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Abstract. Computational requirements for solving models of financial
derivatives, for example, the option pricing problems, are huge and de-
mand efficient algorithms and high performance computing capabilities.
This demand has been rekindled by the recent developments in the mo-
bile technology making wireless trading a possibility. In this paper, we
focus on the development of a Monte-Carlo algorithm on a modern multi-
core chip architecture, Cyclops-64 (C64) under development at IBM as
the experimental platform for our study in pricing options. The timing
results on C64 show that various sets of simulations could be done in
a real-time fashion while yielding high performance/price improvement
over traditional microprocessors for finance applications.

1 Introduction

Research in financial derivatives is one of the important areas of computational
finance. Finance models used for evaluation and forecasting purposes to help
the investor with the selection process typically lead to large dynamic, nonlinear
problems that have to be solved in a short time span to beat the competitors
in the market place. The computational requirements for solving such financial
models are huge and demand efficient algorithms and high performance comput-
ing capabilities [I].

In our study, we focus on development of a Monte-Carlo algorithm with
historic volatility and GARCH (Generalized Auto Regression Conditional Het-
eroskedasticity) fitted volatility to price options accurately on Cyclops 64 (C64),
a modern many-core-on-a-chip architecture. The purpose is to facilitate pricing
of options in a real time fashion. Moreover, our earlier studies using Monte-Carlo
technique for the option pricing problem on distributed architectures yielded re-
sults [2I3] that are not amenable for real-time implementation, an important
requirement for current day trading scenario.
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This is a first and preliminary study in option pricing on a many-core-on-a-
chip architecture. This study opens up many more studies and has many impli-
cations: (i) this could be a fore-runner for futuristic embedded architectures such
as mobile devices where the current chip technology could be replaced by a CMP
(Chip Multi Processor); (ii) wireless trading is becoming a reality in the recent
past [4J56] and the current work could become a fore-runner for real-time wire-
less trading; (iii) experience from the current study encourages us to look into
other computing techniques popularly used in finance, for example, binomial lat-
tice and finite-differencing technique for implementation on many-core-on-a-chip
architecture to enable real time trading.

1.1 Background and Related Work in Option Pricing

A Call Option [7] is a contract that gives the right to its holder (i.e. buyer)
without creating an obligation, to buy a pre-specified underlying asset at a pre-
determined price (strike price). Usually this right is created for a specific time
period (maturity date), e.g. six months. A Put Option gives to its holder the
right to sell. If the option can be exercised only at its expiration/maturity date
(i.e. the underlying asset can be sold only at the end of the life of the option),
the option is referred to as an European style Call/Put Option (or European
Call/Put). If it can be exercised on any date before its maturity, then the option
is referred to as an American style Call/Put Option (or American Call/Put).

Black and Scholes [8] proposed a model to price option, which has become
a classical and celebrated model for pricing options. This model is basically a
stochastic partial differential equation with option price as the unknown and
underlying asset price and the time being dependent variables together with
various parameters such as volatility of the asset price, expiration date, strike
price and interest rate. In the current study future asset prices are generated
with random number generated in the Monte-Carlo (MC) simulation and volatil-
ity is generated by two methods: historic volatility (based on the past changes
in the asset price) and GARCH fitted volatility. Clark [9] and Thulasiram et
al. [I0] developed parallel algorithm for the binomial lattice approach [I1] to
price options. Use of fast Fourier transform (FFT) technique for option pricing
was introduced by Carr and Madan [12]. Extending this model, Barua et al. [13]
have developed an efficient parallel algorithm to enable quicker and accurate
pricing of options by introducing data swapping technique in FFT. Mayo [14]
evaluated American options using the implicit finite-difference method giving a
fourth order accuracy in the log of the asset price and second order accuracy in
time. Thulasiram et al. [I5] designed a second order L stable algorithm for the
pricing problem which achieves the same error bound as that of the traditional
Crank-Nicholson scheme, while at the same time assures that the error will not
propagate. Srinivasan [16] used the quasi MC simulation technique for option
pricing while Rahmail et al. [2] used the traditional MC simulation to study the
effect of incorrect volatility for underlying assets on option pricing errors.

MC simulation is a forward-based procedure. Option pricing via MC can be
divided into three basic steps: (1) simulate the stochastic process underlying



Exploring Financial Applications on Many-Core-on-a-Chip Architecture 223

stock returns, where each realization is a sample path; (2) evaluate the value of
the option in a backward manner in order to find the early exercise point and
obtain a sample point estimate; and, (3) average over multiple sample estimates
to form an interval estimate that includes some measure of precision (e.g., stan-
dard error). Obviously, the existence of the precision measure is an advantage of
MC over other numerical methods.

In this study, we explore the possibility of expediting the MC simulation using
a many-core-on-a-chip architecture in the hope that future hand-held devices will
be embedded with CMP architectures and hence achieving parallelism on such
devices.

2 Cyclops-64 Architecture

The Cyclops64 (C64), based on a cellular architecture, is a Many Core System
on Chip (SoC) petaflops supercomputer (see Figure [I) project under develop-
ment at IBM T.J. Watson Laboratory. C64 system consists of 13,824 C64 chip,
connected by a 3D mesh network. The C64 chip architecture (Figure2]) consists
of 160 hardware thread units, half as many floating point units, same amount
embedded SRAM memory banks, an interface to off-chip DDR SDRAM memory,
and bidirectional inter-chip connection ports on a single silicon chip. Each of the
80 processors have two thread units, a floating point unit, and two SRAM mem-
ory banks of approximately 32KB each. Five processors share a 32KB instruction
cache. Instead of data cache, a portion of each thread unit’s corresponding on-
chip SRAM bank is configured as the scratchpad memory (SP). Therefore, a
thread unit can achieve fast access to its own SP, i.e., one cycle for a store,
and two cycles for a load. The remaining sections of all on-chip SRAM banks
together form the global memory that is uniformly addressable from all thread
units. The C64 also employs the Network-on-Chip (NoC) concept, all on-chip
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resources are connected to a 96 ports on-chip crossbar network, which provides
a 4GB/s bandwidth per port per direction, 384 GB/s per direction in total. This
huge bandwidth sustains all the intra-chip traffic communication.

3 Experimental Results

3.1 Monte Carlo Experiment Design

In the Black-Scholes option pricing model volatility is not observable. In the ex-
periments we consider the following: (a) use of historical volatility of continuously
compounded stock returns; (b) use of GARCH-fitted volatility of continuously
compounded returns.

During the experiments we generated stock price series under the assumption
that prices follow a random walk with drift. We generated increments using the
normal probability distribution function. In various stages of the experiment
volatility of increments was: (i) Constant; (ii) Decreasing; (iii) Increasing; (iv)
Stochastic; (v) Decreasing and stochastic; and, (vi) Increasing and stochastic.

Using the generated volatilities o; and a pseudo-random number generator, we
generate stock price series that follow the geometric Brownian motion process:

InSy =~ +d6lnS;_1 + 1y (1)

where « is the drift in the stock price, o is the variance rate (volatility) of the
stock price, In equation [Tl we have v > 0 to make sure that prices do not fall
below zero and that the increment is normally distributed:

v =~ N(0,07) (2)

We assumed the continuously compounded interest rate of 5% and the flat and
deterministic yield curve, as it is assumed in the Black-Scholes model. Expiration
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date was set at 3 months from the starting point (time t¢), and strike price was
varyied from 5 to 105 with the step size of 20. The starting prices Py in all
cases were $5.00. Using these parameters, we calculated call prices for the non-
dividend paying stocks for each point in time ¢ using all inputs as known. The
formula used in calculations is the classical option pricing formula (see [7]). Next,
we calculated option prices with all the same inputs but measured volatility.

In the first run of the experiment we estimated conditional volatilities and
used them in the option pricing formula. In the second run of the experiment we
estimated historical and GARCH-fitted volatilities of continuously compounded
stock returns [L7]. After calculating option prices (CTFU¥) using known data and
option prices using observable and measured data (CMFASURED) ‘we calculated
the option pricing error F in the following way:

E = CMEASURED _ CTRUE (3)

This would give us a dollar estimate of the error in case of using an improper
measure of volatility in the Black-Scholes option pricing formula.

The experimental results on C64 have both the pricing and performance re-
sults. We describe our experimental design for the current study to compute the
option values under two volatility criteria and the errors resulting from their use
for computing the option values. On a AMD-K7-II processor, with 6 possible
exercise prices, 6 patterns of volatility, and 1000 data points, one run of the
experiment using the E-Views statistical package for only 20 iterations took 4
hours and 45 minutes.

Figure [ depicts one of the many sets of pricing errors that results from the
experimental study. This graph shows, which of the data generating processes
creates larger errors when we use GARCH-fitted volatility of continuously com-
pounded returns. The x-axis in all these figures corresponds to the strike prices
ranging from $5 -$105 and the y-axis corresponds to the option pricing errors:
-0.004 to 0.003 in figBl (a); -0.05 to 0.03 in figBl(b); -0.06 to 0.01 in fig[3 (c); -0.04
to 0.04 in fig Bl (d); -20.0 to 140.0 in fig B (e); -0.20 to 0.06 in fig Bl (f).

Figure [B] (a) corresponds to constant volatility, Figure [ (b) corresponds to
decreasing volatility, Figure B (¢) corresponds to increasing volatility, Figure
(d) corresponds to stochastic volatility, Figure [3 (e) corresponds to decreasing
and stochastic volatility, Figure [3] (f) corresponds to increasing and stochastic
volatility. The six legends below each of these figures identify the prices starting
from $5 to $105 in steps of $20 for respective figures.

During the experiments the drift component of the stock price is $0.006t,
where t stands for the number of days. Therefore, we are able to plot call pric-
ing error against various exercise prices and unconditional expectations of stock
prices (E[S:] = 0.006 x t). In this part of the experiment, GARCH model is
estimated for the sample size k with the mean equation that regresses contin-
uously compounded returns on a constant. We generate fitted volatility and
record the last value hj. This is our input into the Black-Scholes formula for
calculating the measured call price, C,i” BASURED Next, we add one more data
point to the stock price series, estimate the GARCH model for the sample of
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Fig. 3. Option pricing errors for stock prices generated using various patterns of volatil-
ity, average across series. GARCH-fitted volatility estimates based on continuously
compounded returns are used to generate option prices.

k + 1 observations, and use hiy1 to calculate C,]C‘i?ASURED. Using this process,
we generate the time series of measured call prices CMEASURED,

As we can infer from Figure[3] in some cases (for example, cases b and e) option
pricing errors grow with higher sample size. This can be attributed to the non-
stationarity of option prices: as sample size increases, sample volatility of data
approaches infinity. Therefore, we get upward-biased estimates for the volatility
of stock prices. The comparative statistics of Black-Scholes model show that call
price increases when stock price volatility increases. Therefore, upward-biased
estimates of stock prices result in upward-biased estimates of option prices. This
situation could result in a false belief that there exists a Put-Call-Parity arbitrage
strategy based on erroneously calculated call prices. In case of constant and
stochastic volatility of prices (Fig. Bl (a and d)) the situation is not as clear.
Option pricing errors seem to be fluctuating around zero on the average.

In the following subsection, we demonstrate the performance results of running
the simulation on the C64 architecture.

3.2 Monte Carlo Simulation on C64

The performance of the Monte Carlo algorithm on C64 is compared to differ-
ent representative off-the-shelf processors: AMD Opteron 250, Intel Centrino,
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and Intel Pentium 4. The basic configurations of those processors are shown
in Table [l The computation conducted on C64 is simulated with the FAST
simulator [I§], which is a functionally accurate simulation tool set for the C64
cellular architecture. The parameter setting for 4 different simulations is shown
in Table 2

Table 1. Processor Configurations

Processor Clock Cache off-chip Compiler
Rate ‘ ‘ Memory ‘
Cyclops-64 500MHz| No data cache |1GB DRAM| gcc-3.2.3
Thread Unit 5MB on-chip for C64
SRAM memory

AMD Opteron | 2.4GHz | 1IMB L2 cache 3GB gce-3.2.3
for x86_64

Intel Centrino [1.86GHz| 2MB L2 cache 512MB gce-3.3.6

Intel Pentium4| 3.2GHz [512KB L2 cache 1GB gce-3.4.3

Table 2. Parameters for Monte Carlo Simulation

[Parameter[begprice[step[variety[ARSIZE]

sim-1 5 20 6 1000
sim-2 5 40 8 1000
sim-3 5 40 8 2000
sim-4 5 100 10 5000

For C64, a portion of each SRAM bank can be configured as the scratchpad
memory (16KB, in this case), which guarantees fast and predictable access la-
tency for the corresponding owner thread unit. For the Monte Carlo simulation,
we carefully design the code, such that the intermediate results of the computa-
tion can completely fit into a thread unit’s scratchpad memory. Only the latest
it" simulation results were stored on-chip for the next (i+1)*" simulation. The
previous 1, ...... , © — 1 results were stored off-chip.

We performed on average ten runs on each of the machine and obtained the
execution times as shown in Figure [4] for the simulation parameters chosen in
Table 2], where begprice is the beginning price of the simulation, step is the step
size on price, variety is the number of volatility patterns, and ARSIZFE is the
number of data points in each simulation.

In the Monte Carlo simulation all the thread units can work independently
during the simulation. Since all the intermediate data needed for a thread unit’s
computation can fit into its own scratchpad memory, there is no runtime compe-
tition and conflict for shared resources, such as global on-chip memory. Through
calculations for all four groups of simulations, for the Monte Carlo option pricing
simulation, we can conclude that 1 C64 node delivers the performance equiva-
lent to 18 Opteron 250 CPU, 32 Intel Centrino CPU, and 28 Intel P4 3.2GHz
CPU. The approximate price for a C64 node would be quite similar to machines
built with those CPUs compared. The speedup of the parallel version can in-
crease linearly with the number of threads used (this is also demonstrated with
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Fig. 4. Execution Time of Monte Carlo Simulation

the simulation). Therefore, the C64 delivers huge performance/price improve-
ment over traditional microprocessors for computational finance applications.
Moreover, for the Monte Carlo simulation, since all data fits into the scratch-
pad memory, all the computation is performed locally for each thread units and
the power on the very long wires going to and from the crossbar is saved. In
such a situation, the power consumption of a C64 node is lower than or close to
machine built with conventional microprocessor. Given a C64 node delivers tens
of times performance, the C64’s performance/power consumption ratio is much
higher compared to other microprocessors. Unlike a traditional microprocessor,
which dies if any parts on the chip is broken, the C64 chip can still be in working
condition, even if one or more thread units/memory banks fail.

4 Conclusions

The current work is a first attempt to study (option pricing using Monte-Carlo
simulation). We showed that the use of incorrect volatility of the asset prices in
the Black-Scholes model would result in moderate to large errors in option prices.
We conclude that 1 C64 node delivers the performance equivalent to 18 Opteron
250 CPU, 32 Intel Centrino CPU, and 28 Intel P4 3.2GHz CPU. This translates
to high performance/price and performance/power consumption improvement
over traditional microprocessors for computational finance applications.
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