_1, which is either read or
write, will cause at least one read operation to return different value. Then a conflict with an
obvious fact will occur.

Lemma 3 (U, x) is equivalent to a sequentially consistent execution.
Proof:

Because x = x1 = X2 = ... = Xn-1 = Xn = A, then x = A\. From Lemma 1, we know (¥, \)
is a sequentially consistent execution. From Definition 3, we know that (U, x) is equivalent
to a sequentially consistent execution.

Proof Done.

Theorem II: Cyclops is sequentially consistent compliant.
Proof:

Lemma 3 can be applied to every execution of a parallel program Prog at Cyclops. Ac-
cording to Definition 4, Cyclops is sequentially consistent compliant.

Proof Done.

5 Discussion and Future Work

5.1 More About Cyclops Architecture

In section 3 we introduce a base Cyclops architecture and then discuss its memory model in
section 4. In this section we present the actual Cyclops architecture models with extended
features and show they are still sequentially consistent compliant.

The extended architecture model is shown in figure 4. There are the same number of
processors and memory banks in the system. Compared with the base model shown in figure 2,
we take into account the acknowledgments for read operations, which are issued to processors
from memory banks, and are buffered before entering the crossbar and corresponding processors.
Another extension is that each pair of processor and memory bank share the same crossbar port
in order to utilize the ports efficiently.

Under these extensions, a memory request, either read or write, is first issued by the proces-
sor into buffer a. From there it enters buffer § of its destination memory bank after travelling
through the crossbar. On the other hand, a read acknowledgment first enters buffer «, then
arrives in buffer 3 of its destination processor through the crossbar. A write operation needs
no acknowledgment. Therefore, both buffer o and buffer 5 are shared by read/write requests
and read acknowledgments.

10



crossbar

Figure 4: Actual Cyclops Architecture Model

This architecture still behaves like sequential consistency. Although read acknowledgments
share same buffers with memory requests, they just cause more delay but do not change the rel-
ative performing order of memory requests. Moreover, in a system without cache, an operation
is globally performed [11, 12] when it has finished taking action on the memory. In this sense
how the processor is acknowledged does not change the memory model, suppose uniprocessor
data dependence and control dependence are preserved.

The architecture model shown in figure 5 tries to improve the system performance further by
grouping the memory operations into two classes: class 0 and class 1, and providing each class
with a separate set of buffers. The crossbar serves both classes in the manner that whenever
possible, it chooses one operation from the Least Recent Used (LRU) class to send. Thus we
call it dual virtual channel crossbar. This model provides more efficient network flow control
mechanism, and avoids system deadlocks caused by overwhelming network traffic 2.

dual virtual channel crossbar

MP: 2-to-1 Multiplexer
Figure 5: Cyclops Architecture Model with Dual Virtual Channel Crossbar

How to group the memory operations here determines the type of memory model. We have
three options:

(a). class 0: read request and write request;
class 1: read acknowledgment;

2For example, processor P1 stops and waits at shared variable flag. By polling repeatedly, it may congest
the network. At the same time, process P2 attempts to change the value of flag thereby processor P1 can catch
and continue to work, but is stalled by the network congestion.

11



(b). class 0: read request and read acknowledgment;
class 1: write request;

(c). class 0: read request;
class 1: write request and read acknowledgment;

Option (a) is in effect similar as the model shown in figure 4, thus it is sequentially consistent.
Option (b) will break the sequential consistency in two ways: break the uniprocessor data
dependence, and break the inter-processor synchronization. For the former case, consider a
processor issues n read operations followed by a write operation, which depends on the ith read
operation, 7 < n. For some reason channel 0 is congested, so the write operation is executed
before the ith read operation, uniprocessor data dependence is broken. For the latter case,

consider the following code piece:

Initially x = flag = 0

P1: P2:
read x; while(flag==0){;}
flag = 1; write x=1;

Suppose P1’s class 0 buffer is stalled by previous operations, then its “read x” operation
may get the value written by P2’s writex = 1, which breaks the sequential consistency.

Option (¢) has the same problems as option (b), so is not sequential consistency either.

5.2 Future Work

In present Cyclops architecture, there is no explicit synchronization operation like acquire and
release etc. The exclusive access to a memory location is achieved by applying spin-locks in user
code. As one direction of future work, we are considering to add explicit synchronization oper-
ations into Cyclops’ instruction set, and see how we can take advantage of Cyclops’ sequential

consistency to efficiently implement those synchronization operations.

6 Related Work

Memory consistency model is an intensively studied field in parallel computer architecture,
with a large amount of research work published in the literature. Sequential consistency was
first defined by Lamport [1, 13] for shared-memory multiprocessor system with network but no
cache. Afterwards, a number of cache coherence protocols, which ensure sequential consistency,
have been proposed for single bus cache-based systems [14, 15, 16, 17]. Scheurich and Dubois
proposed a sufficient condition for sequential consistency at a cache-based system [11, 12].
Shasha and Snir also proposed a software algorithm to ensure sequential consistency [18].

12



Besides, a lot of research work were conducted to relax the strong condition of sequential
consistency to allow more performance optimization. They include processor consistency [19],
weak consistency [20], release consistency [10], etc. All of the above discuss the memory model
from the system point of view. Adve proposed two memory models from the programmer’s
point of view [21, 22], and stated that if software obeys the synchronization model defined by
the memory model, then the hardware appears sequentially consistent. Some researchers try to
find the weakest memory model [23, 24, 25]. Gao and Sarkar proposed the location consistency
model (LC) and a cache coherence protocol in 2000 [26], which does not rely on the memory
coherence assumption.

At the contex of memory consistency model proof, Lamport proposed a method based on
logical clock and time [27]. Based on Lamport’s work, Plakal proposed a reasoning technique
to verify a directory cache coherence protocol [28, 29].

7 Conclusions

In this paper we specify the memory model of Cyclops multiprocessor-on-a-chip architecture
(known as BG/C). We first check Lamport’s two requirements for a dance-hall architecture
to be sequentially consistent. We find that Lamport’s two requirements R1 and R2 need to
be carefully elaborated when we take into account the network delay. Then we proposed the
revised requirement — R2-refined. We informally prove that the base Cyclops architecture, which
satisfies both R1 and R2-refined conditions, obeys sequential consistency. We also discuss the

real Cyclops architecture and show it is also sequentially consistent compliant.
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Appendix I

Algorithm 1. Reordering Transformation 6' = T'(6,1)
input: 6 — total order; ¢ — position of the operation being reordered
output: ' — new total order

BEGIN
newpos + 1
/* find the position (newpos) where the Oy(i) should go in 6" */
while(newpos < i) do

if(tp(Og(i)) < tep(Og(newpos)) V (tep(Og(i)) = tep(Og(newpos)) A
Mem(Oy(i)) < Mem(Og(newpos))))

break;

else newpos < newpos + 1
end while
/* the first newpos-1 operations are kept unchanged, copy them to 6'*/
for j < 1 to newpos — 1 do

Ow(j) = 0n(j)
end for
Oy (newpos) = Oy(i) /*move the ith operation in € to be the (newpos)th
operation in ' */
J=g+1
/* for all operations between Oy(i) and Oy(newpos), move them one operation
behind, because we have inserted Oy(i) at newpos */
for j to ¢ do

O () = Op(j — 1)
end for
/* copy all operations after Oy(i) in 0 into 6’ */
for 5 ton do

Op (7) = O (3)
end for

END

Appendix II

Lemma 2: Execution (U',y;) is equivalent to (¥, x; 1), after the transformation y; =

T(xi-1,1), which reorders O(7) in x;_1.
Proof:

let’s first check the second condition in Definition 3 — all read operations in x; return the
same results as in x; 1. Suppose the ith operation O(i) in x;_1 is moved backward to position

17



J in x;, 0 < 7 <1. We consider two cases:
Case #1: O(i) is a read operation;
Case #2: O(i) is a write operation;

Case #1 is proved by contradiction. We assume that O(i) reads a different value after it is
reordered. Suppose in x; 1, O(i) returns the value written by a write operation O(k), as shown
in figure 6, then k < 7. It means:

tmb(O(F)) < tmp(O(2)) V (tmp(O(k)) = tmp(O(i)) A Mem(O(k)) < Mem(0(2)))

Since O(k) and O(i) access the same memory bank, O(k) must arrive earlier than O(i) at the
memory bank, we have:

tmb(o(k)) < tmb(o(z)) (1)

And only when O(7) is moved before O(k) in x; can O(i)’s value be changed. “O(i) is moved
before O(k)” means:

tep(O(i)) <tep(O(k)) V ((ep(O(i)) = tep(O(k)) A Mem(O(i)) < Mem(O(k)))
that is,

tep(O(i )) < tcp(O(k))
tep(O(1)) + C = tem (O(i)) < tep(O(k)) + C = tem(O(F))

Because each memory bank has a single point ¢, (O(i)) < tem(O(k)) is equivalent to
tmb(o(z)) < tmb(o(k)) (2)

But, (1) and (2) are in conflict, a contradiction. Thus O(i) still returns the same result. Note
other read operations’ values cannot be changed by reordering (i), all read operations return
the same values before and after the reordering.

X i-1 E— Xi
write X write x N
| read
l_l ...... J_l ...... h
oo j: read x
move| K write X N :
: k+1: write X
| read :
i-1:...... /
ir read X// [

Figure 6: Case #1
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For Case #2, O(i) is a write. Again, proof proceeds by contradiction. We consider two
sub-cases below.

Sub-Case #1: Assuming that there is a read O(q) later than O(i) (¢ > 7) in y;—; that will
read a different value after the reordering. It implies the existence of a write O(p), i > p > j, as
shown in figure 7(a), and that O(q) reads the value written by O(p) (other than O(7)) after the
reordering. By reordering O(i) to position j in x;, O(i)’s value will be killed by O(p) and then
O(q) returns O(p)’s value, instead of O(i). The proof of a contradiction can follow a similar
argument as in Case #1 by comparing t,,, and t., of O(p) and O(7).

Sub-Case #2: Assuming that there is a read O(q) earlier than O(i) (¢ < 4) in x;_; that
will read a different value after the reordering. It implies that on x;_1, there is a write O(p),
p < jand j < g < i, as shown in figure 7(b), and O(q) returns the value written by O(p). By
reordering O(i) to position j in x;, O(i) will kill O(p) so that O(g) will return O(i)’s value.
Again and similarly, this can generate the contradiction.

Xi-1 —_— Xi Xi-1 R Xi
Tl Ll p: write X, p: write x
J j: write x : N :
j*+1: J R EREE “‘ read j=dreee
move|  p: write X Jooee ! j: write Xy,
: p+1: write Xy, : /! Lo e
i-1:...... : N q: read x’ : /
i write Xw. T | read g+1:read x*
:  read P i1 :
q: read x-’ q: read x’ i: write x i e
(a) Case #2 - Subcase #1 (b) Case #2 - Subcase #2

Figure 7: Case #2

Now we can draw the conclusion that in y; all reads return the same values as in x;_1.

Now let us look at the condition 1 in Definition 3. Because all reads on the first ¢ operations
in y; return the same values as in y;_1, any if the branch after i operations which depends on the
read values in the first ¢ operations will have the same execution path in y;_1. This guarantees
that y; and y; 1 execute the same operations, i.e., ¥’ = W,

Therefore both conditions in Definition 3 are satisfied, thus (¥’, y;) is equivalent to (¥, x;_1).

Proof Done.
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