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Abstract

This paper presents an initial design of the Cyclops64 (C64) system software infras-
tructure and tools under development as a joint effort between IBM T.J. Watson Research
Center, ETI. Inc. and the University of Delaware. The C64 system is the latest version of the
BlueGene/C supercomputer architecture that consists of a large number of compute nodes
each employs a multiprocessor-on-a-chip architecture with 160 hardware thread units. The
first version of the C64 system software has been developed and is now under evaluation.
The current version of the C64 software infrastructure includes a C compiler, a runtime
thread library, other tools for program execution control (linker/loader, program initiation
and diagnostics software, etc.) and a function accurate simulator called FAST that can
simulate a multi-node C64 system.

This paper is focused on the following aspects of the C64 system software: (1) the C64
Thread Virtual Machine (C64 TVM), its API (the CThread Library) and in particular, the
key components of C64 TVM: the thread model, the memory model and the synchroniza-
tion model; (2) the C64 software toolchain with emphasis on the CThread run-time system
library, the first implementation of the C64 TVM; (3) the validation of the toolchain/FAST
through both an extensive testing that ensures its stability and a case study, which demon-

strates what a C64 architect or a software/application developer can expect to learn using
the FAST tool.
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1 Introduction

The C64 is a petaflop supercomputer project under development at IBM Research Laboratory.
C64 is designed to serve as a dedicated compute engine originally designed for running high per-
formance application such as molecular dynamics to study protein folding, or image processing
to support real-time medical procedures. C64 supercomputer is attached — through a number
of Gigabit Ethernet links  to a host system. The host system provides a familiar computing
environment (such as Linux) to applications software developers and end users. Besides access
(thru the Ethernet links) to a common file server used for storing input and output data sets
used and produced by application programs, each C64 chip can be connected to a serial ATA
disk drive.

A C64 is built out of tens of thousands of C64 processing nodes. Each processing node
consists of a C64 chip, external DRAM, and a small amount of external interface logic. A C64
chip employs a multiprocessor-on-a-chip architecture containing 160 hardware thread units,
half as many floating point units, each shared by two thread units, on-chip SRAM, on-chip
instruction cache, bidirectional inter-chip routing ports, and interface to off-chip DDR SDRAM.
On-chip resources are connected to a crossbar network, which also provides threads access to the
routing ports that connect each C64 chip to its neighbors arranged in a 3D-mesh configuration.

Based on our previous experience from the embedded Cyclops32 project [24, 9], we now
present a system software architecture, encompassing components running on the host system
and on C64 nodes, for system management and applications development and execution. We
introduce a low-level program execution model (called the Cyclops64 Thread Virtual Machine).
In other words, system software is an “extension” of the C64 ISA to implement the thread
virtual machine. We streamline our discussion of the virtual machine by defining its API,
called CThread. System software is illustrated by showing how some features/functions of the

API are implemented under the overall system software architecture.

This paper is focused on the following aspects of the C64 system software:

e The C64 Thread Virtual Machine (C64 TVM) and its API (the CThread Library), which
will be used as the common baseline for future research on parallel programming models.
In particular we describe the three key components of C64 TVM: the thread model, where
thread management issues are presented; the memory model that includes a presentation
on both C64 memory address space and memory consistency model; and the synchro-
nization model that provides the functionality to implement mutual-exclusion regions,
perform direct thread-to-thread and barrier-type of synchronizations.

e The C64 software toolchain with emphasis on the CThread run-time system library, the
first implementation of the C64 TVM. Specifically, we discuss how our Cthread imple-
mentation takes advantage of Cyclops specific hardware features to leverage performance

without imposing any additional burden on the application programmer.

e The validation of the toolchain/FAST both through extensive testing and the matrix-



matrix-multiply program case study. Although performance tuning and optimization are
not the objectives of this paper, we also report some initial performance observations to
demonstrate what a C64 architect or a software/application developer can expect to learn
using the FAST tool.

In Section 2 we will present an overview of the C64 system architecture including the C64
chip architecture, the communication networks connecting the system components, and the
control network for system initialization and reconfiguration under the control of host software.
In Section 3, we describe an outline of the C64 system software architecture and the C64 Thread
Virtual Machine. In Section 4, we discuss C64 software tool chain and its implementation issues.
In Section 5 we report initial experimental results. In Section 6 we briefly discuss related work.
Conclusions are presented in Section 7.

2 Cyclops64 Cellular Architecture

The computing environment we are considering consists of a host and external file systems
connected to a C64 supercomputer by means of a Gigabit Ethernet network, see Figure 1. The
host system (shown as consisting of a number of control nodes and a front-end node) supports
application programs development and execution, as well as system administration. The file
system, which may also contain multiple (external) file server nodes, provides one means of
file support for the C64 supercomputer. An internal high bandwidth distributed file system
hosted by serial ATA hard drives attached to each C64 node will be also available to avoid disk

bottlenecks and network congestion.

C64 nodes are arranged in a 3D-mesh network. A fraction of these nodes, labeled as I/0O
nodes, use the Gigabit Ethernet port (present in all C64 chips) to connect the C64 supercom-
puter to the host and external file systems. Each I/O node will service a number of C64 nodes,
called compute nodes, and relay requests and data between the compute nodes and the host
and file server systems. The I/O nodes and compute nodes communicate via packets over the
3D-mesh network only. This 3D-mesh provides the high bandwidth necessary for internode
communication in running application programs.

There is a separate control network that connects the C64 system to the host system. This
control network carries commands from the host system to each C64 node. A C64 node attaches
to this control network via its JTAG interface. The host system uses this control network to ini-
tialize the C64 system, monitor its status while programs are in execution, and reconfigure and
restart C64 after hardware failures. Details of the initialization and configuration procedures
are not the focus of this paper and will be discussed elsewhere.

In Figure 2, we show the architecture of a C64 node. Each processing node consists of
a C64 chip, external DRAM, and a small amount of external interface logic. Kach C64 chip
has 80 processors, each containing two thread units, a floating-point unit and two SRAM
memory banks of 32KB each. A 32KB instruction cache, not shown in the figure, is shared
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among five processors. In a C64 chip architecture there is no data cache. Instead a portion of
each SRAM bank can be configured as scratch-pad memory. Such a memory provides a fast
temporary storage to exploit locality under software control. Processors are connected to a
crossbar network that enables intra-chip communication, i.e. access to other processor’s on-chip
memory as well as off-chip DRAM, and inter-chip communication via input and output ports
that connect each C64 chip to its nearest neighbors in the 3D-mesh. The intra-chip network
also facilitates access to special hardware devices such as the Gigabit Ethernet port and the
serial ATA disk drive attached to each C64 node.

Finally, Figure 3 illustrates an instance of a C64 supercomputer architecture with 24 x 24 x 24
logically arranged C64 nodes in the 3D-mesh configuration. Notice the physical distribution is
somewhat different.
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3 Cyclops64 Thread Virtual Machine

The main objective behind the C64 chip design is to build a petaflop computer by scaling
up some millions of simple processing elements. On C64 the computation cell is the thread
unit, a simple 64-bit in-order RISC processor core with a small instruction set architecture (60
instruction groups) operating at a moderate clock rate. The two main distinct hardware features
that distinguish Cyclops from other general purpose processors are: (1) user and supervisor
execution modes supported by the C64 processor in addition to a set of exceptions triggered by
predefined events, provide the mechanisms required for protection. However, execution is non
preemptive. That means the OS will not interrupt the user program running on a thread unless
the user explicitly specifies so or an exception occurs; (2) there is no hardware virtual memory
manager, which means the memory hierarchy of the C64 chip is visible by the programmer.
Within a chip, on-chip and off-chip memory banks form a non uniform shared address space.
Processors can directly address any memory location on the chip.

As we described in the introduction, one important role of the C64 system software is to
implement a C64 virtual machine. This virtual machine, called C64 Thread Virtual Machine,
can be viewed as a multichip multiprocessor extension to the base C64 instruction set architec-
ture. In this section, we present an outline of the C64 Thread Virtual Machine along with the
CThread (Cyclops Threads) run-time system library. The CThread library has been designed
and developed to support a multithreaded programming model for a cellular multithreaded
architecture such as Cyclops. Given C64 special features described earlier, it was not our in-
tention to develop an OS for this platform that would put a considerable overhead on top of
a machine that is aimed for simplicity from the bottom up. Instead we decided to implement
CThread directly on top of the hardware architecture as a micro-kernel /run-time system library
that takes advantage of C64 hardware features while provides an interface that shields appli-
cation programmers and system software developers from the complexities of the architecture
wherever possible.



C64 Thread Virtual Machine includes three components: a thread model, a memory model
and a synchronization model, as well as their corresponding APIs. In Section 3.1, we introduce
the thread model. This is partly derived on our experience from our earlier work on a thread
model for the embedded Cyclops32 project [24, 9]. In Section 3.2, we introduce the memory
model that includes the specification of a shared address space model (both intra-node and
inter-node) and memory consistency model for a C64 system. In Section 3.3, we present the
synchronization model. The memory model and synchronization model can be viewed as an
extension of the base thread model hence the name CThread may include all three in the

rest of this discussion.

3.1 The Thread Model

A program section can be declared as a thread. A thread can be activated for execution by
binding to a hardware thread unit within a certain chip, a thread activation pointer defined as
the tuple: <program pointer, state pointer>, where program pointer is the address specified
by the program counter associated with the corresponding hardware thread unit and the state
pointer points to thread specific information stored in the C64 memory map (e.g. stack pointer,
etc.)

A thread activation pointer can also be “global” if the thread handler is extended with a
node (or chip) identifier system-wide identifier of the chip where the corresponding thread
unit resides. The binding of a thread activation to a thread unit can be dynamic  as long as
the binding information is properly maintained by the system software.

The functionality provided by the present version of the CThread library is very limited.
It provides basic functions for creating, synchronizing and terminating threads; the minimum
functionality required to write multithreaded programs. For this first release, an interface
inspired on that of the popular PThread model is provided to ease the first hands-on experience

of application and system software developers.

3.2 The Memory Model

In this section, we describe the memory model and its API supported by the first version of
the CThread library.

3.2.1 Memory address space model

First, we describe the memory address space model of a single C64 chip. Then, we outline how
we intend to extend the memory address space model to the entire C64 system.

e Memory Address Space Model Within a Single Cyclops64 Node

CThread assumes a memory address space model closely associated with the underlaying
C64 architecture.



The C64 chip hardware supports a shared address space model: all on-chip SRAM and
off-chip DRAM banks are addressable from all thread units/processors on the same chip.
That is, all threads see a single shared address space. On-chip SRAM memory space
is limited in the current technology to 5.2MB — so it should be viewed and used as
temporary storage during computation. There is no hardware data cache used in the C64
design. Off-chip DRAM should be considered as the main memory.

Architecturally, each thread unit has an associated 32KB SRAM bank. FEach memory
bank can be partitioned (configured) into two sections: one called “global” (or “inter-
leaved”) section, the other “local” (or “scratch-pad”) section. The partition boundary is
identical across the thread units, and is set at the hardware initialization time and cannot
be altered under program control. All such “global sections” together form the (on-chip)
“global memory” in an interleaved fashion that are uniformly addressable from all thread
units. Logically, the address field of the global memory ranges from 0 to a maximum
value, which depends on how the SRAM banks are configured (partitioned), and how
many SRAM banks are available and functional '. The absolute maximum address is
160 x 32K B (about 5.2MB). This range of address is organized such that it is free of
holes.

Of the 64-bit address computed by a C64 processor, only 32 bits are needed to address
all node resources. Although the high-order 32 bits are currently ignored, we anticipate
these extra bits will be used to emulate a global shared memory address space across
chips. The low-order 32 bits are used to access C64 on-chip SRAM, off-chip DRAM
and memory-mapped special devices (e.g. interthread interrupt, wakeup signal and in-
put/output ports). The most significant bit is used to distinguish DRAM from SRAM
and other devices. When the first bit of the address is 1, it represents an address to
the off-chip DRAM. The first bit 0 represents an address to on-chip SRAM and/or other
devices. The second most significant bit is used to distinguish on-chip global (or inter-
leaved) SRAM from scratch pad memory and other devices/ports. When this bit is 0, it
denotes on-chip global SRAM. Otherwise, it denotes scratch pad memory and/or other
devices/ports.

All local (scratch-pad) sections are globally (but non-uniformly) addressable by all thread
units. The addressing scheme to scratch pad memory is such that the address consists
of a processor identifier, a thread identifier and an offset field. The access is directed to
the scratch pad section associated with the thread unit given by the processor and thread
identifiers.

The memory space reserved for off-chip DRAM is up to 2GB. Presently, only 1GB of
DRAM is installed.
e Memory Address Space Model for a Multinode C64 System

Under the current C64 design, there is no hardware architecture support for shared address
space between C64 chips. Therefore, it is up to the C64 system software to support a

1C64 chips are used even if not all thread units are perfect, resulting in very low cost



shared address space across chips. However, an efficient implementation would need
hardware architecture support as well. One straightforward extension is to associate a
node identifier to the on-chip address space. Initially 14 bits seems to be enough to provide
a system-wide identifier to each of the 13,824 nodes the first C64 system will consist of.

Since C64 memory hierarchy is explicitly exposed to the users — i.e. on-chip SRAM (global
and scratch-pad) and off-chip DRAMs associated with a chip or elsewhere in the system —
CThread provides services that can be used to move data across regions of the memory space.
Accordingly, CThread include functions such as memory put and memory get operations that
can be used to perform such data movements.

3.2.2 Memory Consistency Model

As in its address space model, CThread employs a memory consistency model close to the
underline C64 architecture support.

The most widely accepted memory model for the multiprocessor machine is Lamport’s
sequential consistency (SC) model. It was described by Lamport in the following well-known
statement:

[A system is sequentially consistent if] the result of any execution is the same
as if the operations of all the processors were executed in some sequential order,
and the operations of each individual processor appear in this sequence in the order
specified by its program order [19].

The above quote becomes the commonly used definition of sequential consistency in most
textbooks and research papers.

Under the current C64 single-chip architecture design, the following two conditions are valid:

1. Each processor issues memory requests in the order specified by its program.

2. Two operations designated to the same memory module M will be delivered to M’s input
FIFO queue in the same order as they entered into the network.

Notice the latter refers to the time a memory request enters into the network, not when it
is issued by a processor, and it is true due to the equal-latency property of Cyclops’ intra-chip
network.

It has been shown that the above two conditions are sufficient to ensure that the C64
architecture behaves as sequentially consistent [31]. This also suggests that Cyclops designer’s
conjecture is true: the C64 architecture is sequentially consistent and there is no need to issue
fence-like instructions after each memory operation to ensure SC 2.

In fact C64 has no sync instruction.



However, hardware cannot guarantee a “Lamport order” of the accesses to the scratch-pad
memory space — hence no sequential consistency can be assumed. We will come back to discuss
its impact on our programming model after we present our CThread memory model.

Below we outline the memory model that is assumed in our current thoughts on CThread
programming model, for which we use OpenMP as base programming model and the Location
Consistency (LC) memory model [14]. In [25] the authors showed how the OpenMP memory
model can be formalized by using the pomset abstraction in the Location Consistency memory
model, so we will not repeat it here.

We will restrict ourselves here to a class of parallel programs that feature general fork-
join nested parallelism as exemplified by programs written in a Single Program Multiple Data
(SPMD) style. A considerable number of real world shared memory parallel programs have
been written in OpenMP, hence our CThread model will use OpenMP as a high-level parallel
programming model to be implemented on C64 architecture.

Each thread T has a private memory region, which can be used by T as its local storage
for shared variables that reside in the shared memory space. The allocation and management
of such thread private storage are implemented by C64 system software: both compiler and
runtime software layer of CThread virtual machine. The movement between private and shared
memory space can be implemented using memory put/get operations. The synchronizations
needed to keep the consistency between shared and private memory will be discussed below as
well as in the next section.

We will introduce a CThread operation called cthread_flush ~ inspired by the OpenMP flush
directive, which will be used to ensure the consistency between private and shared memory.
Flushes occur frequently in OpenMP programs, because they are performed implicitly at the
end of many common OpenMP constructs such as barriers, parallel loops, parallel sections,
critical sections, etc.

A cthread_flush operation executed at program point P requires that a certain set of shared
variables, S, must be made consistent by the executing thread at point P, i.e. all read and
write memory accesses that occur before point P must be performed/completed before the
thread can advance past P, and all memory operations that occur after point P must be per-
formed/completed after the thread advances past P. By default, S refers to all shared variables
in the CThread program, though the user has the option of restricting the set of variables to
be made consistent. The semantics of the flush operation have profound implications on the
software and hardware implementation of a CThread program. For example, the compiler must
ensure that any variable in S that is allocated to a register must be spilled to memory before
point P and reloaded from memory after point P. Similarly, the hardware must ensure that all
system allocated private storage for a thread T containing variables in set S are flushed before
point P, and all private copies of the values for variables in set S are invalidated after point P.
Note that a single thread’s execution of a cthread_flush operation only supports consistency be-
tween the thread’s private memory and main memory. Global consistency can only be achieved
when all threads perform a cthread_flush operation.



Stronger memory models provide stricter guarantees on unsynchronized accesses to shared
variables at the cost of additional burden on the implementation, especially when scaling up
to large numbers of processors. For example, both strong and relaxed models include the
memory coherence assumption, which states that all updates to the same shared variable must
be observed in the same total order by all processors. When scratch-pad memory is considered,
the overall memory model of a C64 chip is no longer sequentially consistent! However, it can
be observed that the coherence assumption still holds. Therefore, CThread will not rely on
a memory model that is based on hardware sequential consistency. Instead, CThread uses a
weak model where the base assumption is memory coherence. One option is to use Location
Consistency (LC) to formalize the semantics of CThread memory model so as to place no
restrictions on scalable parallelism [14, 25]. Other alternative memory models are also under
consideration.

The previous discussion was focused on a single node C64 system. When shared address
space is implemented across C64 chips, we anticipate that a weak memory model (such as the
one we discussed above for a single chip) will be used.

3.3 The Synchronization Model

The C64 hardware chip architecture supports direct memory access loads and stores to
the shared address space covering the on-chip memory (SRAM banks, scratch-pad memories)
and off-chip DRAM associated with the chip. When a global shared address space across chips
is provided by the system, CThread will include services to implement remote load and store
operations. All above operations are considered normal memory operations that do not involve
synchronization.

Several types of synchronizations are supported in CThread.

A first type of synchronization is used to ensure mutual exclusion of memory accesses to
shared memory locations/space. This can be expressed using CThread mutex lock and unlock
operations, which are directly implemented using C64 hardware atomic test-and-set operations.
Users can declare mutex variables using the CThread library and operate upon them with the

functions provided for that purpose.

A second type of synchronization in CThread is introduced to express precedence relations
between operations from two different threads. In the first version of CThread, we provide a
coarse-grain signal-wait type of synchronization that will be placed between a pair of specific

program points within the two threads.

The sample program in Figure 4, based on a producer-consumer model, shows the basic
use of the signal/wait primitives. The producer thread produces data that is consumed by
the consumer thread. The latter starts calling cthread_wait and blocks until a signal from the
thread, whose thread handler matches that given as argument to the function, is received. The
former produces a datum and sends a signal to the thread, whose thread handler is specified by
cthread_signal only parameter. Once the signal is received, the consumer thread is awakened



void producer(void){
while(1) {
produce_data() ;
cthread_signal (dest_thid) ;
}

void consumer (void){
while(1) {
cthread_wait(src_thid);

consume_data();

}

Figure 4: Producer-Consumer Sample Program

void worker (int set_id){
produce_data_set(set_id);
cthread_barrier (grp_thid);
if (set_id == 0)

reduce_data_set();

Figure 5: Barrier Sample Program

and consumes the datum.

A third type is collective synchronization that will be participated by a group of threads.
For example, a barrier synchronization primitive can be invoked by a group of threads. Threads
block until all participants in the operation (participants are defined by a single object passed
as parameter to the barrier function) have reached this routine.

The code in Figure 5 is an extract of a CThread program that uses a barrier primitive. Mul-
tiple threads execute the worker routine, which starts with each thread generating some data
according to a thread-specific parameter. Once all the data has been generated, an unspecified
operation is applied to it (in our example it is some type of reduction). Before the operation
can be applied, we must ensure all threads have produced the corresponding data. For that
purpose, we call the cthread_barrier function, so all threads block until all participants reached
the same point.

A fourth type of synchronization operations is synchronized memory access opera-
tions. For example, we can associate sync operations with memory put/get operations —
cthread_getmem_sync(sre, dst, len, tid) and cthread_putmem_sync(src, dst, len, tid), similarly
to block data transfer operations on EARTH architecture [29]. Here, after a memory get/put
operation is completed, it will signal the designated thread (denoted by the thread handler #id).

10
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4 Cyclops64 Software Toolchain

Figure 6 illustrates the software toolchain currently available for application development on
the C64 platform.

The C/Fortran compilers have been ported from the GCC-3.2.3 suite. Assembler, linker and
other binary utilities are based on binutils-2.11.2. The C standard and math libraries (libc/libm)
are derived from those in newlib-1.10.0. We wrote our own runtime system, communication
library and a functional accurate simulator. Additionally, a cycle accurate simulator is also
being developed.

The GCC based C compiler supports C99 and most of the GCC extensions. As GCC
has very good portability, this compiler version was delivered in a fairly short time period
to provide developers with a basic experimental platform. The Open64 based version has
most of the important features of a modern compiler, such as loop nest optimization, SSA-
based global optimization, interprocedural analysis and optimization, and software pipelining.
Another promising feature of Open64 is its ability to be extended, for instance for thread
partitioning. However, it is still under development and only supports the O0 optimization
level.

The toolchain supports the full C64 instruction set and it can be easily extended to fit our
purposes. It supports segmented memory allocation, as C64 uses physical memory address space
(instead of virtual memory space, because there is no hardware memory map unit). We can
distinguish three memory regions in a C64 system: on-chip “global” SRAM, on-chip “scratch-
pad” memory, and off-chip DRAM. For these three types of non-contiguous memory regions
the toolchain supports memory allocation and management.

The library functions (libc/libm) are thread safe multiple threads can call any of the

functions at the same time. Shared resources have been protected by mutex.

The CThread runtime system library provides the software and application developer with

11



the functionality to write multithreaded programs: thread management, support for mutual
exclusion, synchronization among threads, inter-node communication, etc. In order to achieve
high performance and scalability, the implementation of such functionality tries to match as
close as possible the architecture underneath the microkernel/RTS. It is not a coincidence that
the first API for the thread model resembles that of PThread. PThread is a well-known parallel
programming model that allowed us to write parallel programs (mainly for testing purposes)
in quite a short time frame. However, such an interface is just a wrapper of the CThread inner
core, which is under development to support more advanced programming models on the C64
platform.

The communication library (CNet), handles communication and synchronization between
nodes. Remote memory operations are the foundation of all communication primitives. Addi-
tionally, the library provides means for synchronization, such as signal/wait and global barrier
primitives.

To carry out our research until a real hardware or emulation platform is available, we wrote
FAST: an execution-driven, binary-compatible simulator of a multichip multithreaded C64 sys-
tem. FAST accurately reproduces the functional behavior and count of hardware components
such as chips, thread units, on-chip and off-chip memories, and the 3D-mesh network. RISC-like
instructions such as integer, floating-point, branch and memory operations are modeled based
on execution times expressed by x/d tuples, where z is the execution time in the ALU, and d
represents a delay. The correct simulation of C64 special operations (sleep instruction, wakeup
signal, inter-thread interrupt, etc.) requires of specific hardware status to be emulated. Timer
alarm events and error conditions such as an illegal instruction are properly detected by the
simulator, which then triggers the corresponding interrupt. Finally, given the appropriate com-
mand line options, FAST generates the execution trace and/or an instruction statistics report
to help the software/application developer tuning and optimizing a program. Although FAST
is not cycle accurate, we have shown it is useful for performance estimation.

4.1 Implementation Details

In this section we discuss a few details of the CThread implementation. Our first thread model
does a direct mapping of software threads into hardware thread units. Upon initialization, a
software thread is given control over a well determined region of the scratch-pad memory, which
is allocated to every physical thread unit at boot time. This enables fast thread creation and
reuse. A waiting thread (waiting on a external event/synchronization) goes to sleep and is
woken up by another thread through a hardware interrupt/signal.

In C64, execution is non-preemptive. In other words, after a software thread is assigned
to a hardware thread unit by the RTS, it will run in the hardware thread until completion.
Furthermore, the RTS will not swap out a sleeping thread and reassign the idle hardware
resources to another software thread (in the first release of the CThread library an operation
such as cthread_yield is not available).
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Thread units have the stack and a thread-unit-unique memory area placed in the scratch-
pad memory. At the beginning of the thread-unit-unique area, four memory words have been
reserved for a special purpose. The first is used as a lock to guarantee atomic transactions
on the remaining three words. The thread unit status, enabled/disabled, and the software
thread status, running/asleep, are stored in the second word. Words three and four hold the
function address and optional argument specified by the user when a new thread is created.
Upon completion the thread overwrites the optional parameter with the exit code. These are
the default settings the RTS uses to initialize the thread specific information with (pointed
by the status pointer of the thread activation tuple). In future implementations, this control
structure will probably be preserved but in some cases the allocation could be moved to a
different memory region (DRAM for instance). Then, the RTS will be allowed to swap in and
out threads from the same hardware unit if needed, at some additional cost.

Besides thread management, CThread library provides a mutex object that allows mutual-
exclusion via acquiring and releasing locks. As we mentioned earlier, in C64 there is no data
cache. Spinning on a lock, waiting for it to be released does interfere with other threads (or
at least with the threads that try to access to the same memory bank where the lock is) by
generating traffic on the crossbar network. Hence, a thread that fails to grab a lock is put
to sleep. While asleep, a thread unit does not execute instructions until another thread unit
generates a “wakeup signal”, i.e. executes a store into the “wakeup” memory area corresponding
to the sleeping thread. Needless to say that sleeping and awaking CThread functions, which
are based on the native sleep and wakeup signal instructions, both take a few cycles.

Barriers are implemented using the “Signal Bus” special purpose register. All the thread
units on a chip are connected by an 8-bit bus, which is accessible thru read from and writes to
this register. Let us assume the appropriate bit of the SIGB register is initially set to 1. Upon
entering to the barrier, threads reset that bit to 0 and wait for it to drop to zero (according to
the hardware design this does not interfere with other thread units or generate excessive heat).
Changes in the state of the bus propagates throughout the chip in a few cycles, providing a
means for very fast global synchronization.

5 Results

5.1 Experimental Platform

C64 software toolchain runs on a Linux environment. We wrote three sequential programs
and their corresponding parallel versions using CThread’s API and ran the executables gen-
erated by GCC compiler version 3.2.3 on our Functional Accurate Simulator Toolset (FAST)
to demonstrate that the toolchain is fully functional. The communication library is currently
under evaluation. For this reason the benchmark programs used for this study run on a single
C64 chip.
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Figure 7: Absolute Speedup

The benchmark programs used in this study represent each a typical application class. These
are:

e Matrix-matrix-multiply (MxM) is an embarrassingly parallel application on a shared
memory system such as a C64 node. The result matrix is partitioned among threads
which then carry out the computation with no dependences between any two threads.

e Nqueens (NQ) counts the number of ways in which N queens can be arranged on a N x N
chess board so that no queen can attack any other queen under normal chess rules. In this
implementation, the first three rows of the board are filled with queens in valid positions.
After a number of independent tasks is created by this sequential search, tasks are then
distributed among threads in a round-robin fashion.

e Heat is a finite differential based algorithm used to simulate the heat conduction over a
solid plate. The surface of the plate is modeled as a N x N grid. The grid is initialized
with one side of the plate to be heated and then simulate the heat transfer from this side
to the whole plate. The program halts when a convergence condition has been reached.
There is a barrier after each iteration. Hence, as the thread number increases so does the

synchronization overhead.

5.2 Results

We run the experiments on the C64 simulator for the following problem sizes: matrix-matrix-
multiple, 320 x 320; nqueens, 13; heat, 960 x 960. Figure 7 shows the absolute speedup achieved
by each CThread program.
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Program | Load/Store | Integer | Float | Branch
MxM 10.5% | 79.2% | 5.1% 5.2%
NQ 31.8% | 36.8% | 0.0% | 31.4%
Heat 20.7% | 73.00% | 2.7% 3.6%

Table 1: Coarse Instruction Mix

As expected, the results show a decline in the speedup as the synchroniza-
tion/communication increases. Nonetheless, it also demonstrates the efficiency of the thread
management system that allows MxM to achieve almost linear speedup even for 80 threads.
We also like to highlight that despite having a global barrier after each iteration, the parallel

version of Heat achieves a speedup of 70 on 80 threads.

The simulator can also produce abundant statistics information as well as a complete exe-
cution trace. For instance, Table 1 shows the percentage of each instruction class executed by
the sequential programs.

As an example of what a C64 architect or a software/application developer can expect
to learn using the FAST tool, we hereby report a tuning experience using the MxM program.
Throughout this exercise we use the simulator’s accurate time counter, the instruction statistics
file and execution trace to measure the execution time, derive MIPS and MFLOPS numbers and
determine the cause of delays and/or bottlenecks that may prevent the program from achieving

higher performance. Table 2 summarizes the results obtained from the experience 3.

We start with a sequential implementation that follows the algorithm described in text-
books, and try different compiler optimization levels (rows 1-4 in Table 2). Based on the
information generated by the simulator, we then proceed with the manual implementation of
several optimizations. First, we change the variable where the matrix size is stored from integer
(32 bits) to long long (64 bits). Although it uses 4 extra bytes of memory, it reduces the number
of integer operations (row 5 in Table 2). Second we unroll the inner loop 4 and 8 times. The
former resulted on an improvement (6th row in Table 2) while the later caused a performance
drop due to register pressure and spilling (result not shown). At this point it was clear the
main issue was the main memory (DRAM) latency access. We manually did loop interchange
and tiling. We allocate in the stack (remember the stack is placed in the scratch-pad memory)
blocks to where data is copied from memory first and then used for the computation. This soft-
ware cache optimization brought us a significant improvement. However, the execution trace
immediately revealed the implementation of memcpy is not optimized for the C64 architecture
(row 7 in Table 2). We wrote our memcpy function emulating what the Idm instruction (load
multiple was recently added to the C64 instruction set architecture) will be able to do. We tried
data transfers of 8 and 16 consecutive double words (8th row in Table 2). At this point we
realized we had removed all memory delays and that the program had hit the hardware thread

®Notice that FMAD instructions (floating-point multiply-add double) are reported as a single instruction in
the second column, whereas it is counted as two floating-point operations in the MFLOPS column.
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Optimization Float | MIPS | MFLOPS
-00 2.28% 261 6

-01 3.77% 223 17

-02 3.95% 241 19

-03 4.47% 241 22

adjust var. 7.58% 204 31
unroll 4 8.55% 324 55

sw cache(memcpy) | 20.00% 385 149
sw cache(ldm) 20.54% 456 181

2 threads 20.74% 913 363

Table 2: Tuning Experience Report for the MxM program

unit peak performance limit (500 MIPS). For the sake of completeness we parallelized our tuned
MxM program and ran it on 2 thread units in an attempt to fully utilize the floating-point unit
shared between threads. Again, the low overhead imposed by the CThread RTS allowed the

program to double the performance (last row in Table 2).

5.3 Discussion

The purpose of the experiments was to show the usefulness of the toolchain. Previously, ex-
tensive testing have been performed to ensure the stability of the toolchain. In this paper, we
have selected three programs to demonstrate what the software toolchain can provide a C64
architect or a software/application developer. Now that we have the toolchain, more interesting
research may be carried out. For instance, we plan to study software cache strategies to get the
best utilization of the on-chip memory. We may also study compiler optimization to partition

a sequential program into a multithreaded program.

6 Related Work

As the semiconductor and VLSI technology rapidly advances to allow us to integrate a billion
transistors on a single chip, it becomes important to exploit parallelism at all levels to utilize
the chip capacity effectively [5, 6]. Within the last two decades, microprocessors achieved
dominant success by exploiting instruction-level parallelism (ILP) [23] and improving memory

access latency and bandwidth with multi-level memory hierarchy.

However, applications have inherent limits on ILP [30, 22]. To go beyond ILP, Hammond
et. al. [17] suggested that simultaneous multithreading (SMT) and chip multiprocessor (CMP)
can be two alternative architectures and CMP is preferred. Three different multiprocessor
architectures are evaluated in [21] and Stanford Hydra CMP architecture is proposed [16].
Meanwhile, to overcome the memory bandwidth limitation of microprocessors [7], Processor-
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in-Memory (PIM) is considered an effective way. Several PIM architectures are presented, like
Gilgamesh [28, 27, 26], Terasys [15].

Prior work most relevant to Cyclops64 is the IBM BlueGene/C architecture [10, 1] and
related system software research [2, 3, 8]. Almadsi et. al. demonstrated that a massive amount
of parallelism can be exploited for applications, such as molecular dynamics, on the cellular
architecture [2]. They also provided a detailed analysis on the cellular architecture and proved
that several scientific kernels can reach the theoretical peak performance on different configu-
rations of the architecture [3]. Cascaval et. al. evaluated two important hardware features of
the Cyclops cellular architecture: memory hierarchy with flexible cache organization and fast
barrier synchronization and demonstrated the advantage of the single-chip multiprocessor with
integrated multiple memory banks [8]. All the above work is based on a preliminary version
of the BlueGene/C chip design, the Cyclops32 (C32), which is targeted to application-specific
(embedded) domain.

The IBM BlueGene/L is another effort to deliver massive parallel system which exploits
a more conventional system-on-chip technology, coupled with a highly scalable cellular archi-
tecture [12, 2, 1]. A BlueGene/L system consisting of 65,536 nodes is designed to deliver a
peak performance of 180 to 360 teraflops. The system software architecture for BlueGene/L
is arranged hierarchically according three levels: a computation core, a control infrastructure
and a service infrastructure [4, 18]. There have also been several interesting evaluation studies
of BlueGene/L system with regards to hardware performance monitoring [20] and scientific
application frameworks [13, 11].

7 Conclusions

In this paper we presented the first version of the C64 system software. First, we described
the C64 Thread Virtual Machine, as well as its key components: the thread model, the mem-
ory model and the synchronization model. The C64 software toolchain was also presented
with emphasis on the CThread run-time system library, the first implementation of the C64
TVM. Finally, we demonstrated the correctness and usefulness of the toolchain/FAST simula-
tor through three parallel benchmarks which results range from an almost linear speedup for
an embarrassingly parallel applications to a speedup of 70 on 80 threads for a barrier-based
program. As an example, we also tuned the matrix-matrix-multiply sequential code to show
how the toolchain can provide the C64 system software and application developer with the
insight to increase the performance from 22 to 363 MFLOPS (a 16.5 improvement!) on a single
C64 processor.
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