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Collaborative Research: Programming Models and Storage System for High Performance Computation
with Many-Core Processors

Future generation HEC architectures and systems built using many-core chips will pose un-
precedented challenges for users. A major source of these challenges is the storage system since the
available memory and bandwidth per processor core is starting to decline at an alarming rate, with
the rapid increase in the number of cores per chip. Data-intensive applications that require large
data sets and/or high input/output (I/O) bandwidth will be especially vulnerable to these trends.

Unlike previous generations of hardware evolution, this shift in the hardware road-map will have
a profound impact on HEC software. Historically, the storage architecture of an HEC system has
been constrained to a large degree by the file system interfaces in the underlying Operating System
(OS). The basic design of file systems has been largely unchanged for multiple decades, and will no
longer suffice as the foundational storage model for many-core HEC systems. Instead, it becomes
necessary to explore new approaches to storage systems that reduce OS overhead, exploit multiple
levels of storage hierarchy and focus on new techniques for efficient utilization of bandwidth and
reduction of average access times across these levels.

The specific focus of this proposal is on exploring a new storage model based on write-once tree
structures, which is radically different from traditional flat files. The basic unit of data transfer is
a chunk, which is intended to be much smaller than data transfer sizes used in traditional storage
systems. The write-once property simplifies the memory model for the storage system and obviates
the need for complicated consistency protocols. We will explore three programming models for
users of the storage system, all of which can inter-operate through shared persistent data: 1) a
declarative programming model in which any data structure can be directly made persistent in our
storage system, with no programmer intervention, 2) a strongly-typed imperative programming model
in which a type system extension will be used to enforce a separation between data structures that
can be directly made persistent and those that cannot, and 3) a weakly-typed runtime interface
that enables C programs to access our storage system. A compiler with a high-level data flow
intermediate representation and lower-level parallel intermediate representation will provide the
necessary code generation support, and a runtime system will implements interfaces to the storage
system used by compiler-generated code and by the weakly-typed runtime interface. Our proposed
research will be evaluated using an experimental testbed that can measure counts and sizes of data
transfers across the storage hierarchy.

Intellectual Merit: There are several technical challenges in the components outlined above.
A number of design choices within the storage system need to be investigated and evaluated. We
propose to investigate three different levels of programming models, because while current HEC
users are likely to be most comfortable with the lowest level of a weakly-typed runtime interface,
future HEC users may find the high level declarative and strongly-typed imperative models more
productive. This in turns leads to new compiler challenges for the higher level programming models.
Our proposed Storage System will have to achieve a judicious balance of software-hardware co-
design between the software runtime system and hardware support in the storage system. Though
we will not be able to build a hardware prototype in the scope of this proposal, our experimental
testbed will need to contain sufficient instrumentation to help guide the co-design process. In
summary, this is a high-risk high-return proposal because of the inherent risks in departing from
traditional filesystems, and of the potential for significant improvements in bandwidth utilization
and programmability compared to past approaches.

Broader Impact: The demonstration of a new approach to storage systems can pave the way
for novel technologies to address the bandwidth crisis facing future HEC applications. The broader
impact of this project includes the integration of research and education; we will expose the new
concepts and research results from this project to graduate students and upper-division undergrad-
uate students through new courses, with special attention to the needs of underrepresented groups.
We will also disseminate research results through the standard academic venues (publication in
journals and conferences, conference tutorials, web sites, external talks). Further, advances in HEC
storage systems will have a broader scientific and societal impact on all domains that depend on
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high end computing. Finally, we will leverage our contacts with government labs and industry to
encourage adoption of the fundamental technologies in future commercial offerings.
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Collaborative Research: Programming Models and Storage System for High Performance Computation
with Many-Core Processors

1 Introduction

The High End Computing (HEC) field is at a major inflection point due to the end of a decades-long
trend of targeting clusters built out of single-core processors. Future generation HEC architectures
and systems built using many-core chips will pose unprecedented challenges for users. While
the concurrency challenge for these systems is receiving attention from efforts such as past NSF
HECURA programs, the DARPA High Productivity Computing Systems (HPCS) program and the
centers at UC Berkeley and UIUC funded by Intel and Microsoft, the storage challenge for HEC
applications has received relatively less attention in Computer Science research. However, the
storage challenge is becoming increasingly urgent because of two opposing trends: first, many HEC
application domains are becoming increasingly data-intensive in nature, and second, the available
data bandwidth and access time per processor core is starting to decline at an alarming rate, with
the rapid increase in the number of cores per node.

A major source of overhead in storage systems lies in the file system interfaces in the underlying
operating system (OS). The basic design of file systems has been largely unchanged for multiple
decades and dates back to an era of multi-programmed uniprocessors. Historically, the file handling
part of the OS has been designed as a service to be shared by multiple processes, thereby resulting
in additional OS overhead on each data transfer between the storage system and an individual
process’ data space. As operating systems evolved, the file-system overhead increased with support
for richer meta-data and directory structures. This overhead in turn forced the use of large data
transfer sizes to amortize the overhead over a larger collection of data1. However, transferring
long sequences of contiguously located data runs counter to the needs of many emerging HEC
applications for two reasons. First, HEC applications increasingly use irregular data structures,
which result in wastage of storage bandwidth when only a fraction of the transferred locations is
accessed. Second, with increasing parallelism per node (up to 1024 cores/socket projected in future
Exascale systems [26]), it becomes important to utilize the available storage bandwidth for larger
numbers of concurrent short data transfers rather than fewer long transfers. Our contention is that
the basic file system design will no longer suffice as the dominant storage model for many-core
HEC systems. Instead, it becomes necessary to explore new approaches to storage systems that
reduce OS overhead, exploit manycore processors attached to multiple levels of storage hierarchy,
and focus on new techniques for efficient utilization of bandwidth and reduction of average access
times across these levels.

The focus of this collaborative proposal is on developing a Storage System that eliminates all OS
intervention for data access, with accompanying extensions to programming models, compilers, and
runtime systems for improved programmability, building on past contributions by the PI (Sarkar)
and the co-PI’s (Dennis, Gao) in these areas. Persistent data are represented as write-once tree
structures in the Storage System and accessed via a pointer to the root node of the tree that
represents the intended data object. The basic unit of data transfer is a chunk, which is intended
to be much smaller than traditional OS page sizes2. An additional benefit from the proposed storage
model stems from the fact that a chunk will contain information from just one data object. This is
in contrast to conventional memory systems where a cache line or virtual memory page may contain
information from more than one data object, leading to the problems of false sharing [11]. All data
objects in the storage system are required to obey the write-once (single assignment) property.
(Data objects in transient memory do not have this restriction.) When a data object is freed via
garbage collection, its chunks are available for allocation to other data objects. The write-once

1Large data transfers have also been motivated by the characteristics of disk storage devices, especially when I/O
was primarily serial.
2For concreteness, we assume a 128-byte chunk size in this proposal, but the overall approach is applicable to any
chunk size.
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property simplifies the memory model for the storage system and obviates the need for complicated
consistency protocols. The necessary synchronization between the producer and consumer of a data
object is provided by the Storage System Read command, which is delayed, if necessary, until the
referenced data object is written by its producer. The Storage System is particularly well suited
to runtimes that support fine-grain parallelism, such as work-stealing runtimes for fine-grained
tasks[43, 14, 31], that are capable of issuing a large number of concurrent requests to the Storage
System.

The proposal has the following components:

1. Design of a new storage system with software and hardware support for write-once tree
structures (Section 3).

2. A declarative programming model based on FunJava, a functional subset of Java [30]. Any
data structure in this programming model can directly be made persistent in our storage
system, with no programmer intervention and minimal runtime overhead (Section 5.1).

3. A strongly-typed imperative programming model based on X10 [10] in which a type system
extension will be used to enforce a separation between data structures that can be directly
made persistent and those that cannot. No serialization overhead is incurred for the first
category. For the second category, serialization consists of data structure transformation
(with copying, as needed) to the first category (Section 5.2).

4. A weakly-typed runtime interface that enables C programs to access our storage system
(Section 5.3).

5. A compiler with a data flow intermediate representation (DFIR) that provides the necessary
code generation support for our storage system (Section 6).

6. An execution model and runtime system that implements interfaces to the storage system
used by compiler-generated code and by the weakly-typed runtime interface (Section 7).

7. Evaluation of the proposed storage system using an experimental testbed that can measure
counts and sizes of data transfers, so as to compare our storage system design with traditional
approaches (Section 8).

There are several technical challenges in the components outlined above. There are a number of
design choices within the storage system that will need to be investigated and evaluated. We propose
to investigate three different levels of programming models, because while current HEC users are
likely to be most comfortable with the lowest level of a weakly-typed runtime interface, future HEC
users may find the high level declarative and strongly-typed imperative models more productive.
This in turns leads to new compiler challenges for the higher level programming models. Finally,
our proposed Storage System will have to achieve a judicious balance of software-hardware co-
design between the software runtime system and hardware support in the storage system. Though
we will not be able to build a hardware prototype in the scope of this proposal, our experimental
testbed will need to contain sufficient instrumentation to help guide the co-design process. In
summary, this is a high-risk high-return proposal because of the inherent risks in departing from
traditional filesystems, and of the potential for significant improvements in bandwidth utilization
and programmability compared to past approaches to HEC storage systems.

2 Approach

We propose to explore a computer organization consisting of a collection of processing nodes (the
Execution System) coupled to a Storage System embodying a tree-based memory model.

Each processing node (core) of the Execution System executes one or more threads. Compu-
tation is performed by program modules which consist of functions/methods/procedures compiled
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from a high-level programming language. A module may contain a hierarchy of functions (meth-
ods/procedures) with local and heap variables held in stack/heap data structures located in its
private address space.

Any running thread is executing one program module and is able to initiate concurrent execution
of modules by threads running on other cores. The arguments and results of these calls can include
global pointers to data structures in the Storage System. When a thread completes execution of a
module, the thread terminates, making its thread execution slot in the core available for assignment
to a new thread. Each of the programming models includes a mechanism (either in the language or
used by the compiler) for a thread to synchronize with other threads, such as a join feature whereby
a thread continues execution only when another thread (or threads) reaches the join control point
in the program. A thread may be suspended for any of several reasons: (1) A join point has been
reached before other threads; (2) The thread has initiated an I/O operation that has not completed;
and (3) The thread has requested a Storage System operation that does not complete immediately.

Transient and Persistent Data. It is intended that the Storage System hold data objects and
structures that have lifetimes beyond those of data operated on by individual program modules,
and that these data objects and structures are the principal means of intercommunication between
threads. These data are called persistent. If the Storage System is designed to be fault tolerant,
then the persistent data will be preserved in event of a failure of processing cores.

Determinacy. The Storage System as proposed is a determinate system in the sense of Patil/Dennis
[40]. A consequence is that if the Execution System is also determinate, then computations
performed by the coupled systems are guaranteed to be determinate. This would be true in the
case of the proposed functional programming model (in the absence of features to support the
programming of transaction-oriented computations). The property of determinacy would eliminate
a troublesome aspect of parallel programming.

The Three Programming Models. The three chosen programming models differ in the extent
to which the programmer assists in specifying/identifying opportunities for parallel execution. In
the purely functional case, parallelism is implicit in the structure of the program, and the compiler
must choose both the data distribution and the granularity level at which multithreading is to be
applied. In the case of X10, the programmer expresses the computation in terms of places that
are intended to be mapped onto distinct processors of the target computer system. In the case of
the C-based programming model, the programmer is explicit about the module calls that are to be
implemented by invoking a new thread. One result of the project will be a comparison of the three
programming models with respect to which applications are served best by each model.

Objectives. Our objectives in pursuing this proposed research are three-fold. First, we wish to
demonstrate the benefits of a novel computer system organization employing a write-once storage
system for persistent data objects based on a tree-based memory model. Secondly, we wish to
compare, in programmability and performance, the merits of three programming models for parallel
computing: a declarative model based on functional programming principles in which parallelism is
implicit; an imperative programming model derived from X10 that includes programmer means for
specifying task and data distribution and is strongly typed; and an imperative programming model,
based on the C programming language, that is familiar to users of high performance computing
resources. To this end, we will develop means, including compiler tools and run-time support
software, for users of each programming model to utilize the write-once tree-based memory model
and storage system. Our third goal is to develop and instrument a test bed for experimental studies
of the benefits and issues in the proposed system architecture and the three programming models
for execution of selected HEC applications.

In the following sections of the proposal, we present the proposed tree-based memory model,
and our vision of its implementation in a Storage System. Further details on the three programming
models, as well as the compiler and run-time systems needed to support them, are discussed. Our
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Figure 1: Overview of Storage System

plans for experimentation, related work, prior work by the principal investigators, broader impact,
and management plan complete the proposal.

3 The Fresh Breeze Memory Model

In the Fresh Breeze Memory Model[51], information objects and data structures are represented
using fixed size chunks, for example 128 bytes. Each chunk has a unique 64-bit identifier, a global
pointer, that serves to locate the chunk within the storage system, and is a globally valid reference
to the data represented by the chunks contents. Chunks may contain data and/or up to sixteen
global pointers. Thus data objects and data structures may be represented by trees of chunks, or
more generally, DAGs (directed acyclic graphs). In a nutshell, the life-cycle for a chunk can be
summarized as follows: (1) Created in main memory by a producer thread as part of a data object,
and immediately written to the lowest level of the Storage System Hierarchy (SSH); (2) Accessed
by consumer threads from the lowest level of storage to which both producer and consumer have
access; (3) Removed from each level of the memory hierarchy except the lowest (archive) level,
when space is needed for other data; (4) Deleted when reference count indicates that no references
to the chunk exist.

A key feature of the memory model is that chunks may be created and written by a user of the
memory model, but a chunk cannot be made accessible to more than a single computing activity
without its content being frozen and read-only. This is the write once rule of memory operation.
Its adoption leads to some very attractive properties. For one, a memory hierarchy in which the
write once rule is honored enables caches to be implemented with less energy and complexity, as
evidenced by read-only caches for constant and texture memory in modern GPGPU’s. Several users
of the memory model may access shared data with no concern that it might be stale. Adopting
the write once property requires computations to adopt a functional view of the storage system. A
computing step involves accessing existing data values and creating fresh memory chunks to receive
the results. Of course, to work efficiently this requires very efficient mechanisms for allocating
memory and collecting chunks that no longer contain accessible data. Use of a fixed-size unit of
memory allocation makes this feasible.

The write once property implies that a pointer can be incorporated into a chunk only at the time
the chunk is allocated. It follows that there is no way that a path can be formed that leads from
a reference contained in a chunk to the reference identifier of the chunk itself [18]. This property
guarantees that the directed graph consisting of the collection of chunks and the pointers between
pairs of chunk will never contain directed cycles[20]. Consequently, low overhead reference counts
can be used to collect garbage chunks.
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Commands are provided for users of the Fresh Breeze Memory Model to create, read, write
and seal chunks. The Seal command is used to make the specified chunk read-only. It is provided
because a user may need to execute more than one Write command to fully define a chunk, and
therefore an interface is needed to signal that a chunk is complete. The Execution System must
honor the rule that a global pointer is not given to a concurrent activity unless the referenced chunk
has been sealed.

The Fresh Breeze Memory Model has been studied for its ability to achieve competitive perfor-
mance in linear algebra operations fundamental to much scientific computation, in particular the
dot product and matrix multiply [23]. Generation of efficient code for array operations with our
storage model will be a key challenge addressed by the proposed research.

4 Storage System Implementation

The Storage System will implement the Fresh Breeze Memory Model. Ultimately, the Storage
System will be implemented using hardware memory devices and controllers. In this way, the large
portion of the operating system overhead incurred in conventional systems will be absent. However,
a hardware implementation is beyond the scope of this proposed project. Therefore emulation of the
Storage System will be used to develop, test and demonstrate the merits and projected performance
of the envisioned system architecture. Here, we describe the Storage System in its envisioned
hardware realization. This will serve to explain the long-range goal of the project and to indicate
what will be needed to construct an emulation that will be useful for projecting behavior and
performance. The proposed testbed for developing and evaluating the Storage System operating
with the three programming models described below is discussed Section 8 of this proposal.

4.1 The Physical Storage System

The Storage System is coupled to the Execution System through a large number of identical ports
that communicate independently with processing nodes of the Execution System. This structure
is intended to support very large numbers of concurrent transactions with the Storage System
so that high bandwidth will be achieved through a high volume of transactions rather than by
requiring large individual transactions. This will enable greater exploitation of fine-grain parallelism
is application codes.

The Storage System is a hierarchical memory system in which the higher levels (closer to the
Execution System) cache data chunks actively involved in on-going computations. In Figure 1,
two levels were illustrated for simplicity; the architecture may be extended to further levels as
demanded by the device technology available and the capacity required by the system it is part of.

There is no relationship between the 64-bit number that is the global pointer of a chunk and
the physical position it is held in the Storage System. This property permits new data to be stored
in proximity to the location in the system where they were generated. To support this property
associative search will be used, as for name resolution in conventional file systems, to map a global
pointer to the physical location where the designated chunk is to be found. In the proposed Storage
System, this mapping will have a very efficient realization in hardware using the B-tree algorithms
favored in many database implementations.

Another function performed by the Storage System is to supply free global pointers to the
Execution System for assignment to freshly created chunks. A data structure will be maintained,
perhaps a bit map, which keeps a record of available global pointers. Pointers are assigned from
the free pool and returned to the pool when the reference count shows they are no longer needed.

The principal components at each level of the Storage System are multiple storage devices to
hold data chunks, and an associative directory for mapping chunk identifiers (global pointers) to
the locations where chunks reside (Figure 1). At the lowest level (The Main Memory) the set of
storage devices is sufficient to hold all data in the computer system. Accordingly, the directory must
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be able to map to a sufficiently large physical space to accommodate all data, and the directory
must be able to handle the anticipated traffic. As usual, it is expected that read requests will far
outnumber write requests at this level. At higher levels of the Storage System, the storage devices
will be faster and of much less total capacity, but must handle a larger volume of transactions. The
directories can be simpler, but must support the expected traffic. In addition, each level includes
control logic to handle commands, remove chunks that have fallen out of use, and for garbage
collection.

For directory implementation, we have studied hardware implementation of the B-Tree data
structure commonly used in software file systems for mapping file names or identifiers to physical
locations3. The results are very encouraging in that an associative search is guaranteed to complete
in a fixed number of clock cycles, and the hardware organization uses RAM memory instead of area
and power hungry CAM hardware.

4.2 Benefits and Challenges

Because the Storage System will replace a conventional file system implemented by operating system
software, a major improvement in performance is to be expected. In current practice, each access
to a file or portion thereof, even access to virtual memory pages, requires intervention of operating
system software. Use of the Fresh Breeze Storage System will completely eliminate this operating
system overhead. In the proposed Storage System, there is never any semantic conflict among
transaction requests. Each request can be processed by the storage hierarchy without regard for
other concurrent requests, except for competition for hardware resources. In consequence, there is
no impediment to achieving massive levels of concurrency other than limits imposed by hardware
organization of the Storage system and the granularity of concurrency supported by the Execution
System.

The proposed Storage System will support very large volumes of memory transactions, enabling
efficient execution of large computations where fine-grain parallelism can be exposed and exploited.
This sets a challenge for the design of programming models and their implementation in future
computer systems.

Another benefit of the proposed memory model and Storage System relates to data backup
and the checkpointing of long-running computations. To preserve a snapshot of a computation or
the state of a database only requires that a snapshot data structure be assembled containing the
components to be preserved. The resulting structure, being read-only, will remain intact until the
snapshot is released and becomes inaccessible. This will require far less time and resources than
writing the complete snapshot to file system memory.

5 Programming Interfaces to the Storage System

5.1 Declarative Programming Interfaces

The Fresh Breeze project at MIT-CSAIL aims to develop a multi-core chip architecture that meets
all requirements for composable parallel programming. The programming language chosen for
users of a Fresh Breeze system is FunJava, a functional dialect of Java. A compiler for FunJava
is under development at MIT-CSAIL and is designed to accept programs as Java Bytecode files
and to transform them so to generate optimized Fresh Breeze machine code. In the following
paragraphs we discuss: (1) use of data flow graphs as an intermediate program representation
by the compiler; (2) our study of the minimal restrictions on Java programs such that FunJava
functions meet requirements for composable parallel programming; and (3) the multi-thread model
of Fresh Breeze machine code. It is expected that revisions to plans for the Fresh Breeze compiler
to generate code for the proposed Execution System/Storage System will be straightforward to
implement because the Storage System will implement the Fresh Breeze memory model.

3Summer 2008 study by research intern Kumud Bhandari.
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Java Restrictions for Composable Parallel Programs. In the absence of input/output
operations and other operating system calls, sequential execution of a Java method performs a
functional transformation on a space of values that includes the states of any objects touched
by the method. This implies that any java method has a representation as a Data Flow Graph
(DFG). Determining the DFG for a method is made problematic by the possibility of aliasing —
the possibility that data components are shared by distinct data structures or objects that are
arguments of the method. Aliasing is a violation of program modularity principles because the
behavior of a program module (function) will depend on whether components are shared by inputs
to the module. Guaranteeing correct execution in the presence of possible aliasing also limits the
degree of parallelism that may be exploited.

At present we take FunJava to be a functional subset of Java by which we mean that arguments
and results of a method must be immutable values a method must not have any side effects that
are visible outside method execution. This eliminates any possibility of aliasing, but may be more
restrictive than necessary for achieving composable parallel programming. Determining a weaker
set of constraints is a research topic under study.

The Fresh Breeze Multi-Thread Program model. The Fresh Breeze multi-thread program
model [22] assumes that threads are the basic and only notion of concurrent activity. A thread
corresponds to execution of a single sequential program module – corresponding typically to a
Java method. The thread starts with invocation of the module and ends upon termination of
module execution. Similar to Cilk [27], a thread may spawn a new thread which performs an
independent computation concurrently with its parent, reporting back to the parent by means of
a join mechanism when its work has been completed. A thread may spawn many child threads,
providing a basis for data parallel computing, as well as concurrent invocations of subsidiary tasks.

5.2 Strongly-Typed Imperative Programming Interfaces

The strongly-typed imperative programming model will be based on X10 [10]. Building on the
value type feature in X10, a type system extension will be used to enforce a separation between
declarative vs. imperative data structures i.e., data structures that are write-once and those that
are not. Data structures in the first category will be directly mapped to the storage system,
without any serialization overhead. For the second category, serialization consists of data structure
transformation (with copying, as needed) to the first category.

The parallel constructs in X10 (and extensions in Habanero-Java [53, 54, 55]) are similar to those
of Fresh Breeze, except that multiple assignments are permitted to shared mutable imperative data
structures. Perhaps the simplest introduction to X10 is to focus on two constructs — async and
finish — which can be used to write a large class of parallel programs. An important safety result
in X10 is that any program written with these three constructs can never deadlock.

The statement, async 〈stmt〉, causes the parent activity to create a new child activity to execute
〈stmt〉. Execution of the async statement returns immediately i.e., the parent activity can proceed
immediately to the statement following the async. The statement, finish 〈stmt〉, causes the parent
activity to execute 〈stmt〉 and then wait till all sub-activities created within 〈stmt〉 have terminated
globally. There is an implicit finish statement surrounding the main program in an X10 application.
If async is viewed as a fork construct, then finish can be viewed as a join construct. However, the
async-finish model is more general than the fork-join model [10].

5.3 Weakly-Typed Runtime Interfaces

Under this research thrust, we will leverage our current research in developing a shared memory
programming/execution interface for a computing system based on many-core chip architecture
technology such as the IBM Cyclops-64 chip/system [15]. Application programs are written
in imperative style parallel programming API (e.g. C with parallel programming extensions
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Figure 2: Compiler support and intermediate representations for the three programming models

e.g. OpenMP, OpenSHMEM, etc. Our OpenMP/C compiler will translate the source code to
a multithreaded API – called the TNT (or TiNyThreads).

6 Compiler Support and Intermediate Representations

Figure 2 summarizes the compiler structure proposed for our research. The declarative program-
ming language (FunJava) will be translated to a Data Flow Intermediate Representation (DFIR)
such as a Data Flow program Graph (DFG) [16, 17]. Past experience has shown that DFGs are
an ideal form for representing functional programs for transformation and code generation by a
compiler [57]. DFGs have been used in compilers for VAL [6] and SISAL [36], where most standard
optimizations have straightforward implementations that run in linear time and space. In these
compilers special data flow representations are provided for data parallel blocks and recurrences
recognized by the compiler and are used to generate efficient machine code for these program
structures [48, 49, 47]. The DFIR effort in our proposal will be lead by MIT.

Next, we see that the strongly-typed imperative language will be translated to a Parallel
Intermediate Representation (PIR), and the DFIR can be lowered to this level as well. The PIR
includes explicit constructs for parallel operations such as foreach, async and finish. An early
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version of the PIR was used in our recent work on chunking parallel loops in the presence of
synchronization [55], and the complete PIR will build on our past work on program dependence
graphs and parallel program graphs [46, 50, 45]. Like the DFIR, the PIR will expose all known
parallelism in the program as well as all control and data dependences. However, unlike the DFIR,
the PIR will also have to cope with multiple assignments (imperative updates) to shared locations
and is hence at a lower level than the DFIR. Thus, the PIR can also be used to express explicit
memory management and copy optimizations that are performed on the DFIR [34, 29]. The PIR
effort in our proposal with be led by Rice. Finally, the PIR will be translated to object code (most
likely via C code followed by a standard C compiler), which also represents the target level for the
weakly-typed runtime interfaces (which will be led by U.Delaware).

While the structure in Figure 2 offers a great deal of flexibility in supporting multiple program-
ming models, it also poses some interesting research challenges. One challenge that is especially
relevant to HEC computations is related to optimized code generation for arrays, especially for
contiguous array elements stored in the same chunk. This is analogous to optimization of array
operations with 128-byte data transfers as in the Cell processor. Another challenge is in locality
management to ensure that data and tasks with mutual affinity are located close to each other.

7 Program Execution Model and Runtime System

7.1 Program Execution Model

Our execution runtime features a hierarchical multithreaded program execution model. Our pro-
gram execution model (PXM) serves as an interface between the architecture and the software.
PXM is supported by key features implemented directly in the hardware architecture or indirectly
through a combination of hardware features and runtime systems support. The PXM will be defined
by a thread virtual machine (TVM) implemented as a user-level library.

7.2 Runtime System

The basis of the program execution model and runtime software for the proposed research will
be based on the TiNy Threads runtime system (TNT) developed by the CAPSL group at the
University of Delaware, and ETI under the direction of Prof. Gao.

We highlight the features of our runtime as follows:

• Our runtime replaces the conventional OS with a custom-made kernel: Instead of trimming a
conventional OS such as Linux, the C64 kernel and the TNT library have been implemented
from scratch. Only the functionality that is crucial to achieve and sustain high levels of
application performance has been included.

• Our runtime is a non-intrusive runtime system: TNT is implemented as an user-level library
that manages directly the hardware resources. TNT supports a non-preemptive thread
execution model needed for applications to achieve full resource utilization.

7.3 The TNT Multithreaded program model

The original TiNy Threads (TNT) can be viewed as a C based API of a Thread Virtual Machine
for a manycore processor such as the Cyclops-64 architecture.

The Cyclops-64 thread Virtual Machine (TVM) can be seen as an multi-chip multiprocessor
extension of the C64 ISA. It has been designed to replace the OS with a narrow interface layer. Such
layer of system software manages directly the hardware resources and provides an interface that
shields the application programmer from the complexity of the architecture whenever possible.
However, unlike a conventional OS, a TVM exposes those resources that are critical to achieve
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performance. That is the C64 TVM not only provides an abstraction layer and the application
program interface expected by programmers, it also provides the common baseline for future
research on program execution models. The C64 TVM includes three components: a thread model, a
memory model and a synchronization model, as well as their corresponding APIs. The thread model
presents thread management issues. The memory model includes the specification of the consistency
model for the C64 system. Last, the synchronization model describes the functionality to implement
mutual exclusion regions, perform direct thread-to-thread and barrier type of synchronization.

Two salient features of TNT are as follows:

• TNT provides an efficient coarse-grain thread level programming environment: TNT relocates
services to the user-layer to simplify the runtime software environment and to make it more
efficient. TNT also supports a familiar fork/join programming API for quick prototyping of
parallel applications.

• TNT supports the development of program execution models: TNT does not impose any
limitation on the number of threads available for parallel programming models in general and
applications in particular. TNT seamlessly orchestrates dozens of hardware thread units and
thousands of virtual threads with high efficiency.

7.4 Thread Scheduling

The objective of thread scheduling is to distribute the workload over the processors so that no
processor is idle if there is work waiting to be done, and no thread is blocked if there is free
processor capacity. It is desirable to do this in a way that exploits/preserves ”locality”, meaning
that threads performing closely related computation are executed on processors that are in close
communication proximity. The collection of agents performing thread scheduling must maintain
collective knowledge of where free capacity resides and must somehow migrate assignments of new
threads to areas of low utilization while maintaining locality. There is work by the P2P grid
computing community on ”self-organizing grids” that is likely to be relevant to this project.

8 Experimentation

8.1 The Experimental Testbed

An important task is to identify a suitable set of benchmarks to evaluate our proposed storage
system and associated programming models. As a starting point, we are considering the fol-
lowing parallel I/O benchmark suites — IOR (http://sourceforge.net/projects/ior-sio), IOzone
(http://www.iozone.org/), Xdd (http://www.ioperformance.com/). All these benchmarks allow
the user to specify a workload and evaluate the performance of the filesystem. We will leverage
the experience gained in ongoing collaboration between ORNL and U.Delaware on porting IOR to
C64 in the use of these benchmarks for our proposed research.

We plan to leverage in the following two simulation platforms in our experimental testbed:

• Cyclops-64 many-core architecture simulator. FAST [12] is an execution-driven, binary-
compatible simulator of a multi-chip Cyclops-64 system developed at U.Delaware. It accu-
rately reproduces the functional behavior and count of hardware components such as thread
units, on-chip and off-chip memory banks, and the 3D interconnection network of the system.
The FAST many-core architecture simulator plays a critical role in the development of parallel
systems since it can accurately model the execution of a binary program in a parallel system.
FAST models a program by (1) simulating the execution of instructions, (2) simulating
the architecture exceptions (3) reproducing the memory behavior and (4) interconnection
network contention and latency. The FAST simulator provides histograms of instructions
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executed as well as detailed traces of program execution. FAST has been developed following
a modular approach that allows smooth integration of new functionalities or architecture
characteristics. It will be necessary to adapt FAST for the purposed of our proposed research
by designing additional components to model the proposed Storage System and its interaction
with processors of the Execution System.

• Architecture Simulation using HAsim
HAsim[42] is a tool for processor architecture experimentation and evaluation through cycle-
accurate simulation. Using software simulation tools leads to very long simulation runs when
the components of a design that have high logic complexity are modeled in detail. To achieve
fast simulations of detailed logic behavior, the HAsim tool is designed to support modeling
critical components of an architecture using FPGA technology. The user of HAsim uses a
library of modules that model processor componentseither by means of software or through
synthesis of FPGA implementations. The user also provides a timing specification similar
to the control aspect of synchronous data flow, from which the HAsim software constructs
a simulation shell that invokes the components, either software or FPGA modules, honoring
the specified timing constraints. The simulation shell also includes provision for multiplexing
an FPGA implementation over many instances of a component, thereby making it feasible to
simulate larger systems than a single FPGA device could model. Because HAsim is designed
for studying processor architecture, it will be necessary to adapt it for the purposed of our
proposed research by designing additional components to model the proposed Storage System
and its interaction with processors of the Execution System.

8.2 The Experimental Study

Evaluating the benchmark programs using our different programming models on the experimental
testbeds listed above will be a major effort in our proposed research. We will implement selected
benchmarks on our experimental testbeds and measure their performance and scalability using
sizes and counts of data transfers as basic metrics for the storage system. Speedup trends will
also be analyzed by varying the number of cores simulated within a chip. Under the simulation
environment, we can also run experiments with varying latency and bandwidth to the storage
system to study the robustness of our programming models and their implementation.

9 Related Work

The proposed research explores an approach to improving the performance of I/O in HEC systems
that has no counterpart in other current research known to the PIs. There are, however, strong
relations to earlier work on virtual memory implementation, and our experimental implementation
strategies and goals bear similarities to current work on runtime software systems, and work on
peer-to-peer cloud computing.

Parallel File Systems. In recent years, a significant amount of research on parallel file
systems has been reported, including Lustre [4], GPFS[2], PVFS[35], pNFS[33], PanFS[37] and
others [62, 56, 13, 7, 38, 41, 60]. Different APIs to interface with files such as MPI-IO[5], HDF5[3]
and NetCDF[44] have gained popularity as an alternative to the basic POSIX API. Object-Based
Storage [1] provides a different way to organize data and metadata on the storage medium than
file or block methods. Much of the increased functionality of these parallel file systems comes at
the cost of increased complexity and overhead of the file system software.

Some recent work seeks to reduce overhead of the file system and its load on the file servers.
The Light Weight File System (LWFS) [39], a current project at Sandia National Laboratory, is a
parallel file system that implements only essential functionality without any additional functionality
that degrades performance and scalability. Implementations of additional features are moved into
libraries and the application itself, allowing the application to be optimized to a right-weight
solution. In contrast, our proposed Storage System eliminates all software overhead involved in
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accessing data by replacing software mechanisms used to translate file names or map data identifiers
to physical locations with a common associative lookup means distributed across the storage units.

Virtual Memory. The idea of providing hardware supported addressing for very large data
structures has been dormant for many years since the early days of the Multics and AS/400 systems.
The concept was a key element in the design of the Multics computer system at MIT’s Project
MAC [8], where any object represented in the file system could be dynamically linked into a user’s
address space within limits that have not since been approached. The result was a system that
offered the most powerful system support for programming in terms of modularity and security
that has yet been achieved. Multics, however, did not provide an implementation of global pointers
and so its modularity benefits did not extend to parallel programming. The IBM AS/400 series
of systems [58] embody an implementation of global pointers, but the benefits were exploited by
system programmers and software package developers, and not promoted for the end user. The
proposed project will extend the benefits of a global virtual address space to systems built of
many-core processing chips and make its benefits available through user programming models.

Runtime Systems: As stated earlier, we will use an extension of TNT as the runtime software
system for our proposed research. Other developments of runtime support for small grain parallel
computing include threaded function calls under CILK [28, 59], Cascade [9], and work-first and
help-first policies for work stealing [32]. Each of these systems replaces OS services for thread
scheduling with light-weight software mechanisms. Our proposal goes further in replacing all
software mechanisms involved in data access, thereby enabling a major further gain in efficiency
and allowing for more asynchrony between data transfers and parallel tasks.

Peer-To-Peer Cloud Computing: Work under way in this area includes the development of
concepts and algorithms for organizing clusters of nodes in an open computing cloud in response to
requests for resources e.g., [25]. This work is of interest due to its applicability to the problem of
scheduling threads on a massively parallel computer. In both situations it is desirable to allocate
nodes (processors) in close proximity for computing jobs, so as to improve the locality exhibited by
threads within a job.

10 Prior Work by PI and co-PIs

Professor Vivek Sarkar is an internationally-known expert in programming languages, program
analysis, compiler optimizations and virtual machines for parallel and high performance computer
systems. He was inducted as an ACM Fellow in 2008. Prior to joining Rice University, he had nearly
20 years of research experience at IBM, of which 16 years included leadership and management of
research teams as follows:

• Sarkar created and led the programming models, tools, and productivity research agenda in
the DARPA-funded IBM PERCS project during 2002–2007. Three major outcomes of this
effort have been the creation of the X10 language, the creation of the Eclipse Parallel Tools
Platform open source project with LANL and other partners, and the creation of a framework
for measuring development productivity.

• As Senior Manager of Programming Technologies at IBM Research during 2000 – 2007,Sarkar
was responsible for initiating and overseeing research projects carried out by a department
with approximately 50 researchers working in the areas of Programming Models, Tools, and
Optimized Execution Environments. Systems).

• Sarkar led a 15-person team at IBM Research in development and open source release of Jikes
Research Virtual Machine in October 2001 (jikesrvm.org). Since its release, the open source
Jikes Research Virtual Machine has been used for research and teaching in 90+ universities
worldwide, and contributed to 27+ PhD dissertations and 155+ research publications. The
Jikes RVM dynamic optimizing compiler design built on his personal research in the areas of
Linear Scan register allocation, optimization of heap accesses using Array SSA form, BURS-
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based register-sensitive instruction selection, and Array Bounds Check elimination on Demand
(ABCD).

• Sarkar led a 10-person team during 1991–1994 in the design and implementation of ASTI,
IBM’s first high-level product optimizer component. ASTI has been used in the XL Fortran
product compilers since 1996 for loop and data transformations for locality and parallelism,
and for efficient conversion of array statements to scalar code.

Since his arrival at Rice University in 2007, Sarkar has created the Habanero Multicore Software
project at Rice University which spans the areas of programming languages, optimizing and paral-
lelizing compilers, virtual machines, and concurrency libraries for homogeneous and heterogeneous
multicore processors. He is the PI (with Prof. Gao as co-PI) on a recently awarded NSF grant CCF-
0833166 in the HECURA program for three years starting September 2008. The work under way in
this grant is focused on Programming Models, Compilers, and Runtimes for High-End Computing
on Manycore Processors, which addresses a different and complementary research area from the
storage system research in this proposal. However, a connection between NSF grant CCF-0833166
and this proposal is that the Habanero-C language being developed in that grant is related to the
Habanero-Java language which is one of three programming models being explored in this proposal
as interfaces to our proposed Fresh Breeze storage system.

Professor Jack Dennis is the Principal investigator of two recent NSF awards to the MIT
Computer Science and Artificial Intelligence Laboratory:

• NSF Award 05-09386: September 1, 2005 to August 31, 2008: $250,000, CSR-AES: Multi-
processor Chip for Modular Software, Jack B. Dennis, Principal Investigator.

• NSF Award 07-19753: September 1, 2007 to August 31, 2010: $420,000, CSR-AES: User
Support Software for a Fresh Breeze Computer System, Jack B. Dennis, Principal Investigator.

This funding is being used to support Project Fresh Breeze, which aims to develop and evaluate a
multi-core chip architecture with the goal of supporting composable parallel programming, meaning
that any parallel program written to run on the chip may be used, without change as a component
of a larger parallel program. The programmability of multi-core chips is a serious issue that, in
our view, stems from inadequacies of existing core and chip architectures that fail to recognize
opportunities for a basic rethinking of the relation between hardware and software. With current
hardware designs it is close to impossible to use a software component that makes use of parallel
computing as a module in a larger parallel program. A redesign of the overall computation is
usually required.

A vision of an architecture that promises to realize the goal of composability of parallel programs
was put forward in [24] and presented in greater detail in [21]. Under the first NSF Grant, the
conceptual architecture was developed into a concrete design and a cycle-accurate simulator was
written in Java to test and evaluate concepts of the envisioned Fresh Breeze chip. The simulator
has been used to verify the design of a SMT core processor by running several simple test problems.
All components of the chip architecture have been made concrete by writing their descriptions as
Java simulation models. The results have yielded several iterations of the design from revelations
in the process of filling in design details. An important contribution to the project has been a
graphical user interface (GUI) for the simulator, developed by a team of undergraduates. The GUI
has proven a very useful tool for testing the simulator and running experiments.

The proposed research on the envisioned Storage System and its use in support of several
parallel programming models is a natural extension of this work at MIT-CSAIL. In fact the use
of tree structures as a universal model for data in computer systems has been advocated by Prof.
Dennis since 1968 [19], and was part of the data flow programming model presented in 1974 [16].

Professor Guang R. Gao has a long track record working on HEC systems: from computer
architecture, system software (from programming models, compilers, down to runtime and tools),

13



multi threading models, and applications. Gao has been elected as both ACM and IEEE Fellows in
2007, and cited “for contributions to architecture and compiler technology of parallel computers”.

• Guang Gao is the PI for Award No. 0708856 ($50,000), “CRI: Planning a Research Compiler
Infrastructure Based on Open64.” (8/1/07 - 7/31/08) This collaborative project lays the
groundwork for building, deploying, and demonstrating the usage of a robust and extensible
parallelizing/optimizing compiler and runtime software infrastructure (mainly for high-end
computing), facilitating the preparation of a future community resource for a variety of
computer science research. The project extends work based on the Open64 compiler suite, a
robust, industry quality, state-of-the-art optimizing and parallelizing compiler that permits
end-to-end experimentation and compiler research at all levels, including advanced computer
architectures, parallel programming languages, compiler/runtime software, system software,
application development, performance modeling/tuning, as well as grid computing. The work
involves assessing the needs of other groups to address the challenges posed by increasingly
complex programming paradigms and architectures.

• Gao is also the PI for Award No. 720531 ($80,000), “CSR-AES: Optimizations for Optimistic
Parallelization Systems.” (8/1/07- 7/31/08) This project is focused on the exploitation
of a particular kind of data parallelism in irregular applications that arises from the use
of unordered and ordered work-lists. Optimistic parallelization is the key mechanism for
obtaining parallelism in such applications. A runtime system is used to manage the optimistic
parallelism, and compiler analysis are used to optimize parallel execution. programs are
further optimized using dynamic code specialization as the program executes. To investigate
the scalability of this approach, the project uses multi-core hardware prototypes based on
field-programmable gate-arrays. If successful, the project will go a long way toward solving
the pressing problem of writing software for multi-core processors.

• Gao is also the PI for Award No. 0702244 ($299,999), “A High Throughput Massive I/O
Storage Hierarchy for PETA-scale High-end Architectures.” (5/01/07 - 4/30/10). This
research is aimed at addressing both the limited bandwidth and the performance of today’s
I/O storage systems. The main idea is to replace traditional rotary disks with a ’memory pool’
- a massive grid of solid-state (flash) memories, and to introduce a new memory hierarchy
model based on the improved access time and bandwidth of such grid. We aim to develop of a
novel I/O architecture model for a class of high-end petascale computing systems; develop of
a corresponding RAS model; and perform an experimental study on the new I/O architecture
and software model developed herein.

11 Broader Impact

The impact of the proposed work is hard to overstate. The demonstration of a new approach to
storage systems can pave the way for novel technologies to address the bandwidth crisis facing
future HEC applications. This research will be carried out as a collaborative effort among Rice
University, MIT, and the University of Delaware. The broader impact of this project includes the
integration of research and education; we shall expose the new concepts and research results from
this project to graduate students and upper-division undergraduate students through new courses
on modern approaches to HEC software. The teaching materials that result from these courses will
also be used in external workshops and tutorials, and made available to other educators through
the Connexions system at Rice so as to help train a new generation of researchers and students in
our proposed approach to storage systems. Further, advances in HEC storage systems will have
a broader scientific and societal impact on all domains that depend on high end computing. We
will also leverage our contacts with government labs and industry to encourage adoption of the
fundamental technologies in future commercial offerings.

The research proposed in this team proposal will impact all graduate students and postdoctoral
researchers affiliated with current and future projects in the research groups led by Dennis, Gao and
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Sarkar, since the proposed storage system and its accompanying programming model, compiler and
runtime will enable research for follow-on parallel software and hardware. We will also disseminate
research results through the standard academic venues (publication in journals and conferences,
conference tutorials, web sites, external talks). We will also apply for REU grants to involve
undergraduate students in the proposed research projects.

Sarkar’s team is part of the compiler group at Rice University which has a history of success
in Education, Outreach, and Training programs to build on. These efforts have included programs
for undergraduate and graduate students, training programs for K-12 teachers and students, and
programs aimed specifically at increasing the number of women and minority students in the
computational sciences. We will take on efforts that address both graduate and undergraduate
education, with special attention to the needs of underrepresented groups. We will expand the
existing AGEP (Alliance for Graduate Education and the Professoriate) program at Rice University.
In the AGEP program, women and underrepresented minority undergraduate students from various
US universities come to Rice for a summer research experience with established faculty. In 2008
Summer at Rice, Sarkar personally supervised two minority women undergraduate students who had
only completed their freshman year in college (one from Johnson C. Smith University and one from
Case Western Reserve University) through the AGEP program. A paper on their summer research
was presented at the Richard Tapia Celebration of Diversity 2009 Conference. Following this trend,
we will use our undergraduate student funding to support two AGEP interns in each summer during
the course of this proposed project. Because graduate education is one of the most important and
effective ways for a research effort to create long-term impacts, it will be a special emphasis in our
project. Producing Ph.D.’s from underrepresented groups is a particular priority. Sarkar’s first PhD
student after arriving at Rice was an African-American student who graduated in September 2008.
(While at IBM, Sarkar supervised multiple women and minority graduate student interns, and also
participated in the 2007 CRA-W Programming Languages summer school.) Finally, we propose
to fund travel for women and underrepresented minority undergraduate and graduate students
to attend the biannual Grace Hopper and Richard Tapia conferences. Doing so will enhance the
students’ knowledge, reputations, and contacts as they pursue their careers in computer science.

Finally, we will leverage our research groups’ contacts with industry to influence the design of
future product compilers and multicore processors based on the results of this research. We will
work with leading HEC vendors to move these technologies into their systems. The PIs have a long
history of designing algorithms that are adopted by industry. We understand both the technical and
organizational constraints that often prevent academic developments from appearing in commercial
products and will work to mitigate those issues.

12 Management Plan

The work of this proposal will build upon extensive prior work in compiler, languages, runtime,
operating system and architecture research performed by the PIs, whose areas of research are
synergistic and complementary. All three PIs have significant management experience as outlined
below.

As Senior Manager of Programming Technologies at IBM Research during 2000 2007, Dr.
Sarkar was responsible for initiating and overseeing research projects carried out by a department
with approximately 50 researchers working in the areas of Programming Models (X10, XJ, Collage),
Tools (Eclipse Parallel Tools Platform, Advanced Re-factorings in Eclipse, Scalable And Flexible
Error detection, Security analysis, Scripting analysis, WALA), and Optimized Execution Environ-
ments (Jikes RVM, Metronome, Progressive Deployment Systems). Since joining Rice University in
July 2007, Sarkar leads a group of approximately 15 researchers working on the Habanero Multicore
Software Research project and related efforts.

Professor Dennis founded the Computation Structures Group within the Laboratory for Com-
puter Science at MIT in 1964 and supervised research sponsored by DARPA, NSF, NASA, and
DOE, leading to completion of 27 doctoral theses on both theoretical and practical topics relating
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to many aspects of computer system operation. His work developed principles of the novel virtual
memory system of the Multics computer system [8], and he is widely known for seminal work on
data flow models of computation and their application to computer architecture.

Professor Gao has extensive experience in managing large research groups. Under his direction,
the Computer Architecture and Parallel Systems Lab (CAPSL) has produced solid research work
in several areas, including architecture, system software, and compilers/run-time systems. CAPSL
has been the gate keeper of Open64 and uses Open64 as a research code base to develop both paral-
lelization and optimization technology for a number of target architectures from superscalar/VLIW
architectures to parallel multi-threaded architectures.

We will decompose the proposed research into tasks focused on the design and implementation
of the storage system, programming models, compilers, and runtime systems. Many of these tasks
will be pursued concurrently and collaboratively. Though all PIs will be closely involved in all
aspects of the project, it is expected that some tasks will be led by specific PIs with extensive
consultations and discussions among all three teams. Figure 2 outlines the proposed division of
responsibility among the three teams. In particular, the declarative programming model based on
FunJava will be led by MIT, the strongly-typed imperative programming model based on X10 will
be led by Rice, and the weakly-typed runtime interface based on TNT will be led by Delaware.
Within the compiler, the DFIR implementation will be led by MIT and the PIR implementation
will be led by Rice. The implementation of the experimental testbed will be led by Delaware.
The software-hardware co-design of the runtime system and the storage system will be performed
collaboratively by all three teams.

12.1 Mentoring of Postdoctoral Researchers

The Rice University budget includes support for a postdoctoral researcher, and the PI, Sarkar,
has significant experience with mentoring postdoctoral researchers. While at IBM (prior to July
2007), Sarkar mentored two postdoctoral researchers, Igor Peshansky and Mandana Vaziri, both
of whom obtained permanent positions in IBM Research. At Rice University, Sarkar currently has
three postdoctoral researchers in his group — Jun Shirako, Yonghong Yan, and Jisheng Zhao. The
mentoring activities include weekly one-on-one meetings with each of them, guidance in improving
teaching and presentation skills by having them give technical presentations to the entire research
group, experience in research supervision by assigning to each of them at least one graduate or
undergraduate student whom they co-supervise, co-authoring of research papers with postdoctoral
researchers as the lead authors [52, 53, 54, 55, 61], training in research ethics in experimental results
and research writing for publications, career counseling, and exposure to career opportunities by
inclusion in Sarkar’s meetings and conference calls with sponsors and collaborators in industry and
academia.
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