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Abstract
Stencil computations are at the heart of many physical simu-
lations used in scientific codes. Thus, there exists a plethora
of optimization efforts for this family of computations.
Among these techniques, tiling techniques that allow con-
current start have proven to be very efficient in providing
better performance for these critical kernels. Nevertheless,
with many core designs being the norm, these optimization
techniques might not be able to fully exploit locality (both
spatial and temporal) on multiple levels of the memory hi-
erarchy without compromising parallelism. It is no longer
true that the machine can be seen as a homogeneous collec-
tion of nodes with caches, main memory and an interconnect
network. New architectural designs exhibit complex group-
ing of nodes, cores, threads, caches and memory connected
by an ever evolving network-on-chip design. These new de-
signs may benefit greatly from carefully crafted schedules
and groupings that encourage parallel actors (i.e. threads,
cores or nodes) to be aware of the computational history of
other actors in close proximity.

In this paper, we provide an efficient tiling technique
that allows hierarchical concurrent start for memory hier-
archy aware tile groups. Each execution schedule and tile
shape exploit the available parallelism, load balance and lo-
cality present in the given applications. We demonstrate our
technique on the Intel Xeon Phi architecture with selected
and representative stencil kernels. We show improvement
ranging from 5.58% to 31.17% over existing state-of-the-art
techniques.

1. Introduction
As shared resources such as memory bandwidth and cache
sizes increase at much slower pace than processing resources
such as cores and threads, maximizing the utilization of
these resources is very important to achieve higher per-
formance. Compiler optimization techniques such as loop
transformations have proven to be very effective. Such tech-
niques improve reuse of data in multiple cache hierarchies
and help to hide memory latency. In addition, loop transfor-
mations can also be performed to maximize parallelism and
load balance. However, when there exist complicated loop

carried dependencies, such transformations still operate un-
der the paradigm that coarse parallelism is the norm. For
example, in the case of hierarchically tiled codes, the inner
tiles are usually executed sequentially without considering
possible collaboration and reuse among other parallel actors.

Stencil computations are a computational intensive class
of kernels that are used in many scientific and engineering
codes. For some of these kernels, the computations are iter-
ated over time until a solution is found. Since stencil com-
putations involve calculating values using neighboring ele-
ments, there are plenty of opportunities for data reuse. How-
ever, when stencil applications are tiled, the dependencies
flow across neighboring tiles. In lower dimensionality sten-
cils, the amount of communication required is low. Thus, the
interactions between the tiles do not greatly affect the reuse
of the application, i.e. the stencil elements needed for calcu-
lation are a short stride away. However, in higher dimension-
ality stencils, the interactions between the elements involved
are farther and farther away. This greatly affects reuse since
their accesses would affect the memory hierarchy behavior.

Although there exist many stencils with different com-
putational intensities, many of them feature an execution in
which an entire dimension of the iteration space can be ex-
ecuted concurrently. Such stencils have been heavily stud-
ied to maximize parallelism and load balance such that pro-
cessing resources are fully utilized. Techniques like diamond
tiling [2, 20], split and overlapped tiling [17] were created to
take advantage of such feature. However, so far such tech-
niques have not been able to fully exploit locality at multiple
levels of a memory hierarchy.

f o r ( i n t t =0 ; t<T ; t ++){
f o r ( i n t i =1 ; i<=N; i ++){

A[ t + 1 ] [ i ] = a l p h a ∗ (A[ t ] [ i +1]
− b e t a ∗A[ t ] [ i ] + A[ t ] [ i −1] ) ;

}
}

Figure 1. Heat-1d Example

Figure 1 shows a for loop for one dimensional heat equa-
tion with the time dimension added in the array structure.
We will use this simplified version of the heat-1d loop as
a running example throughout the paper. Figure 2 shows
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a very efficient diamond tiling technique that maximizes
parallelism. Although very efficient, such technique doesn’t
incorporate the concept of multiple levels or groupings of
threads that can take advantage of each other’s data move-
ment. The reason for this is two fold. Firstly, when tiled hi-
erarchically, such tiling technique doesn’t exploit intra-tile
parallelism. Secondly, when thread assignment is oblivious
to the possibility of locality and reuse, threads are scheduled
far enough in memory to miss out on locality opportunities
across threads.

Figure 2. Diamond Tiling for Heat-1d

During parallel execution, multiple threads work in close
proximity in time and space and hence provide opportuni-
ties for reuse not only for themselves but also for neighbor-
ing threads. In this paper, we attempt to explore this with
our novel tiling technique that enables threads to work in
a collaborative fashion. Such technique exploits locality of
outer tiles without compromising inner tile parallelism. Due
to their properties (i.e. easier to analyze, wide spread avail-
ability and use, etc), this paper mainly focuses on stencils
with symmetric dependencies. The contributions of this pa-
per includes:

• Highly parallel tiling technique that exploits concurrent
start at multiple levels.

• Detail analysis of such technique at different levels of the
memory hierarchy

The paper is divided as follows. Section 2 provides re-
lated work. Section 3 explains the background information
and notations used in the paper. Section 4 explores tile shape
requirements to exploit intra-tile parallelism and our novel
tiling approach without compromising concurrent start. Sec-
tion 5 and 6 provides experimental results and case stud-
ies/discussion. Finally, Section 7 concludes the paper.

2. Related Work
Many optimizations to improve data locality, parallelism
and load balance aim to the improve overall performance
[7, 14, 18, 24, 25] but they might not consider the impact
of thread interactions. Iteration space tiling that aggregates
iterations from different dimensions have been very useful
to exploit reuse at multiple levels of a memory hierarchy.
This approach is applicable to a wide range of applications
and it has also been used extensively to improve locality and
parallelism of scientific codes that use stencil computations.

Compiler optimization techniques and tools using the poly-
hedral framework [11] have also gained significant attention
with their ability to analyze and generate code automatically.
As a result, a tool like PLUTO [6] has provided a convenient
way to generate tiled code that is optimized for locality and
communication.

Since stencils are at the heart of many scientific com-
putation and are very compute intensive, there has been a
considerable body of research on how to improve the per-
formance of these codes [12, 15]. Some optimizations are
focused mainly on stencil computation targeting higher or-
der stencils where locality optimization is more important
[8, 21]. Using a domain specific language that is translated
to parallel Cilk code, Pochoir [23] provides efficient cache
oblivious algorithm for stencils.

As many stencil codes have the property in which one
face of the iteration space can run concurrently, optimiz-
ing stencils for load balance has gained popularity. Krish-
namoothry [17] proposed split tiling and overlapped tiling
for stencil computations that are able to provide concurrent
start. Although these techniques are interesting, they do not
look into the possibility of exploiting locality at multiple lev-
els of the memory hierarchy, as we do.

Orozco [20] showed the effectiveness of diamond tiling
on a FDTD application using a many core architecture. Sim-
ilary, Bandishti [2] developed a diamond tiling technique us-
ing PLUTO as a base tool to optimize for parallelism and
load balance. The technique is driven by data dependence
and hence creates diamond shaped tiles which are very ef-
fective for applications with concurrent start. Besides dia-
mond tiling, there also exists other tile size and shape opti-
mizations [1, 9, 13]. Shrestha [22] introduced jagged tiling
technique for pipeline parallel applications and showed its
benefits on a Gauss-Seidel stencil. Our approach leverages
on both diamond and jagged tiling to improve locality fur-
ther with hierarchical jagged polygon tiling technique with-
out compromising parallelism.

Optimizations focusing on data to improve locality and
reuse have also been applied to improve performance. Ko-
dukula [16] uses blocking of data based on its flow through
the memory hierarchy. This approach shackles statements
associated with a data block and execute them to improve
locality. Similary, Bikshandi [5] introduced hierarchical
tiled array that manipulates tiles using array operations.
Bashkaram [3] used explicit data movement for improv-
ing locality on scratchpads. Meng [19] proposed symbiotic
affinity scheduling for improving inter-thread cache sharing.
However, such approaches have not been applied to stencil
computations.

Although very efficient, most of the existing compiler
work focus mainly on a single thread of execution. When
threads work in close proximity in time and space, there
exists an opportunity of a fine-grain collaborative view on
code generation. In contrast, when threads interfere with



each other, performance can plummet rapidly. The approach
presented in [10] exploits inter and intra (with threading)
node parallelism using tiling. It takes advantage of vector
register blocking and uses NUMA aware allocation show-
ing benefits on stencils. Despite some similarities, our ap-
proach focuses on exploiting intra-tile parallelism and im-
proving data reuse compared to thier intra-node parallelism.
Stencil computations are, by design, computational intensive
codes with tremendous opportunity of data reuse. When data
movement and usage are carefully architected to improve lo-
cality among multiple threads, performance can be improved
significantly.

3. Background
Our current framework relies heavily on polyhedral theory.
Thus, a short overview of the main concepts in this frame-
work is needed so that we can introduce our technique. In
this section, we briefly explain basic polyhedral terminology
and existent tiling techniques used to maximize parallelism
and load balance.

3.1 Basics of Polyhedral Theory
Under polyhedral terminology, loops are characterized by
their iteration spaces. In which each level of the loop would
represent a dimension of a bounded polyhedra (i.e. poly-
tope). Given an iteration space ~v, a hyperplane φ(~v) is a
n − 1 dimensional affine subspace in n dimensional space.
For statements S, a hyperplane φs(~v) with dimensionality
m and normal (c1c2...cm) represents an affine transforma-
tion of the form,

φs(~v) = (c1c2...cm).~v + c0 (1)

For given ’k’ statements, in order for statement-wise hy-
perplane (φs1 , φs2 ...φsk ) to be a legal tiling hyperplane, the
distance between source ’s’ and target ’t’ along every de-
pendence edge has to be strictly positive such that,

φSi
(~t)− φSj

(~s) ≥ 0 (2)

When a combination of ’m’1 hyperplanes, represented by
φ1, φ2...φm, form tiles, they are self-contained i.e. depen-
dencies for statements within tiles are either satisfied or can
be satisfied within.

3.2 Diamond Tiling
Not all valid tiling hyperplanes lead to the best scheduling
strategy. For example, in Figure 1, all elements along i can
be executed concurrently at different time steps t in the orig-
inal iteration space. However, in order to have concurrent
start in the tiled domain, there must exist a face that can be
executed concurrently such that its normal ~f carries all de-
pendencies. Valid tiling hyperplanes for this example to cre-
ate a diamond shaped tile are (1,-1) and (1,1) as shown in
Figure 2.

1 where m is less or equal to the number of dimensions of the iteration space

3.3 Condition for Concurrent Start
Given the set of vectors ~x1, ~x2, ~x3... ~xk, a conical combina-
tion is a vector of the form

λ1x1 + λ2x2 + ...+ λkxk (3)

When λis are strictly positive, such combination becomes
a strict conical combination. By using such a strict conical
combination of all hyperplanes φ1, φ2...φk, a hyperplane φ
representing a face with normal ~f can be found such that,

φ = θ ~f = λ1φ
1+λ2φ

2+...+λkφ
k where θ, λi ∈ Z+ (4)

Although, concurrent start can be used to exploit n−1 de-
grees of concurrency, such codes in practice are very com-
plex and don’t provide much performance. Exploiting just
one degree of concurrent start using the first two hyperplanes
provides partial concurrent start along one face of the itera-
tion space. Thus, partial concurrent start can be exposed us-
ing a simplified version of Equation 4:

φ = λ1φ
1 + λ2φ

2 (5)

Interested readers are strongly recommended to read ref-
erence [2] to get more information about hyperplane selec-
tion for diamond tiling.

3.4 Jagged Tiling
Jagged tiling for inner concurrent start for pipeline parallel
applications has been studied previously [22]. Instead of us-
ing the same tiling hyperplanes for tiling at different levels,
outer tiles are created by finding at least one tiling hyper-
plane that carries all dependencies in the L1 tiled domain.
This is done by finding a conic combination of the first two
hyperplanes as shown in Equation 5. For example, Figure 3
shows a pictorial view of standard jagged tiling with tiling
hyperplane (1,0) and (0,1) for L1 tiling and (1,1) and (0,1)
for L2 tiling.

Figure 3. Jagged Tiling for Pipeline Start

In this paper, we take advantage of both diamond tiling
and jagged tiling to exploit one degree of concurrent start
for each level of tiling to provide outer and inner concurrent
start.

4. Jagged Polygon Tiling
In this section, we introduce a novel jagged polygon tiling
technique that exploits locality further for applications with
concurrent start without compromising parallelism. Figure 5



provides a pictorial view of the jagged polygon tiling for the
kernel shown in Figure 1. It uses a hierarchical approach of
tiling in which outer tiles are designed to take advantage of
the highest level2 of the memory hierarchy i.e. (L2 cache).
Threads working within L2 tiles thus have an opportunity
to share data with each other and maximize data reuse as a
group of threads working in close proximity. Such threads
use a fine-grain execution strategy as shown in Section 4.3
to keep communication overhead to a minimal.

Figure 4. Tile Sizes for Jagged Polygon Tiling

4.1 Tile Shape and Sizes
Standard diamond tiling uses symmetric diamond shaped
tiles that enable concurrent execution along at least one
face of the iteration space. Although very effective for load
balance and parallelism, such tiles are not able to provide
intra-tile concurrent start when tiled hierarchically. Since
jagged polygon tiling is designed to provide a locality aware
concurrent start with intra-tile parallelism to further improve
data locality, we provide a simple solution to solve this
problem.

Figure 5. Jagged Polygon Tiling for Heat-1d. Tiling hyper-
planes (1,-1) and (1,1) (for L1 Hyperplane) in original do-
main and (1,1) and (1,0) (for L2 Hyperplane) in the tiled
domain

In Figure 4 (which shows two L2 tiles extracted from
Figure 5), let the tiled iteration space be t and i and size
of a L1 tile be x and y such that y = nx. This implies
that it creates a rectangular polygon in which if one side
has height h (towards x), the opposite side has height n ∗ h.
If we create jagged L2 tiles with jt and ji number of L1
tiles in t and i direction using Algorithm 1, two consecutive
jagged polygon tiles must stand at the same level, or for this
example at the same height, to be able to provide concurrent
start. Let H1 and H2 be the level at which two consecutive

2 farthest from the core

tiles start. Then, H1 = jt ∗ h and H2 = ji ∗ (n ∗ h− h) =
ji ∗ h(n− 1)

For, concurrent start H1 has to be equal to H2, hence

jt ∗ h = ji ∗ h(n− 1) (6)

When n = 2, jt = ji. This means that when y = 2 ∗ x, the
number of L1 tiles required to form L2 tiles has to be equal
in both direction (e.g, 3x3 L1 tiles in Figure 5). Although,
other sizes can be extracted using Equation 6, we use L1
tiles in which one side is double the size of the other.

4.2 Generating Jagged Tiles
Jagged tiles are generated using the polyhedral optimization
tool PLUTO [6] (PLUTO diamond is an enhancement of
PLUTO to generate code for load balance e.g. diamond
shaped tiles for concurrent start). PLUTO is designed to
take a C code as an input and generate an OpenMP code
optimized for communication across tile boundaries. It uses
CLOOG [4] for code generation which scans the iteration
space in a global lexicographic ordering. Such ordering is
given by an affine transformation function, also known as a
scattering function. The code generator is oblivious to any
dependence information and hence uses the original iterator
in absence of a scattering function.

We create L1 tiles using the approach used in PLUTO
for diamond tiling. It uses an iterative scheme to find hy-
perplanes [2] that satisfy Equation 4. We leverage on their
method while using a different tile shape, i.e. y = 2 ∗ x.
Once L1 tiles are created, given ’m’ L1 hyperplanes, we use
the condition given by Equation 5 to expose at least one hy-
perplane ϕ1 with concurrent start such that,

ϕ1
Si

(~t)− ϕ1
Sj

(~s) ≥ 1 (7)

For clarity, we represent all original hyperplanes by φ, L1
hyperplanes by ϕ and L2 hyperplanes by Φ. The algorithm
to generate jagged polygon tiles is shown in Algorithm 1.

For example, let’s assume that we want to create a jagged
tile for Figure 1 with tile sizes 1024 x 2048 for L1 and 4x4
(L1 tiles) for L2. The tiling hyperplanes found by PLUTO
are (1,1) and (1,-1). We use these hyperplanes to create in-
ner L1 tiles with tile size 1024 and 2048 along iterators ’t’
and ’i’. These tiles can be viewed as supernodes for next
level tiling and can be used to create outer L2 tiles using the
supernode iterators ’T’ and ’I’. The domain with these su-
pernode iterators becomes the tiled domain, where using hy-
perplanes (0,1) and (1,0) as tiling hyperplanes results in the
same hyperplanes as the ones used to create Level 1 tiles.
Instead, we use hyperplanes (1,1) (which satisfies the par-
tial concurrent start condition) and (1,0) with a tile size of
4. Once the tiles are created and scattering functions for L2
tiles (c1L2, c2L2), L1 tiles (c1L1, c2L1) and the original do-
main (c1, c2) are updated, the parallel code is generated us-
ing CLOOG. The resulting Domain and Scattering function
for heat-1d is shown below.



Algorithm 1 Generating Jagged Polygon Tiles
Input: Given: (a) diamond tiling hyperplanes φis, φ

i+1
s ...φi+m−1

s (b) Original Domain Ds (c) L1 tile sizes
tL1i, tL1i+1...tL1i+m−1 and L2 tile sizes tL2i, tL2i+1...tL2i+m−1 (satisfying tile size condition from Equation 6 for
tL2i, tL2i+1)

1: Tile for L1 using φ, Ds, TS1 . At this point, all ϕL1s(s) are created
2: Update Domain constraint to get hyperplane ϕ1

L1s → ϕ1
L1s + ϕ2

L1s such that ϕ1
L1s(t) − ϕ1

L1s(s) ≥ 1 leaving other
hyperplanes as is

3: Tile for L2 using ϕ, Ds, TS2 . At this point, all ΦL2s(s) are created
4: Perform Unimodular transformation on L1 scattering supernode: ϕT 1

L1s → ϕT 1
L1s + ϕT 2

L1s to satisfy Equation 5.
5: Perform Unimodular transformation on L2 scattering supernodes: ΦT 1

L2s → ΦT 1
L2s + ΦT 2

L2s to satisfy Equation 5.
Output: Updated domain and scattering function

Domain Scattering

0 ≤ t ≤ T − 1 c1L2 = TL2 + IL2

1 ≤ i ≤ N − 1 c2L2 = TL2

1024TL1 ≤ t− i ≤ 1024TL1 + 1023 c1L1 = TL1 + IL1

2048IL1 ≤ t+ i ≤ 2048IL1 + 2047 c2L1 = TL1

4TL2 ≤ TL1 + IL1 ≤ 4TL2 + 3 c1 = t

4IL2 ≤ IL1 ≤ 4IL2 + 3 c2 = t+ i

4.3 Fine-Grain Execution Framework
In this section, we provide a brief description of a fine-grain
execution framework we use in order to reduce communi-
cation overhead across threads. With the goal of taking ad-
vantage of locality across threads we combine threads into
different groups. Each thread group work together within L2
tile taking advantage of intratile parallelism, L2 locality and
sharing data brought into caches by threads within the group.

Stencil computations have very regular dependencies and
are repeatable across all L2 tiles. In other words, for any
given L2 tile ready to execute, the same face (represented by
L1 tiles) in its iteration space are ready to execute. To sim-
plify the execution, we represent a tiled domain dependen-
cies by a set of bits which are collectively updated by a group
of threads working together within the L2 tile. Each thread
performs atomic bit-wise operations to create a task mask.
Every nonzero bit in the task mask represents a L1 task ready
to execute. Such execution happens in a highly parallel fash-
ion and all required updates are done using atomic opera-
tions to minimize synchronization overhead. Figure 6 shows
a pictorial view of such execution.

5. Experiments
We used a Intel Xeon Phi 7110P coprocessor as our experi-
mental platform. Each coprocessor has 61 cores arranged in
a ring running at 1.1 GHz. Each core has a 32KB L1 cache
and a 512KB L2 cache shared by 4 hyper threads. Besides
their local L2 cache, threads have access to the L2 caches of

Figure 6. Fine Grain Execution Example

every core within the ring. A latency to access data within
the ring varies and can be as high as accessing data from the
memory. However, only when there is a cache miss in both
local and shared L2s, the request is served by the memory.
For our experiments, we use 60, 120, 180 and 240 threads.
These sizes represent a quarter, half, three quarter and the
full machine minus the core that is reserved for the operat-
ing system. In this way, we try to minimize the interference
from the operating system.

On the software side, we picked five stencil kernels that
exhibit concurrent start. In addition to our running exam-
ple (Heat-1d), we also use Heat-2d, Heat-3d, Jacobi-2d, 7
point-3d stencils to show the efficiency of our techniques
experimentally. All these kernels have a face along the it-
eration space where they can be executed concurrently. We
selected a range of tile sizes based on full tile sizes, number
of available cores, caches sizes, memory capacity, etc. From
this range, we selected the best results as our experimental
sizes. Table 1 shows the kernels and the sizes we used for
our experiments.

We compare our fine-grain (FG) jagged polygon tiling ap-
proach with the diamond tiling generated by PLUTO (PLT).
To test the effect of thread scheduling on the given tech-
niques, we use different thread mappings supported by the



Application Size(N) Size(T)
Heat-1d 10000000 10K
Heat-2d 11504x11504 2K
Heat-3d 480x480x480 100
Jacobi-2d 11504x11504 2K
7point-3d 480x480x480 100

Table 1. Applications and its sizes

architecture. For PLUTO generated OpenMP code we used
’BALANCED’ and ’COMPACT’ mode. In ’BALANCED’
mode, threads are distributed equally among cores to re-
duce load imbalance. This approach has the advantage of
using physical cores first in which resources are not con-
tended, in contrast to using hyperthreads. In ’COMPACT’
mode, all hyperthreads within a core are assigned before
moving to the next one. For our fine-grain framework, we
use mappings equivalent to ’SCATTER’ and ’COMPACT’
(with pthread setaffinity np) mode. In our framework’s scat-
ter mode, the scheduler assigns threads to different cores and
hence a group is formed by threads from different cores. On
the other hand in compact mode, hyperthreads within the
core form a group. Such approach has the advantage of data
reuse among threads when they work in close proximity in
time and space.

Table 2 shows the performance for each of the selected
kernels in GFLOPS for both PLT and FG along with the
selected tile sizes. For FG, a second set of tile sizes repre-
sent number of Level 1 (a.k.a L1) tiles in different dimen-
sions. For example, tile size 16x32x256 / 4x4x2 represents
a tile with Level 1 tile size 16x32x256 and Level 2 (a.k.a
L2) tile size 16*4x32*4x256*2. As shown in this table, the
best performance overall occurs when using the jagged tiling
framework in compact mode, except for the case of heat 1d.
In addition, the best performing cases were seen when 240
threads were used, except for heat-3d (PLT Balanced mode).
The improvement over the PLUTO generated code ranges
from 5.58% (in the case of Jacobi-2d) to 31.17% (in the
case of the 7 point stencil kernel) for the highest performing
codes. The last column of Table 2 shows the performance for
two level tiling for the heat based kernels. The reduced per-
formance is because of the additional control overhead and
idle resources created due to lack of inner parallelism. How-
ever, further investigation shows improved performance for
Heat-2D when using smaller tiles for both PLUTO and our
framework, 127.24 GFLOPS and 140.01 GFLOPS respec-
tively.

The three heat kernels are used as a case study to show
how our framework performs with respect to the architec-
ture’s memory hierarchy. The kernel’s access patterns illus-
trate the advantage and disadvantages of our approaches.
The memory behavior for the three kernels are reported in
Figures 7, 8 and 9. These figures showcase the most expen-
sive operations (i.e. misses and remote hits) in each level of

the memory hierarchy. An interesting feature of the study on
the heat 3d kernel is that the best cases from our initial runs
were selected for two tile sizes, named PLT 2 (2x2x4x480)
and PLT 3 (3x3x2x480) in the graphs, to compare and con-
trast the effect of the size of the diamond tile for PLUTO
generated code. The PLT 2 cases have better load balance
whereas the PLT 3 cases take advantage of locality better,
however cannot utilize all available threads. As the stride in-
creases (in higher dimensionality stencils), the jagged tiling
framework effectively reduces the accesses to main memory.
The presented case studies use the compact schedule as their
default. Section 6 discusses the graphs in more detail.

6. The Heat Kernels Case Study
The heat 1d kernel presents the lowest improvement of all
the kernels. This behavior can be connected to an increase in
L1 cache misses (reflected in the collected counters shown
below) presented in our framework. The worst degradation
of our framework versus the PLUTO generated code is 10%
when using 60 threads and compact scheduling. The highest
improvement occurs when we use the balanced and scatter
schedules which is around 9%. The difference between the
balance and compact schedules can be attributed to the ac-
cess pattern exhibited by the 1D case. The Intel Phi hard-
ware can take advantage of the contiguous access pattern of
this kernel. Our framework behavior might interfere with the
prefetcher hardware, especially to the highest memory hier-
archy levels. A short discussion of the memory hierarchy
counters is presented below.

Figure 7(d) shows the number of cache misses that were
served by the memory subsystem. This chart shows that
there is a considerable reduction of memory served cache
misses (around 93% on average of total accesses are re-
duced) over all the presented cases. In case of using the en-
tire machine, we have a 96% reduction of memory accesses.

Since the remote cache hits cycle can be as high as access
to the memory, a higher number of remote cache hits may
result in performance degradation. Figure 7(c) shows also a
great reduction of these types of hits when comparing our
framework and the PLUTO generated code. This reduction
averages around 50% in favor of our framework and a 66%
when using the full machine.

However, when examining Figure 7(b), we see that the
Level 1 misses are disproportional high (around 2 times the
PLUTO number). This rapidly decreases the performance
advantages FG has over PLT from the other accesses. How-
ever, the reduction on the other level still provides the per-
formance improvement shown in Figure 7(a).

The reason for this behavior is because 1D stencils do
not have a locality problem to begin with. The accesses are
fairly contiguous and tiles are big. Due to this, the hardware
prefetcher can take advantage by bringing data to the level
1 cache. Our framework’s thread group might interfere with
this behavior resulting in the higher miss rates for level 1.



PLT FG PLT
GFLOPS Tile Size GFLOPS Tile Size GFLOPS

Kernel Balanced Compact Best Case Scatter Compact Best Case Speedup Hierarchical
Heat-1d 106.59 107.05 4Kx4K 115.95 111.77 1Kx2K / 4x4 8.31% 99.65
Heat-2d 122.42 122.78 16x16x256 131.47 134.95 16x32x256 / 4x4x2 9.91% 109.78
Heat-3d 59.375 57.22 3x3x2x480 61.73 74.168 1x2x4x480/4x4x2x1 24.91% 27.91

Jacobi-2d 68.26 68.40 16x16x256 67.94 72.22 16x32x256 / 4x4x2 5.58% –
7point-3d 31.48 31.82 2x2x4x480 33.46 41.74 1x2x4x480/4x4x2x1 31.17% –

Table 2. Performance for PLT and FG execution with 240 threads. Note: Heat 3d peaks at 180 threads.
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Figure 7. Heat 1D Memory behavior for PLUTO generated code (PLT) and our framework (FG)

Figure 7(a) shows the evolution of performance for different
number of threads. FG does better than PLT only when 240
threads are used. Also, it is interesting to note that for heat-
1d, balanced mode does better than compact mode. This
is because when locality is not much of an issue, having
threads from different cores have the advantage as resources
are not contended. This behavior however changes for higher
order stencils.

The Level 1 miss rates for the other heat kernels (Figures
8(b) and 9(b)) show a slightly different story with some im-
provements (around 7% for heat 3d) on the Level 1 misses.
As the dimensionality of stencil increases, locality optimiza-
tion becomes more important. Because of the strided access,

PLT is not able to take full advantage of L1 locality as the
effectiveness of hardware prefetcher reduces. However with
FG, we start to see advantage of grouping threads and ac-
cessing Level 2 tiles to improve locality.

In the case of heat 2d, the running times for both our
framework and the PLUTO codes are very similar when not
using the entire machine. However when using the entire
machine, the gains are more visible (around 10% in compact
scheduling) as shown in Figure 8(a). These gains are repre-
sented in the total reduction of memory accesses showcased
by the counters presented below.

Figure 8(d) shows the cache misses that were served by
the main memory. The chart shows a general trend in reduc-
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Figure 8. Heat 2D Memory behavior for PLUTO generated code (PLT) and our framework (FG)

tion of cache misses for all the thread sizes. On average, the
reduction is around 33% over the PLUTO generated code
with a maximum of 40% when using 60 threads. Although
when the number of threads is increased, the gap reduces to
up to 27% reduction. This showcases a small interference
between the running threads that might be attributed to our
framework. Nevertheless, this general trend shows us that
more data is kept inside the internal caches of the machine
(as was the case with heat 1d).

In Figure 8(c), we showcase the remote level 2 cache hits.
These numbers show an increase (instead of a reduction) of
the number of remote hits. As stated before, this might be
a performance issue due to their latencies. However, since
the other two set of misses (L1 misses, L2 misses served
by memory) are orders of magnitude higher than these hits,
their effect are ameliorated. The increase, in average, is 50%
and as high as twice when using the entire machine.

This set of charts shows us that the evolution of the
application over the different thread sizes is similar for both
level 1 misses and memory served misses. However, the
Level 2 remote hits slightly increase with size. This is due to
write miss increase resulting from our framework overhead.
We are working to reduce this overhead. Figure 8(a) shows
the performance evolution for different number of threads.

FG, in this case, can take advantage of locality and reuse
among thread group and hence shows better performance for
all cases.

Figure 9(a) shows the gains in GFLOPS of heat 3d over
one of the PLUTO generated cases. Over all cases, our
framework has improvements over the PLUTO generated
cases with around 30% using the full 240 threads and it
peaks at 70% improvement when using 180 threads. The
memory characterization is discussed below and shows a
great reduction on the memory accesses, remote hits and a
slight reduction of level 1 cache misses.

For heat 3d, we have two special cases. The reason is, for
PLT, using smaller tile size (2x2x4x480) creates perfect load
balance, however, cannot take advantage of locality much.
On the other hand tile sizes (3x3x2x480) takes advantage of
locality better but is not able to use all processing resources.
In the first case, we have a smaller diamond tile (shown as
PLT 2). When increasing the number of threads, Figure 9(c)
shows that the number of remote cache hits reduces as more
threads are added to the mix. Our framework starts (running
on 60 threads) with an increase of 60% over the PLUTO
generated code. However, as more threads are added, the
remote hits reduce to up to 90% over the PLUTO generated
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Figure 9. Heat 3D Memory behavior for PLUTO generated code (PLT) and our framework (FG)

code. The reduction of memory served cache misses is not as
impressive but still considerable (around 34% on average).

For the second tile size (named PLT 3) showcases a larger
diamond tile. The story about the memory hierarchy behav-
ior is very similar to the smaller diamond tile. However, the
gaps are narrowed with up to 62% reduction for remote level
2 hits and 12% reduction in memory served cache misses.
Here the bigger diamond tile takes advantage of the avail-
able locality. However, as mentioned earlier, doing so cre-
ates load imbalance resulting on idle resources. Because of
this, the performance for PLT 3 peaks at 180 (in balanced
mode, so all cores can be used) as shown in figure 9(a). Our
framework would take advantage of the locality with greater
tile sizes as well, but our test platform does not have enough
memory to run this experiment.

The charts support the overall premise that there is a re-
duction of memory accesses over PLUTO generated dia-
mond tiling. Thus, this supports the idea that our framework
reuses data better by a hierarchical tiling strategy that man-
ages data movement collectively across threads. This notion
is reflected by the performance and supported by the coun-
ters. The behavior of heat 2d and heat 3d are representative
of the memory behavior of the Jacobi kernel and the 7 Point
Stencil, respectively. They present similar behaviors in all

the characterizations. For example, for the 7 Point Stencil,
there are similar reductions across the board for all the mem-
ory related counters (4% reduction in Level 1 caches, 90%
reduction in remote hits and 18% in memory accesses when
using 240 threads) and an improvement of around 30% in
GFLOPS (as shown in Table 2).

7. Conclusion and Future Work
In this paper, we showed a novel hierarchical tiling technique
that improves locality and reuse for stencil applications with
concurrent start. In addition, with grouping of threads such
that they work within dedicated L2 tiles and perform fine-
grain execution of L1 tiles, we are able to improve locality
by sharing data among closely associated threads. However,
such notion of locality improvement is not limited to sten-
cils. We plan to extend our approach to other applications
with reuse and architectures that emphasize spatial multi-
threading over temporal multithreading. In addition, we plan
to look into prefetcher interactions with our tiling strategy.

When limited memory resources are contended in multi-
core systems, performance degradation can be very rapid. In
such a case, threads need to be aware of its vicinity and be
able to collectively orchestrate memory fetches to improve
performance. In this paper, with our tiling technique we ex-



ploit multi-level concurrent start and showed that with a lo-
cality aware tiling strategy, threads working in close proxim-
ity in time and space can share data and improve data reuse.
Such technique can be beneficial for wide range of compute
intensive applications in an environment with abundant pro-
cessing resources.
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