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Abstract. Power consumption and energy efficiency have become a ma-
jor bottleneck in the design of new systems for high performance com-
puting. The path to exa-scale computing requires new strategies that
decrease the energy consumption of modern many-core architectures
without sacrificing scalability or performance. The development of these
strategies demands the use of scalable models for energy consumption
and the reorientation of optimization techniques to focus on energy effi-
ciency, evaluating their trade-offs with respect to performance.

In this paper, we investigate several optimization techniques to reduce
the energy consumption on many-core architectures with a software-
managed memory hierarchy. We study the impact of these techniques
on the Static Energy and the Dynamic Energy of the LU factorization
benchmark using a scalable energy consumption model. The main con-
tributions of this paper are: (1) The modeling and analysis of energy
consumption and energy efficiency for LU factorization; (2) the study
and design of instruction-level and task-level optimizations for the re-
duction of the Static and Dynamic Energy; (3) the design and imple-
mentation of an energy aware tiling that decreases the Dynamic Energy
of power hungry instructions in the LU factorization benchmark; and
(4) the experimental evaluation of the scalability and improvement in
terms of energy consumption and power efficiency of the proposed opti-
mizations using the IBM Cyclops-64 many-core architecture. We study
the trade-offs between performance and power efficiency for the proposed
optimizations. Our results for the LU factorization benchmark, using 156
hardware thread units, show an improvement in power efficiency between
1.68X and 4.87X for different matrix sizes. In addition, we point out ex-
amples of optimizations that scale in performance but not necessarily in
power efficiency.

1 Introduction

The many-core revolution brought forward by recent advances in computer ar-
chitecture has made feasible the integration of hundreds of processing elements
on a single chip. With these new architectures, several challenges have arisen.
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Major efforts and progress have been made in order to achieve high perfor-
mance on these many-core chips. In particular, optimizations have been devel-
oped to improve the number of Floating Point Operations per Second. However,
recent developments have shifted the focus to other constraints [1]. The design of
the new generation of exa-scale supercomputers is restricted by power require-
ments [2,3]. As a result, Energy efficiency and power consumption have become
an imperative.

Energy efficiency is limited by many factors. From the point of view of semi-
conductor manufacturing processes, the integration of hundreds of independent
processors on a single chip within a given area results in an increase in temper-
ature and leakage current. This, in turn, results in more energy and transistors
dedicated toward cooling and a deep rethinking of traditional architectures. A
feasible alternative is a many-core with a software-managed memory hierarchy
where the programmer controls data movement. This can free area previously
used for cache controllers and over-sized caches while providing more oppor-
tunities to improve performance and energy efficiency at the cost of a higher
complexity with respect to programmability.

An interesting case study is the IBM Cyclops-64 many-core architecture [4]
with 160 Thread Units able to run independent pieces of code and a software
managed memory hierarchy. Extensive studies on performance for the Cyclops-
64 have been performed in the past [5-7|, energy efficiency has only recently
been studied with early efforts resulting in a scalable energy consumption model
for Cyclops-64 [8]. A deep understanding of this model can allow for the design
of specific optimizations to decrease energy consumption.

In this paper, we study and implement several techniques to target energy ef-
ficiency on many-core architectures with software managed memory hierarchies.
We study the impact of these techniques on the Static Energy and the Dynamic
Energy of LU factorization using a scalable energy consumption model described
by Garcia et. al. [8]. The main contributions of this paper are: First, the modeling
and analysis of energy consumption and energy efficiency for LU factorization;
second, the study and design of instruction-level and task-level optimizations
for the reduction of Static and Dynamic energy; third, the design and imple-
mentation of an energy aware tiling for the LU factorization benchmark; and
fourth, the experimental evaluation of the scalability and improvement in en-
ergy consumption and energy efficiency of the proposed optimizations using the
IBM Cyclops-64 many-core. The proposed optimizations for energy efficiency
increase the power efficiency of the LU factorization benchmark by 1.68X to
4.87X, depending on the problem size, with respect to a highly optimized ver-
sion designed for performance.

The rest of this paper is organized as follows. In Section 2, we discuss the
Cyclops-64 architecture, the energy consumption model used and the basics of
a parallel LU factorization algorithm. In Section 3, we study the impact of sev-
eral optimizations in the Static and Dynamic Energy. In Section 4, we present
the experimental evaluation of the proposed optimizations. Section 5 examines
related work. Finally, we conclude and present future work in Section 6.
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2 Background

2.1 A many-core Architecture: The IBM Cyclops-64

The IBM Cyclops-64 (C64) is a homogeneous many-core architecture designed
by IBM for High Performance Computing. A C64 chip consists of 160 single-
issue Thread Units (TUs) running at 500 MHz (see Figure la). A pair of TUs
share a single 64-bit Floating-Point Unit (FPU). An FPU can execute a floating-
point Multiply and Add instruction in one cycle, for a total performance of
80 GFLOPS. C64 features a three-level software-managed memory hierarchy
(completely visible to the programmer) instead of a hardware and automatic
data cache. This hierarchy consists of an On-Chip Scratch-Pad Memory Level
(SP), an On-Chip Global SRAM Memory Level (GM), and an External DRAM
Memory Level. Each TU has a 32KB memory bank, with half of that assigned,
by default, as its SP. The SP can be accessed with low latency by the TU
that owns it. The remaining halves of all 160 TUs banks form the GM with an
approximate size of 2.5MB that is available to all the TUs. The External DRAM
Memory has a size of 1GB divided into 4 memory banks and connected to the
C64 chip through a crossbar network. Figure 1b presents the sizes, latencies, and
bandwidth of each level of the Memory Hierarchy.

A C64 processing node needs a 1.2V regulated power supply for the C64 chip
and a 1.8V regulated power supply for the external DRAM and other glue logic.

2.2 Energy Consumption model

The model proposed by Garcia et al. is a conceptually simple model that allows
scalability with high accuracy for the estimation of energy consumption [8]. This
is accomplished by dividing energy consumption into two components: Static
Energy and Dynamic Energy. The total energy consumed by a program, A, with
K different types of instructions, I, can be expressed as:

K
Er(A) = E,(t) +ZEd (Z;) (1)
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Table 1: Energy Coefficients e

[ Instruction [e[pJ/Operation][[ Instruction [e[pJ/Operation]|
load dram 48924.10 store dram 51488.99

load sram 964.65 store sram 548.31
double mult. and add 245.27|| double add 178.30
double mult. 210.15|| integer mult. 225.43
integer add 127.65 and 126.69
move 105.48||load inmediate 86.01

Static Energy, Es, is the sum total of energy lost due to leakage currents in
addition to the energy consumed by hardware units that operate continuously
and consume energy even when the system as a whole is idle (e.g. the clock). Ej
is proportional to the execution time ¢, and an architecture dependent coefficient
€0.

Dynamic Energy, Eg, is the energy consumed during the execution of an in-
struction, minus the leakage component. This is related to the power consump-
tion of all active transistors, registers, and logic. E, is a function of the number
of executed instructions of each type I; and its energy coefficient associated e;.

This model has been successfully tested on the Cyclops-64 chip. For this
particular architecture, the static coefficient is ey = 63.11W and a representative
subset of Dynamic Energy coefficients can be found in Table 1. A more detailed
explanation of the model can be found in Garcia et al. publication [8].

2.3 LU Factorization

The LU factorization is a matrix factorization which represents the product of
two matrices; a lower triangular matrix, L, and an upper triangular matrix, U.
This algorithm is often used in linear systems in order to solve linear equations.
Assuming A to be a square matrix, it can be represented as A = L x U. This
type of LU factorization is called without pivoting and is the one presented in
this document. An LU factorization with pivoting performs a permutation of the
rows or columns of the matrix A using one of several strategies such as Partial
Pivoting, Partial Scaled Pivoting, Total Pivoting, or Total Scaled Pivoting. A
comprehensive study of different pivoting strategies for LU factorization can be
found in [9].

Because the LU factorization is a well studied algorithm, there are many
variations such as the Linpack benchmark [10], High Performance Linpack (a
parallel version of Linpack) [11], and the SPLASH-2 suite [12].

The classical approach for parallel LU factorization in cache-based systems
uses fixed-size blocks that fit into cache to distribute the workload among threads.
As shown in Figure 2, in the first step of the algorithm the matrix A is divided
into one Diagonal block and several Column, Row, and Inner blocks. Each block
is assigned to one processing element, which further divides the block into tiles
in order to improve data reuse and locality. At this point, the Diagonal block
is computed individually by one processing element, followed by a concurrent
computation of the Column and Row blocks. Once all the Column and Row



Optimizing the LU Factorization for Energy Efficiency on a Many-Core 5

Classical Approach:
Fixed-Size Blocks

Sl » By

Step 2 Step 3
Dynamic
Repartitioning

Fig. 2: Progress in each step of LU Factorization

Diagonal Block

Column Block

Row Block

" pEn N

Inner Block

blocks have been computed, the Inner blocks are processed. In the second step
of the algorithm, the Imner blocks of the previous step are grouped again into
one Diagonal block and several Column, Row, and Inner blocks, which are com-
puted following the rules previously mentioned. This is repeated until there is
only one Inner block, which is processed as a Diagonal block in the last step.
The progression of steps following this classical approach is illustrated at the
top of Figure 2. As can be seen, the number of blocks (i.e. the number of tasks
assigned to the processing elements) decreases as the algorithm moves forward.
This is translated into an increasing number of processing elements becoming
idle, which lowers the performance of the application.

The Dynamic Repartitioning technique proposed by Venetis and Gao [13]
uses varying-size blocks in each step of the algorithm in order to optimize the
distribution of work among processing elements. As shown at the bottom of
Figure 2, the size of the blocks is calculated at the beginning of each iteration
of the LU factorization. This size is calculated as a function of the number of
processing elements, so each processing element has at least one assigned task
(i.e. one block to process). This optimization has been proved to increase the
overall performance up to 2.8X in systems with a software managed memory
hierarchy [13].

3 Energy Optimizations

In this section we will study the impact of several optimizations on the energy
consumption of the LU factorization algorithm targeting systems with software
managed memory hierarchy such as C64. The impact of these optimizations can
affect the two sources of energy consumption described in Section 2.2: Static
Energy Es and Dynamic Energy E,;. Our baseline implementation is the LU
factorization without pivoting by Venetis and Gao [13]. They used the Dynamic
Repartitioning technique described in Section 2.3 and implemented a carefully
designed register tiling. All their optimizations were targeting high performance.

While the increase in performance obtained by Venetis and Gao is reflected
in savings of Static Energy, this high performance LU implementation has some
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drawbacks from the Energy consumption point of view: First, its register tiling
focuses on increasing locality and it is not aware of the energy consumption
of each instruction. Second, the static distribution of work does not consider
the variance in completion time of processing similar tasks in presence of shared
resources such as memory, crossbar interconnections, and FPUs. And finally, the
hierarchical division into blocks and further into tiles, produces an increasing
amount of smaller tiles in the borders of each block, which can hurt not just the
performance but also the energy consumption.

3.1 Enmnergy Aware Tiling design

To reduce the Dynamic Energy consumption of the LU factorization, we will
focus on the instructions that contribute the most to it. Using the Energy con-
sumption model described in Section 2.2, we characterized the Dynamic Energy
of the LU Factorization implementation optimized for performance by Venetis
and Gao [13] using the traces generated during the simulation of the application
on a C64 architecture and a matrix of 840 x 840 allocated in on-chip memory.

Figure 3 shows how the Dynamic Energy of the LU factorization increases
with the number of processors. As can be seen, Loads and Stores on the on-
chip memory (SRAM) are the instructions with the largest contribution to the
Dynamic Energy; this contribution also increases with the number of processors.
On the other hand, the Energy of Floating point operations remains constant
and the contribution of integer, logical, and other memory operations is not
significant.

In order to minimize the Dynamic Energy E,; for a particular algorithm
A, we propose to minimize the energy contribution of the most power hungry
operations, in this case Loads LD and Stores ST with energy coefficients e; and
e2. The minimization is done on a set of possible tilings T' with parameters S
and L (e.g. shape and tile size). The optimization problem is shown in Eq.(2).
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min Fg (A, T)~ e;|LD|+ ey |ST|
T(L,S) (2)
subject to R(A,T) < Rmax, T is parallel

There are two constraints in the optimization problem: The registers used by
the tiling (R(A,T)) need to fit in the available registers R, and the tiling has
to allow parallel execution. The former avoids unnecessary energy consumption
produced by register spilling and the later prevents solutions with low perfor-
mance due to increasing execution time produced by inability to exploit task
parallelism.

In order to solve this problem for LU factorization, we analyze the energy
consumption of each type of block (Diagonal, Row, Column and Inner) with
sizes My x My, My x My, My x My and My x M; respectively. Each block
is assigned to a processor and further divided into tiles. There are 3 cases of
sequences to traverse the tiles (e.g. Sp, S1 and Ss) for each type of block. A
detailed explanation of the procedure to find the optimum tiling for the Inner
block and a summary of the results for the other type of blocks are presented in
the next paragraphs.

Inner Blocks: For the computation of an Inner block, a Row block and a
Column block are required. Row, Column and Inner blocks are divided into tiles
of Ly x Ly, L X Ly and Lo X Lq respectively. The three possible sequences of
traversing tiles reuse tiles on a different operand: The Row block (case Sp), the
Column block (case S1) and the Inner block (case Sz). The problem formulation
for the Dynamic Energy is shown in Eq. 3.

e MoMy (2 + H2 1) 4 2MMIL - g — g,

Lo 1
: _ M M ez Mo My M. 3 —

Le{LIor,I}:ri,Lz}, F(L,S) = JeriMoM (T + T +1) + S5pRs= if 5 =5

S€{50,51,52} er My My (52 + 3o 1) 4 eoMy My if S = S,

st. LoLi+ LoLs + Li1Ls < Ruax, Lo, L1,Lo € ZT
(3)

The the non-linear optimization problem was solved using the Karush Kuhn
Tucker conditions. We assumed all the variables being positive and M, M; and
M, being bigger or equal than Lo, L, and Lo. In addition, we used the fact that
My and Ms are equal to My or My + 1. We found that the best solution was to
reuse the Inner tile (case S3) with parameters Lo = 1, L1 = N and Ly = N,
with N2 4+ 2N < Rpax. In this case, an Inner block is computed by dividing it
into tiles of N x N elements and loading each Inner tile into the registers, which
act as accumulators for the partial results. Each partial result is calculated from
a pair composed of one tile of N x 1 elements of the corresponding Column block
and one tile of 1 X N elements of the corresponding Row block. The registers
used as accumulators are stored back into memory only when there are no more
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Fig. 4: Optimum Energy-Aware Tiling for an Inner Block

pairs of Column and Row tiles to process. An example of this process is shown
in Figure 4

Row Blocks: To compute a Row block, this is divided into tiles of N x N
elements (with N being the same as for the Inner block). The process followed
to compute each Row tile is similar to the one used for an Inner tile. The main
difference is that the computation of a Row tile requires tiles of N x 1 elements
of the corresponding Diagonal block and tiles of 1 x N elements that have been
previously processed in the current Row block. Each Row tile to be processed is
loaded into the registers, which are used as accumulators for the partial results
of the computation of each pair of Diagonal and Row tiles. These registers are
stored back into memory when there are no more pairs to process.

Column Blocks: To compute a Column block, this is also divided into tiles
of N x N elements. Each Column tile is computed using tiles of 1 x IV elements
of the corresponding Diagonal block and tiles of N x 1 elements that have been
previously processed in the current Column block. In order to minimize the
Dynamic Energy of loads and stores, each Column tile to be processed is firstly
loaded into registers. Then, these registers are used as accumulators for the
partial results computed for each pair of Diagonal and Column tiles. When there
are no more pairs to process, the content of the registers used as accumulators
is stored back into memory.

Diagonal Block: A Diagonal block can be seen as another matrix A’ that
needs to be LU-factorized. Consequently, the Diagonal block can be divided into
tiles of N x IV elements, labeled as Diagonal, Column, Row, and Inner tiles. They
can be latter processed following the same rules used in the computation of the
matrix A and the same traversing of tiles previously described for the Column,
Row, and Inner blocks.

3.2 Minimizing Static Energy using Pipelining

The design of specific tilings for energy consumption already targets Dynamic
Energy. However, the long latency of memory operations with respect to the la-
tency of arithmetic operations can produce stalls, where each processor is waiting
for data required for computation. This scenario becomes worse if hundreds of
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threads, starvation of shared resources and bandwidth limitations are considered.
This behavior can increase the Static Energy consumption due to increasing la-
tency produced by contention.

In order to successfully minimize the impact of Static Energy, further opti-
mizations were done to the implementation of the tilings described in Section 3.1.
Each for loop was software-pipelined and unrolled twice, using different registers
for each unrolled iteration if possible and sharing registers when necessary.

Following Figure 4, a for loop iteration computes a partial result for an Inner
tile of N x N elements using a Row tile of 1 x N elements and a Column tile
of N x 1 elements; the next iteration uses a different Row tile and a different
Column tile to compute the next cumulative partial result of the same Inner tile.
Consequently, a for loop that has been unrolled twice requires at least N2 +4N
registers. Since additional registers are required in the loop iterations for loop
control and pointers (a pointer for the Row tiles and a pointer for the Column
tiles; no pointer is necessary inside the loop for the Inner tile since this tile is
the same for all the iterations), some registers were shared between iterations in
order to decrease the requirement in the number of registers.

To diminish the impact of this register-sharing, the instructions of the loop
were later properly interleaved to ensure that memory-related instructions (i.e.
loads and stores) were already completed at the moment the registers involved in
such operations were used in a arithmetic instruction, decreasing the execution
time to directly impact the static energy.

3.3 Dynamic Task Scheduling for Energy Reduction

At this point, the fine-grain tasks have been optimized in order to decrease energy
consumption while using the performance-oriented Static scheduling proposed
by Venetis and Gao [13]|. Even though the Dynamic Repartition technique is
meant to perform an optimized distribution of work among processing elements,
it does not take into account the undesirable delays produced by the competition
of access to shared resources (e.g. competition for memory bandwidth on shared
memory). This results in variations in the completion time between tasks of
the same size. As a consequence, the energy consumption per task will not be
uniform. This variation will be most significant with fine-grained tasks, such as
the tiles described for LU factorization. In the end, a static distribution of limited
work, even for cases of very regular tasks, will result in scenarios where the
unbalanced distribution of work will have a negative impact on the Static Energy
consumption. In addition, division of blocks into tiles produces a set of smaller
border tiles per block that are suboptimal in terms of energy consumption.

In order to overcome these problems, a Dynamic Scheduling of tasks was
used in the LU factorization, using the tile as a unit of work assigned to each
processing element, instead of a block. First, the matrix is divided into tiles of
N x N elements, which are processed following the LU factorization algorithm,
that is, first the Diagonal tile, then all the Column and Row tiles, and finally
all the Inner tiles. However, in this case, the assignment of tiles is not made
statically (as in Venetis and Gao [13]) but in a first-come first-served basis: A
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tile is assigned to a processing element as soon as the processing element becomes
available (i.e. as soon as the processing element finishes the computation of the
previous assigned tile) and the tile dependencies are satisfied.

Dividing the matrix in tiles of NV x N leads to a significant amount of tasks,
which could increase the overhead of the implementation and reduce the data
reuse. Nevertheless, the Dynamic Scheduling of tasks has ultimately a positive
impact in the Static Energy consumption of the application since it ensures a
better workload balance by keeping the number of idle processors low. This is
ultimately translated in a reduction of the execution time of the application. In
addition to this, the overhead associated with Dynamic Scheduling is diminished
thanks to the support of in-memory atomic operations in the C64 [14]. Using an
in-memory atomic operation such as L A DD, a Dynamic Scheduler can be easily
implemented with a counter for the number of tasks. Every time a processor is
available, it asks for a new task and increments the counter. Since this increment
is performed atomically in memory, additional round trips are avoided increasing
the throughput of this counter.

To increase the data reuse with Dynamic Scheduling and to avoid that a
Diagonal tile of N x N becomes a bottleneck for the whole algorithm (since no
tile can be processed until that tile is computed), the size of the Diagonal tile
can be increased to bN x bN with b € N and b > 2, while the sizes of other tiles
remain as IV X N. This reduces by b the number of steps required to compute the
LU factorization. The use of a tile as a unit of work for the Dynamic Scheduling,
instead of a block, decreases significantly the number of suboptimal border tiles,
decreasing the Dynamic Energy too.

4 Experimental Evaluation

This section describes the experimental evaluation of the proposed optimizations
targeting energy consumption and power efficiency described in Section 3. We
have used the IBM C64 platform described in Section 2.1 and the energy estima-
tions using the model described in Section 2.2. All benchmarks were written in
C with hand-tuned assembly for the register tiling. Benchmarks were compiled
with ET International’s C64 C compiler with compilation flags -03. We ran all
of our experiments using FAST [15], a highly accurate C64 simulator.

We implemented several versions of LU factorization using on-chip shared
memory. The power-aware tiling proposed in Section 3.1 uses N = 6 given the
64 registers per Thread Unit (TU) available in Cyclops-64. Also, for the Dynamic
Task Scheduling described in Section 3.3, we used b = 2 so the Diagonal tile is
12 x 12. The Static Energy coeflicient ey was computed using measurements on
a real chip and the number of TUs used, having in mind that 4 additional TUs
are reserved: 1 for executing the runtime system and other 3 for managing the
communication with other chips using a 3D mesh.

Our first set of experiments uses a matrix of 840 x 840, the maximum size that
fit in on-chip memory. We study the scalability of Dynamic Energy (Figure 5a)
and Total Energy (Figure 5b) using different number of TUs. As expected, our
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Fig. 5: Scalability of Energy Consumption with the number of TUs

Energy Aware tiling decreases the Total Energy with respect to the baseline
version that uses Dynamic Repartitioning. This is also true for the Dynamic
Energy up to 128 TUs. The software pipelining do not significantly impact the
Dynamic Energy because the instructions executed are practically the same but
this technique decreases Total Energy because the total execution time and the
Static Energy decreases. In addition, we noticed that the Dynamic Energy con-
sumption of our Dynamic Task Scheduling does not vary with the number of
TUs. The reason is that the size of the basic unit of work, the tile, is function of
architectural parameters such as the number of registers but it is not function
of the number of TUs like the blocks used in Dynamic Repartitioning. Our ap-
proach using Dynamic Scheduling seems useful for decreasing dynamic energy
and total energy when the number of TUs surpasses 128. In addition, we noticed
that total energy and dynamic energy of the baseline implementation using 1 TU
are particularly high, compared with higher number of threads. The reason is
that the Diagonal register tiling used in the Diagonal block calculation is highly
inefficient compared with the other tilings; a serial execution computes an LU
Factorization as a single Diagonal block and exposing this fact.

We also study the impact of the optimizations proposed in terms of Power
Efficiency (the ratio between performance and power consumption) in order to
examine the trade offs between performance and power consumption. Figure 6a
shows the scalability of the Power Efficiency with respect to the matrix size using
the maximum number of TUs available, while Figure 6b shows the scalability of
the Power Efficiency with respect to the number of TUs for the biggest matrix
that fits on SRAM.

For different matrix sizes on Figure 6a, all the proposed optimizations in-
crease the power efficiency. The increase in power efficiency for the LU factoriza-
tion varies between 1.68X and 4.87X with respect to a highly optimized version
that targets performance (Our baseline that uses Dynamic Repartitioning). The
major returns of the techniques proposed are reached with small matrices. The
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optimization with the higher impact is the Dynamic Task Scheduling: between
1.2X and 3.5X to the power efficiency.

A careful comparison of the behavior between Power efficiency (Figure 6b)
and Performance (Figure 6¢) shows similarities when few threads are used. For
the baseline implementation, as well as for the Energy-aware tiling and the Soft-
ware Pipelining optimizations, the power efficiency drops after 128 TUs. This
is related to the fact that even though the execution time and Static Energy
decreases for an increasing number of TUs in all three implementations, the
Dynamic Energy increases because these optimizations schedule tasks based
on blocks. In contrast, the Power Efficiency of the Dynamic Task Scheduling
optimization increases properly with the number of TUs because this type of
scheduling does not only scales in terms of performance and Static Energy but
also because it keeps the Dynamic Energy constant with the number of TUs.

For the C64 architecture there is a big correlation between the performance
and the energy efficiency using few TUs given the high contribution of the static
energy to the total energy budget. However, this scenario changes when more
TUs are used. While all the techniques proposed improve the performance (as
seen in Figure 6¢), the power efficiency decreases after 64 TUs or 128 TUS for
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the Static scheduling techniques (as seen in Figure 6b). On the other hand, the
Dynamic Task scheduling scales in Performance and Power Efficiency.

5 Related Work

As previously mentioned, the modeling of and optimization for energy consump-
tion is a well researched topic. Many models focus on scheduling and are based
on the overall amount of work per unit time [16] or energy [17]. These approaches
yield a simplified model that is comparatively easy to use. However, the options
and optimizations are limited by the coarse-grained approach.

In contrast, fine-grain approaches [18], like our own, exchange complexity
for the potential optimizations that can be applied. Previous works utilized
highly accurate, but highly complex, techniques to reduce energy consumption
on uniprocessor architectures. These required precise information about the un-
derlying hardware and are based on a sturdy foundation of instruction scheduling
techniques [19]. This focus on the individual core worked well for uniprocessor
architectures but it is unclear how well it will scale for multi-cores. Additionally,
these models do not fit with the comparatively recent worldwide pursuit of energy
efficiency on multiprocessors: the development and analysis of hardware features
such as energy efficient off-chip memory and dynamic voltage selection [20].

6 Conclusions and Future Work

In this paper, we studied and implemented several optimizations to target en-
ergy efficiency on many-core architectures with software managed memory hi-
erarchies using LU factorization. Our starting point was a highly optimized LU
factorization designed for high performance [13]. We analyzed the impact of
these optimizations on the Static Energy E, Dynamic Energy E,;, Total Energy
E7 and Power Efficiency. To facilitate this, we used a scalable energy consump-
tion model [8]. We designed and applied further optimizations strategies at the
instruction-level and task-level to directly target the reduction of Static and
Dynamic Energy and indirectly increase the Power Efficiency. We designed and
implemented an energy aware tiling to decrease the Dynamic Energy. The tiling
proposed minimizes the energy contribution of the most power hungry instruc-
tions. Our experimental evaluation of the scalability and improvement in energy
consumption and energy efficiency of the proposed optimizations was made us-
ing the FAST simulator for the IBM Cyclops-64 many-core architecture. The
proposed optimizations for energy efficiency increase the power efficiency of the
LU factorization benchmark by 1.68X to 4.87X, depending on the problem size,
with respect to a highly optimized version designed for performance. In addi-
tion, we point out examples of optimizations that scale in performance but not
necessarily in power efficiency.

Future work includes the implementation and energy analysis of a DRAM-
version of the LU factorization algorithm, the extension of the model and method-
ology to other algorithms (e.g. Linear Algebra and Graphs) and a study of the
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impact on the energy consumption and power efficiency of the task size with
dynamic scheduling techniques. We are also interested in the relation between
optimum tiling for increasing performance and optimum tiling for energy effi-
ciency. Additionally, a hybrid approach combining the advantages of static and
dynamic scheduling [21] will be investigated.
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