
University of DelawareDepartment of Electrical and Computer EngineeringComputer Architecture and Parallel Systems LaboratoryP3IThe Delaware Programmability, Productivity and Pro�ciencyInquiryJoseph B. Manzano Yuan Zhang Guang R. GaoDepartment of Electrical & Computer Engineering, University of DelawareNewark, Delaware 19716, U.S.Afjmanzano,zhangy,ggaog@capsl.udel.eduCAPSL Technical Memo 6115 April 2005Copyright c 2005 CAPSL at the University of Delaware

University of Delaware � 140 Evans Hall �Newark, Delaware 19716 � USAhttp://www.capsl.udel.edu � ftp://ftp.capsl.udel.edu � capsladm@capsl.udel.edu





AbstractNew advancements on high-productivity computing systems have shown the weaknessesof existing parallel programming models and languages. To address such weaknesses, anumber of researchers have proposed new parallel programming models and powerful pro-gramming language features that can meet the challenges of the emerging HPC Systems.However, the success or the failure of a new programming model and accompanied languagefeatures need to be evaluated in the context of their productivity impacts. In this paper,we report a productivity study that was conducted at the University of Delaware in thecontext of the IBM PERCS project. Such project is being funded via the DARPA/HPCSenterprise. In particular, our study is centered on the productivity impact of a new and keyprogramming construct called Atomic Sections that is jointly proposed by our group andour colleagues at IBM.1 IntroductionNew advancements on High Productivity Computing (HPC) Systems have shown the weak-nesses of existing parallel programming models and languages. To address such issues, a num-ber of researchers have proposed new programming models and powerful programming languagefeatures that can meet the challenges of the emerging HPC Systems. However, the success orfailure of such programming models and accompanied language features needs to be evaluatedin the context of their productivity impacts. A small overview of the new approach to languagedesign is depicted in Figure ??. A key source of complexity (and a productivity deterrent)

Figure 1: A New Approach to Language Designin parallel programming arises from �ne grained synchronization which appears in the formof lock / unlock operations or critical sections. An e�ect of these constructs in productivityis to put excessive resource management on the programmer. Thanks to this, the probabilitythat a programmer's errors appear increases. Another side e�ect is the hidden overhead of theunderlying synchronization actions and their accompanying data consistency operations. This3



overhead reduces the amount of scalable parallelism that could have been achieved. AtomicSections have been proposed as a parallel programming construct that can simplify the useof �ne grained synchronization, while delivering scalable parallelism by using a weak memoryconsistency model. This construct has been implemented under OpenMP XN, an extension ofOpenMP in the context of PERCS; that was implemented by the authors of this paper. Basedon this prototype implementation, a productivity study (The Delaware Programmability, Pro-ductivity and Pro�ciency Inquiry or P3I) was designed and implemented. The main focus ofP3I is to test the productivity of Atomic Sections overall and the productivity of them in eachphase of an application development (designing, parallelization and debugging). P3I, in its �rstimplementation, was conceived not for measuring performance, but to measure programmabil-ity and debug-ability given a set of short programming exercises. Another feature that makesthis study unique is its weighting factor, which is a function that will change the amount ofparticipation (time) of each participant, according to its expertise in the HPC domain. Anoverview of P3I weights and weighting scheme is given in the subsequent sections. The purposeof this paper is to provide an outline of P3I, its framework and methodology. Section 2 pro-vides a brief overview of the new constructs: Atomic Sections. Sections 3 and 4 present a highlevel overview of P3I and a deeper view of its internals, data collection methods, and parts,respectively. Section 5 explains the weighting procedures and its overall purpose. Sections 6and 7 present results and conclusions based on the �rst implementation of P3I. Finally, section8 presents related and future work.2 Atomic Sections: OverviewAn Atomic Section is a construct that was jointly proposed by the authors of this paper and theircolleagues at IBM. This construct has two implementations. One of them is under IBM's X10language [?]. It is used for local synchronization on IBM's PERCS. Atomic Sections' secondimplementation is under the OpenMP XN programming model. OpenMP1 is the standardprogramming model for Shared Memory Processors (SMP) machines. Due to its status and theplethora of resources available for it, OpenMP became an excellent platform to test new parallelprogramming constructs. The Delaware group, which is comprised by the authors of this paper,took the OpenMP and extended it with Atomic Sections. Hence, the new programming modelbecame OpenMP with extensions or OpenMP XN for short. From now on, every time thatthe term Atomic Sections is used, the implementation under OpenMP XN should be assumed,unless stated otherwise. An Atomic Section is de�ned as a section of code that is intendedto be executed atomically, and be mutually exclusive from other conicting atomic operations.The word \conicting" in the previous statement is one of the main reasons that AtomicSections is di�erent from other synchronization constructs in OpenMP. Atomic Sections thatare conicting should be guarded against each other but they shouldn't interfere with the ones1OpenMP is a parallel programming extension for C/C++ and FORTRAN. It uses the fork and join modelas its parallel programming model [?] 4



Figure 2: Atomic Section's Syntax Figure 3: Atomic Section's Examplethat do not conict with them. Standard OpenMP2 o�ers two extreme cases when it comesto interference and synchronization. Its critical section construct provides a global lock thatensures that only a critical section is running and the others are waiting, regardless of thee�ects of their execution. On the other hand, OpenMP's lock functions put the responsibilityon the programmer to detect if the code interferes (data race) with other protected blocks ofcode, and lock it according to his/her judgment. Atomic Sections provide the middle groundin which the programmer is free of lock management and the compiler will take care to run thesections in a non-interfering manner. The syntax and a code example of Atomic Sections arepresented in �gures ?? and ??. Each Atomic Section's instance is associated with a structuredblock of code. This block is de�ned as a piece of code that has only one entry point and oneexit point. This a brief introduction to this construct, for a more in depth explanation pleaserefer to [?]. During the conception of this construct, another aspect became apparent: how willprogrammers react to this construct? Therefore, the Delaware group developed P3I to havean idea about the construct impact on programmers and to create a methodology / frameworktemplate for future studies.3 P3I: OverviewThe main objective of P3I is to measure the productivity impact that a new construct has. Fromthis main objective, many small questions arise. How much impact will the new construct haveon the programmer? How will the construct a�ect each phase of application development?Other questions about the study itself are raised. Is there any way to ensure a correct distri-bution of our sample, or to pre-�lter the results such that the data that we considered morerelevant (i.e. novice and average programmers) have more weights than others? This produc-tivity study tries to answer these questions and provides a solid platform for future work anditerations. P3I had a total of �fteen participants. These participants came from a pool of grad-uate and undergraduate students in the department of Electrical and Computer Engineeringat the University of Delaware. The participants attended two meetings in which the study waspresented to them. The study itself is accessible through a group of web pages call the WebHub. In the Web Hub, the participants can review, download and �ll the di�erent parts of the2OpenMP also o�ers the atomic directive but this construct is extremely restricted. It is limited for readmodify write cycles and for a simple group of operations5



study. The Web Hub is divided into phases, which each participant should take in order. The�rst phase is dubbed Phase 0 and it consists of a Web Survey, Web log and a programmingexercise. All the other phases of the study contain only a Web log and programming exercise.The purpose of Phase 0 is to get the participants familiar with the study form and infrastruc-ture. After Phase 0, there are three more phases which represent the core of the study. Fora complete description of all phases and the data collection infrastructure, refer to the nextsection. A code excerpt from Phase 0 is presented in �gure ??. This code excerpt presentsthe code involving a bank transaction using lock / unlock OpenMP construct and Atomic Sec-tion construct. The participants use a modi�ed version of a free source OpenMP compiler,called Omni [?], which has been modi�ed to support OpenMP XN. This study's main metric

Figure 4: Code Excerpt from Phase 0is the time to correct solution, which is calculated thanks to the data collection infrastructureexplained in section 4. As stated before, this study is not designed to measure performance(even though that will be one of its objectives in future iterations). The Web Survey is used tocalculate the weights that will be used in this study. Its structure, purpose and results will bepresented in sections 5 and 6. The programming exercises in each of the phases are designedto put programmers in di�erent contexts that appear in the HPC domains. These situationscan be described as developing a complete parallel application, debugging a parallel code thatdeadlocks and parallelizing a serial application. Finally, all the results will be �ltered with theweights such that the �nal data will be a�ected by the level of expertise of the participants.4 P3I Infrastructure and ProceduresThe main study is composed of four parts or phases. The main webpage can be found at [?].In there, the participants can learn about the study itself, its main metric, and each phase'stime limit. Moreover, extra materials can be accesses through this website. These extrasinclude tutorials about OpenMP, POSIX threads, a brief explanation about Atomic Sections,6



the OpenMP XN compiler, and instructions on how to install it. Figure ?? provides a picturedepicting the structure of the Web Hub. The �rst phase is dubbed Phase 0: The Unfortunate

Figure 5: P3I InfrastructureBanker and its main objective is to show the procedures for running all the subsequent phases.The phase itself is subdivided into a Web Survey, a Web Log and the programming exercise:The Banker. The Web Survey is the �rst step of the study and it is comprised of 24 questionsthat test the participant's knowledge in parallel programming extensions, parallel executionmodels and hardware support for parallel models. More about the survey score system andits importance will be discussed in the next section. The Web Log is designed to capturesubjective data about the starting and stopping time of each phase. It also has a special sectionfor participants' comments and answers to some questions raised by each phase. The questionsare about aspects of the programming exercises and their answers are simple but require acertain understanding about the exercise. Most of these questions are optional. Every phaserequires the participant to record data in the Web Log at the beginning and at the ending ofeach phase. The programming exercise consists of three �les. The �rst �le is a make �le thatwill be used to build the source �les. The next �le is a bash script which will collect timestamps, user info, compiler information and program output. The participants are requiredto use this script to run their application. Finally, a skeleton C source �le is provided forthe participants to use. In Phase 0, this programming exercise is a simple simulation of banktransactions between four branches scattered across the country. Each branch is simulatedas a thread that receives transactions and synchronizes them with locks or Atomic Sections.There is a di�erent group of �les for each required construct. Therefore, the participant willrun this phase twice; one for locks and one for Atomic Sections. In this phase, the source �lesare complete running applications that were ready to run \out of the box". All the phaseshave the same structure as this phase. Therefore, this phase can be seen as an \acclimation"phase in which the participants learn how to run the phases and its parts. Phase 1 is thecore of the study and consists of 3 sub-phases and several exercises. The �rst sub phase iscalled Phase 1a: the GSO exercise. This exercise will present a hypothetical case in which a7



Gram Schmidt Ortho-normalization is required to create an ortho-normal basis. The exerciseshould be completed from scratch and the �nal code should be parallelized with OpenMP XNC function calls and pragmas. The participants are only given helper functions for them to usein their code. One of the requirements for a successful run is that a provided check functionreturns true when testing the basis. Another requirement for completion is that two versionsare created (one for locks and one for Atomic Sections) and that each version successfully runs.Some extra information is provided in the webpage of the phase [?]. This speci�c exercisewas developed to test the programmer's abilities in designing, parallelizing and debugging anapplication. Phase 1b is dubbed The Random Access Program. It is based on the RandomAccess exercise which is used to test memory bandwidth systems. The program contains ahuge table that is randomly accessed and updated. At the end of the execution the reversedprocess is applied to the same table and the table is checked for consistency. If the number oferrors surpasses one percent, the test has failed. The synchronization in this case applies toeach random access of the elements in the table. Intuitively, the number of errors that mightappear in the �nal table reduces considerably when the table is made large enough. This makesthe use of synchronization constructs useless for the program, and it is actually one of thequestions that is asked in the webpage of this phase [?]. In this phase, the subjects are givena serial version of the program and are asked to parallelize it with OpenMP XN. As before,two versions are required to complete this phase (locks and Atomic Sections). An extra versioncan be completed and it consists of the program without any synchronization constructs. Thisexercise simulates the scenario in which programmers need to change serial codes to parallelimplementations. Phase 1c is called The Radix Sort Algorithm and is an implementation ofthis famous algorithm. The algorithm itself is explained in this sub phase's webpage [?]. Theparticipants are given a buggy parallel implementation of this algorithm. There are three bugsin the algorithm that relate to general programming, parallelization and deadlocks. All threebugs are highly dependent and when one is found and solved, the others become apparent. Asbefore, a lock and an Atomic Section version are required. The extra questions in this sectioninvolve the identi�cation of the bugs, why it becomes a problem and possible solutions. Themain objective of this section is to measure the debug-ability of a parallel code that involvessynchronization constructs. A summary of the Methodology and Framework is given by Figure??. All data collected from the phases is saved to a �le that is in the possession of the organizersof the study. The data that is collected is ensured to be private and it is only made availableto one of the organizers of the study. The identity of the participants and their results are keptsecret so no possible repercussion of their participation can arise. This process is a "doubleblinded" process since the participants cannot access their results and the rest of the Delawaregroup doesn't know who participated or for how long they stayed in the study.5 The Web Survey: PurposeThe web survey is the �rst part of the P3I and it is mandatory for all participants. It consists of24 questions that range from a simple \With which programming language are you familiar?"8



Figure 6: P3I Infrastructure and Methodologyto more complicated questions such as \How much you know about the fork and join parallelprogramming model?" In the web survey, participants will check boxes or radial buttons todecide their level of expertise in a range of 1 (least expert / Never heard about it) to 5 (expert/ Use frequently). Each question has a maximum score of 5 - except for the �rst one thathas a value of 6 - and some questions are left out of the �nal computation since they dealwith hardware support. An expert score in the web survey is 106. When a participant �nishesthe web survey, his/her score is calculated. Afterward, a ratio is taken with respect with theexpert score. This will be called the expertise level percentage. All these calculations arecalled \Weight Calculations" and they will be kept intact in future iterations. Finally, theexpertise level is subtracted from one to produce the participant's weight. This weight willbe used to �lter the data by multiplying it with each participant's time. This process willamplify the contribution of less expert programmers to the study. These �nal steps are named\The Weighting Function" and it will be modi�ed in future iterations of the study. That beingsaid, P3I - in its �rst iteration - target low level and average programmers. It also has theability to \weed" out all high expertise participants. This will prevent skewing of data fromthe high expertise end, but it will amplify on the low end. This scheme can be considered a\Low Expertise Weighting Function". Two other schemes have been considered, and they willbe applied in the next iterations of P3I. For the explanation of these future schemes, pleaserefer to section 8.6 P3I ResultsThe results of the study consist of the average time of all participants in each sub-phase andsub-section. Each time data is weighted with the participant's weight before the average is cal-culated. Each participant has to run the experiments in a Sun SMP machine with 4 processorsand a modi�ed version of the Omni Compiler. The results for the weights are presented in �g-ures ?? and ??. It shows that the distribution of expertise among the participants approaches9



Figure 7: Weight of each Participant Figure 8: Histogram of the Weights

Figure 9: Weighted Average Time Data for Each Phasea normal distribution. This result can be used in future iterations to break the population intosamples. This will also allow researchers to test several hypotheses about productivity. Moreabout these future schemes will be presented in section 8. Figure ?? provides the �nal resultsthat have been modi�ed by the weight's data. A complete discussion about the results and theweights of the participants are given in the next section.7 Analysis and ConclusionsAs shown by tables 1a and 1b, the weights in this study formed a slightly skewed normaldistribution. This will ensure that most of the results will be weighted against a close rangeof values. Moreover, the actual weights that were presented in the study are in the range of0.42 to 0.55. This means that the data for this study was not a�ected much by the weights.Also, this means that the population is not suitable for sampling since all the groups has thesame level of expertise. As Table 2 shows, there is a considerable reduction of time to solutionin all the phases. However, the small sample space hinders this study from making a strongercase. Overall, there is a dramatic reduction of the time to correct solution, and each phase alsoshows this reduction. In Phases 1a and 1c, this reduction is in factors of �ve. In this data, thesequencing information should be considered. This information is obtained by recording theorder in which the sub sections were taken within each sub phase. This is important because10



there is always a learning period in which the participants get familiar with the code. Evenin these cases, the reduction of time to solution is also present. Moreover, this study can beaugmented and redesigned thanks to data gained from this study and many others. Therefore,the �rst iteration of P3I serves as a solid foundation for more iterations of this study or others.8 Future and Related WorkBased on several new studies and interactions with other productivity groups, the Delawaregroup already formed a base for the next iteration of P3I. The �rst improvement will be togreatly reduce the human factor in data collection and extend the data collection infrastructurefor both objective and subjective data. Currently, the data is subject to human interaction.To reduce this e�ect, a modi�ed shell and an instrumented compiler will be used in the nextiteration. The shell will collect all data concerning the user activity on it. Moreover, the shellwill also collect editor history. The compiler will silently collect warnings and errors on the ap-plication being compiled. The web log should be enhanced with more parts as an estimate oncompilation, debugging and designing. More relevance should be given to comments. The hu-man factors and behavior should be considered more. A larger population should be consideredand sampling of the population should take place. Samples should eliminate the sequencingproblem by creating control and experimental groups. A broader area should be considered,as computer scientists must be included in the sample. The web survey should be extended toinclude questions about compiler speci�cs and multithreaded knowledge. Versions of POSIXthreads, MPI exercises and OpenMP programs should be created as a familiarization exercisefor novice programming (i.e. extending Phase 0). Finally, a new incentive system should beinstituted (i.e. exercises can be homework or projects in college-level multithreaded classes).These suggestions come from work done on the University of Maryland at the helm of Vic Basili[?] [?]. Special thanks to Vivek Sarkar, Kemal Eboglicu, Vic Basili and all the Delaware group'scollaborators from IBM Watson Research Center for all their help on bringing this study tocompletion.9 AcknowledgmentThis work has been supported in part by the Defense Advanced Research Projects Agency(DARPA) under contract No. NBCH30390004.References[1] Omni openmp compiler project. http://phase.hpcc.jp/Omni/home.html. Parallel andHigh Performance Applicational Software Exchange (PHASE).11



[2] Openmp: Simple, portable, scalable smp programming. http://www.openmp.org/drupal.OpenMP Architecture Review Board.[3] S. Asgari, V. Basili, J. Carver, L. Hochstein, J. K. Hollingsworth, F. Shull, andM. Zelkowitz. Challenges in measuring hpcs learner productivity in an age of ubiquitouscomputing. In Proceeding of Workshop on Software Engineering and High PerformanceComputing Applications (held at ICSE), 2004.[4] J. Carver, S. Asgari, V. Basili, L.Hochstein, J. K. Hollingsworth, F. Shull, andM. Zelkowitz. Studying code development for high performance computing: The hpcsprogram. In Proceeding of Workshop on Software Engineering and High PerformanceComputing Applications (held at ICSE), 2004.[5] K. Ebcioglu, V. Saraswat, and V. Sarkar. X10: an experimental language for high pro-ductivity programming of scalable systems. In Proceeding of the Second Workshop onProductivity and Performance in High End Computers, pages 45 { 51, February 2005.[6] J. B. Manzano, Y. Zhang, and G. Gao. Productivity study.http://www.capsl.udel.edu/courses/eleg652/2004/productive, January 2005.Computer Architecture and Parallel System Laboratory (CAPSL).[7] J.B. Manzano, Y. Zhang, and G. Gao. Phase 1a: The dot product exercise.http://www.capsl.udel.edu/courses/eleg652/2004/productive/dotp.htm, January2005. Computer Architecture and Parallel System Laboratory.[8] J.B. Manzano, Y. Zhang, and G. Gao. Phase 1b: The globalupdates per second benchmarks. the random access program.http://www.capsl.udel.edu/courses/eleg652/2004/productive/gups.htm, Jan-uary 2005. Computer Architecture and Parallel System Laboratory.[9] J.B. Manzano, Y. Zhang, and G. Gao. Phase 1c: The radix sort algo-rithm. http://www.capsl.udel.edu/courses/eleg652/2004/productive/rsort.htm,January 2005. Computer Architecture and Parallel System Laboratory.[10] Y. Zhang, J.B. Manzano, and G. Gao. Atomic section: Concept and implementation. InMid-Atlantic Student Workshop on Programming Languages and Systems (MASPLAS),2005.

12


