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Abstract employing the canonical GPU programming paradigm

will simply underutilize the computation power. These
The computational power provided by many-core grapRsues are essentially due to fundamental limitations on
ics processing units (GPUs) has been exploited in mafy current data parallel programming methods.
applications. The programming techniques currently em-, s paper, we propose a task-based ne-grained exe-

ployed on these GPUs are not suf cient to address prolyion scheme that can dynamically balance workload on

lems exhibiting irregular, and unbalanced workload. Tri‘r‘?dividual GPUs and among GPUs, and thus utilize the
problem is exacerbated when trying to effectively exmqi}nderlying hardware more ef ciently.

multiple GPUs concurrently, which are commonly avail- Introducing tasks on GPUs is particularly attractive for

able in many modern systems. In this paper, we prop?ﬁg following reasons. First, although many applications

a task-based dynamic load-balancing solution for sing : .
. : are suitable for data parallel processing, a large number
and multi-GPU systems. The solution allows load balanc; o .
ing at a ner granularity than what is supported in curQ]c apphcatlons show more task paraI.IeI|sm than data par-
allelism, or a mix of both [7]. Having a task parallel

rent GPU programming APIs, such as NVIDIAs CUDA. . : ) .
: . rogramming scheme will certainly facilitate the devel-
We evaluate our approach using both micro-benchmalk§

and a molecular dynamics application that exhibits signﬁlpment of this kind of applications on GPUs. Second, by

) i ) . .~ exploiting task parallelism, it is possible to show better
icant load imbalance. Experimental results with a singlé..~ " .
; ; dtilization of hardware features. For example, task paral-

GPU con guration show that our ne-grained task so; . . o : .
. . : lelism is exploited in [23] to ef ciently use the on-chip
lution can utilize the hardware more ef ciently than th(ranemor on the GPU. Third. in task parallel oroblems
CUDA scheduler for unbalanced workload. On multi- y ' P P ’

GPU systems, our solution achieves near-linear speedip. tasks may not be able to expose enough data par-
y ’ o . PeeCRiism to fully utilize the GPU. Running multiple such
load balance, and signi cant performance improvem

: e{gsks on a GPU concurrently can increase the utilization
over techniques based on standard CUDA APIs. . .
of the computation resource and thus improve the overall
; performance. Finally, with the ability to dynamically dis-
1 Introduction tribute ne-grained tasks between CPUs and GPUs, the
Many-core Graphics Processing Units (GPUs) have bwerkload can potentially be distributed properly to the
come an important computing platform in many sciegomputation resources of a heterogeneous system, and
tic elds due to the high peak performance, cost eftherefore achieve better performance.
fectiveness, and the availability of user-friendly pragra  However, achieving task parallelism on GPUs can be
ming environments, e.g., NVIDIA CUDA [21] and ATl challenging; the conventional GPU programming does
Stream [1]. In the literature, many works have been reet provide suf cient mechanisms to exploit task par-
ported on how to harness the massive data parallelism pahelism in applications. For example, CUDA requires
vided by GPUs [4, 8, 14, 20, 24, 26]. all programmer-de ned functions to be executed sequen-
However, issues, such as load balancing and GPU tially on the GPU [22]. Open Computing Language
source utilization, cannot be satisfactorily addressed penCL) [16] is an emerging programming standard for
the current GPU programming paradigm. For example,gsneral purpose parallel computation on heterogeneous
shown in Section 6, CUDA scheduler cannot handle thgstems. It supports the task parallel programming model,
unbalanced workload ef ciently. Also, for problems thain which computations are expressed in terms of multiple
do not exhibit enough parallelism to fully utilize the GPUgoncurrent tasks where a task is a function executed by



a single processing element, such as a CPU thread. Hgvaphic problems was discussed in [11, 19], and authors
ever, this task model is basically established for multiecoobserved that it is of fundamental importance for high per-
CPUs, and does not address the characteristics of GPldenance implementations on GPUs. Several static and
Moreover, it does not require a particular OpenCL implelynamic load balancing strategies were evaluated for an
mentation to actually execute multiple tasks in parall@ctree partitioning problem on GPUs in [6]. Our work
For example, NVIDIAS current OpenCL implementatioriffers from this study in several ways. First, in the for-
does not support concurrent execution of multiple taskeer study, the load balancing strategies were carried out
due to the hardware limitations. solely on the GPU; the CPU cannot interact with the GPU
To address the problem of achieving dynamic load baluring the execution. Second, the former study only in-
ance with ne-grained task execution on GPUs, in thigestigated single-GPU systems. Our work is performed
paper, we make the following contributions. on both single- and multi-GPU systems, and can be easily
extended to GPU clusters.

Wed r?t !de?tg)F/)LtJthr)nUeghtansrps to err]‘.?blteh C(ggest A runtime scheduler is presented for situations where
and etcien k interactions white the dividual kernels cannot fully utilize GPUs [13]. It ex-

. . |
is computing, based on the current CUDA teChnot{r]acts the workloads from multiple kernels and merges

ogy. Th's. prc_>wdes means for building umnterrupte%em into a super-kernel. However, such transformations
communication schemes petween CPUS and GP ave to be performed statically, and thus dynamic load
Based on the above_ contribution, we m_troduce atagK|ance cannot be guaranteed. Recently, researchers have
queue scheme, Wh'Ch_ enables dyna_lmlc load bal"?‘B%'gun to investigate how to exploit heterogeneous plat-
ing at a ner granularity than what is supported ifio s \ith the concept of tasks. Merge [17] is such
existing CUDA programming paradigm. We alsQ qramming framework proposed for heterogeneous
study the optimal memory sub-system locations fgr i core systems. It employs a library-based method
the ‘_We”e data structures. ) to automatically distribute computation across the under-
We implement our task queue scheme with CUDAying heterogeneous computing devices.  STARPU [2]
This implementation features concurrent host e[y another framework for task scheduling on heteroge-
queue and device dequeue, and wait-free dequeldgus platforms, in which hints, including the perfor-
operations on the device. We evaluate the perfafance models of tasks, can be given to guide the schedul-
mance of the queue operations with benchmarks. jng policies. Our work is orthogonal to prior efforts in
As a case study, we apply our task queue schegagt our solution exhibits excellent dynamic load balance.
to a molecular dynamics application. Experimentgl also enables the GPU to exchange information with
results with a single-GPU con guration show thaghe CPU during execution, which enables these platforms
our scheme can utilize the hardware more ef ciently ynderstand the runtime behavior of the underlying de-
than the CUDA scheduler, for unbalanced problemgees, and further improve the performance of the system.
For multi-GPU con gurations, our solution achieves
nearly linear speedup, load balance, and signica® CUDA Architecture
performance improvement over alternative imple-
mentations based on the canonical CUDA paradigh. this section we provide a brief introduction of the
CUDA architecture and the programming model. More
The rest of the paper is organized as follows. Sectioy@tails are available on the CUDA website [21]. In the
presents a brief overview of the research on load balapgsrature, GPUs and CPUs are usually referred to as the
ing and task parallelism on GPUs. Section 3 describgsyicesand thehosts respectively. We follow the same
the CUDA architecture. Section 4 presents the designtgfminmogy in this paper.
our task queue scheme. Section 5 discusses implementgjpa devices have one or multiple streaming multi-
tion issues and benchmarking results of queue operatim

; ) cessors (SMs), each of which consists of one instruc-
Section 6 evaluates our task queue scheme with a MOlgg; issue unit, eight scalar processor (SP) cores, twe tran

ular dynamics application on single- and multi-GPU sy§gendental function units, and on-chip shared memory.
tems. Section 7 concludes with future work. For some high-end devices, the SM also has one double-
precision oating point unit. CUDA architecture features
2 Related Work both on-chip memory and off-chip memory. The on-chip
Load balance is a critical issue for parallel processinmemory consists of the register le, shared memory, con-
However, in the literature, there are few studies addrestant cache and texture cache. The off-chip memory con-
ing this issue on GPUs. The load imbalance issue si$ts of the local memory and the global memory. Since



there is no ordering guarantee of memory accesses/hil Basic ldea

CUDA architectures, programmers may need to use Méiy the current CUDA programming paradigm, to exe-
ory fence instructions to explicitly enforce the ordering, .. multiple tasks, the host process has to sequentially
and thus the correctness of the program. The host Canqabfnch multiple, different kernels, and the hardware is
access the global memory of the device. On some dev'(:r‘:é%ponsible for arranging how kernels run on the de-

part of the host memory can be pinned and mapped igi@e 122]. This paradigm is illustrated in Figure 1. On the
the device's memory space, and both the host and the de-

vice can access that memory region using normal memory
load and store instructions. Host process §

A CUDA program consists of two parts. One part is Kernel 1
the portions to be executed on the CUDA device, which
are calledkernels another part is to be executed on the
host, which we call théhost process The device exe-
cutes one kernel at a time, while subsequent kernels are
gueued by the CUDA runtime. When launching a ker- Kernel 2
nel, the host process speci es how many threads are re-
quired to execute the kernel, and how maimgad blocks
(TB) these threads should be equally divided into. On the
device, all threads can access the global memory space,  Figure 1: CUDA programming paradigm
but only threads within a TB can access the associated ) )
shared memory, with very low latency. A thread can o_glher ha_nd, in our task queue scheme, instead of launch-
tain its logic thread index within a TB and its logic TBNG Multiple kernels for different tasks, we launciper-
index via built-in system variables. The hardware sche¥iStentkernel withB TBs, whereB can be as big as the
ules and distributes TBs to SMs with available executih@ximum number of concurrently active TBs that a spe-
capacity. One or multiple TBs can reside concurrently &hC device can support. Since CUDA will nawap out
one SM, given suf cient hardware resources, i.e., regiIBS during their execution, after being launched, all TBs
ter le, shared memory, etc. TBs do not migrate durin\di" stay .active, and wait for exeCL_Jting ta;ks until the kgr-
the execution. As they terminate, the hardware launcrd terminates. When the kernel is running on the device,
new TBs on these vacated SMs, if there are still some TH§ host process enqueues both computation tasks and sig-
to be executed for this kernel. Each thread is mapped®@/ling tasks to one or more task queues associated with
one SP core. Moreover, the SM manages the thread$i device. The kernel dequeues tasks from the queues,
groups of 32 threads callegarps in the sense that alland ex_ecutes them according to the pre-de ned ta_sk in-
threads in a warp execute one common instruction afofmation. In other words, the host process dynamically
time. Thread divergences occur when the threads wit/#antrols the execution of the kernel by enqueuing tasks,
a wrap take different execution paths. The execution §fich could be homogeneous or heterogeneous. This task
those taken paths will be serialized, which can signidueue ideais illustrated in Figure 2.
cantly degrade the performance. While CUDA provides Hostor et kel
a barrier function to synchronize threads within a TB, & qusts) Persistent keme
it does not provide any mechanism for communications 0 80 |[ 181 |[ 182 | [rEe1
across TBs. However, with the availability of the atomic
instructions and memory fence functions, it is possible to
achieve inter-TB communications.

Host process

80,0) || TB0,1) || TB-(0,2)

T8-(1,0) || TB-(1,1) || TB~(1,2)

(IITTTIT
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Figure 2: Task queue paradigm
In this section, we rst describe the basic idea of our task

gueue scheme. Then we discuss the necessary meﬁga- limi id .

nisms to perform host-device interactions correctly an Preliminary Considerations

ef ciently, and then present the design of our task que&ince task queues are usually generalized as producer-
scheme in detail. consumer problems, let us rst consider the single-



producer single-consumer case. Algorithm 1 shows tHevice interface. For example, for an enqueue operation
pseudo-code adnqueuanddequeumperations for such described in Algorithm 1, by the updated value esfd
scenario on a shared memory systeguieueis a shared (Enqueue:line-5) is visible to the kernel, the insertion of
buffer between the producer and the consurertand task (Enqueue:line-4) should have completed. If the or-
endare indexes of next location for dequeue and enquedering of these two memory accesses were reversed by the
respectively. At the beginning, both indexes are initediz hardware/software for some reason, the kernel will not be
as0. By polling startandend the producer/consumer carable to see the consistent queue state, and therefore the

determine if it can enqueue/dequeue tasks. whole scheme will not work correctly.
The nal issue is how to guarantee the correctness on
Algorithm 1 accessing shared objects, if we allow dynamic load bal-
Enqueue ance on the device. Lock is extensively used for this pur-
Data: a task objectask , a task queuqueue of a capacity ofize pose. However, as presented in [6], a lock-based blocking
Rif“':;pfastk is inserted intajueue method is very expensive on GPUSs.
20 1 (end start +size) (mod size) With evolving GPU technologies, now it is possible to
3 e lena . task address above issues by exploiting the new hardware and
5:end (end +1) (mod size) software features. More speci cally, the current CUDA
Dequeue allows “asynchronous concurrent executibinThis fea-
Data: a task queugueue of a capacity obize ture enables copies between pinned host memory and
R Eapanr oblectis removed froqueue intotask device memory concurrently with the kernel execution,
2: 1 (end start + size) (mod size) which solves our rstissue.
i} f;st;(l > (?ueue[stan 1 Since CUDA 2.2, a region of the host's memory can
S5istart  (start +1) (mod size) be mapped into the device's address space, and kernels

can directly access this region of memory using normal

If we want to establish a similar scheme for the hodRad/store memory operatichs By duplicating index

device communication, where the host process is the p¥gfiables, and cleverly utilizing this feature, as we shall

ducer, and the kernel is the consumer, the following issUg&monstrate in our design, the queue polling in the en-
have to be addressed properly. gueue and dequeue operations only incurs local memory

The rstissue is how to enable the host process to p _ceszisr(?;t,); n.(i ?]terggzgc}r;? ;e;n(():tceergsefrr:c;rz ac:eg/sd;o ar; |r(1e-
form copies between the host memory and device me Xvarl . u ul enqueu queu

ory without interrupting the kernel execution, which is O?%eratltonk Th|§ gddres_setj part of the second issue, i.e.,
fundamental importance for our task queue scheme. where to keep index varables.

The second issue is where to keep the queue and ass8’_he solution to the rest of the second issue and the third

ciated index variables. For index variables, a na've @ofg>4u¢ essentially requires mechanisms to enforce the or-
would be havingendin the host's memory’ system, an ering of memory access across the host-device interface.
havingstartin the device's memory system. In this cas ’e?_mry fgn(t:eﬂ:‘unctlons Tref included in the new CUD’Z‘

all updates to index variables can be performed local 'ntlhmel; u | teyﬂ?re (I)nbyl or (rjneLnory daccesses (m?he
However, this choice introduces serious performance Ts" e kernel) to the global and shared memory on the

sue, i.e., each queue polling action requires an access YiCe. On the other hand, CUDé\/entcar! be used by ,
index variable in another memory system, which implié € host process to asynchronously monitor the device's

a transaction across the host-device interface. This si;ncBFO_gresi’ g'g't’ memory accesfses. Basu;all_y, an g\{[ent ((:jan
signi cant latency (as shown in Section 5 for a PCle bugi,e Inseried into a sequence of commands 1ssued to a de-
On the other hand, having bostartandendon one mem- V/€- If this event isrecorded then all commands pre-

ory system will not help; either the host process or the kéﬁe-ding it must have completed. Therefore, by inserting

nel has to perform two transactions across the host-de e:vent immediately after a memary access o the de-
interface, which actually aggravates the situation. vice's memory system and waiting for its being recorded,

o . the host process can guarantee that such memory opera-

The third issue is how to guarantee the correctness ) . .

. . . . ..~ . 1ion has completed on the device, before it proceeds. This

of the queue operations in this host-device situatian. .

. : . IS"equivalent to a memory fence for the host process to
Since each enqueue/dequeue operation consists of mul-

tlp!e memor.y upda.te.s’ I'e".Wme”ead to the queue Mt This feature is available on CUDA devices that supptet
write to an index, it is crucial to ensure the correct oficeoveriap.
dering of these memory accesses while across the hos&pProvided that this CUDA device suppotanMapHostMemory.




access the device's memory system. However, at this db4  Task Queue Scheme

ment, there is no suf cient mechanism to ensure the ordg[z e \ve present our novel task queue scheme, which al-
ing of memory accesses made Py a kernel to the mappggls automatic, dynamic load balancing on the device
hos_t memory [18]. In this case, if we h‘?‘d the task AUeUfrhout using expensive locks. In this scheme, the host
residing on the host memory system, in the dequeue epscess sends tasks to the queue(s) without interrupting
eration, the kernel cannot guarantee that the memory read . o tion of the kernel. On the device. all TBs con-

on the task object has completed before updating the ¢tz ently retrieve tasks from these shared queue(s). Each
responding index variables. Therefore, the queue(s) ¢g8y \ill be executed by a single TB.
only reside in the global memory on the device. On the 5 gueue object is described by the following variables.

whole, by having the queue(s) on the device, and USiRBihe peginning of a computation, all those variables are
both the event-based mechanism mentioned above a”qﬁﬂﬁalized t00s.

device memory fence functions, we can develop correct
enqueue and dequeue semantics that consist of memory d-tasks_gm: an array of task objects.
accesses to both the host's memory system and the de- d_n_gm: the number of tasks ready to be dequeued

vice's memory system. from this queue.

With the advent of atomic functions on GPUs, such as h_written : the host's copy of the accumulated num-
fetch-and-adéndcompare-and-swayit is possible to al- ber of tasks written to this queue.
low non-blocking synchronization mechanisms. This re- d_written _gm: the device's copy of the accumu-
solves the last issue. lated number of tasks written to this queue.

Here we summary all necessary mechanisms to enable h_consumed the host's copy of the accumulated
correct, ef cient host-device interactions as follows. number of tasks dequeued by the device.

d_consumedgm: the device's copy of the accumu-

1. Asynchronous concurrent execution: overlap the |gted number of tasks dequeued by the device.

host-device data transfer with kernel execution.
2. Mapped host memory: enable the light-weight queue
polling without generating host-device traf c. Algorithm 2 Host Enqueue
3. Event:  asynchronously monitor the device®?

n task objectgasks , n_queue task queueg , each of a capacity of
size , i next queue to insert

progress. Result: host process enqueutzsks into g
- . . . 1: n_remaining n
4. Atomic instructions: enable the non-blocking syn-2: it n_remaining > size  then
chronization. 3: n _to _write size
4: else
5: n_to _write n_remaining
4.3 Notations 6: endif

repeat

7
Before we present the task queue scheme, we rst intrcgf if qli]:n -consumed == g[i]:h written _ then

. h ) : g[i]:d_tasks _gm tasks [n n _remaining :on
duce terminologies that will be used throughout the pa- n_remaining ~ + n_to.write 1]
per. On a device, threads have a unitpealid within a  13' ﬂg;d_\;{,’rfem_fen:;g-W”‘e
TB. hostwrite_fence()is the event-based mechanism det2: gliJ:h_written  qg[i]:h_written + n_to_write
scribed above, which guarantees the correct orderingggf ~ fUIGYIE" con | ARLe wien

memory stores made by the host process to the devicgs n_remaining  n_remaining N _to write
memory system.blockwrite_fence()is a fence function }?; It remaining > size  then
that guarantees that all device memory stores (made 1@/ else _ N
the calling thread on the device) prior to this function ar%b; e e  noremaining
visible to all thread in the TBblock barrier() synchro- 21: else
nizes all threads within a TB. 22 4 i+ (mod n.queues)

For variables that are referred by both the host proce®k until n_to_write ==0
and the kernel, we pre x them with eithér or d_to de-
note their actual residence on the host or the device, reThe complete enqueue and dequeue procedures are de-
spectively. For variables residing in the device's memosgribed in Algorithm 2, and Algorithm 3, respectively. To
system, we also post x them wittsmor _gmto denote enqueue tasks, the host rst has to check whether a queue
whether they are in the shared memory or in the glolkialready. In our scheme, we require that a queue is ready
memory. For those variables without any pre x or post xwhen it is empty, which is identi ed bya_consumed==

just described, they are simply host/device local vargblé _written . If a queue is not ready, the host either waits




Algorithm 3 Device Dequeue either retrieves a task from a queue, or nds out that queue

Data: n_queue task queueql,i next queue to work on is empty.
Result: TB fefches a task object fromginto task sm To avoid data race, this scheme does not allow the host
5: if local id == 0 then process to enqueue tasks to an non-empty queue that is
repeat ; : ;
2 if oli]:d_consumed gm == qliJ:d writen _gm then possibly pemg ac_cessed by the kernel. This seems to be a
g: o (i+1) (mod n_queues) shortcoming of this scheme because enqueue and dequeue
. else H H
7 | fetch and add(qlildngm; 1) 1 operations cannot pe carried out concur_rently on a same
g_ ifj Othen , gueue. However, simply employing multiple queues can
o sk s _fgggfe-‘gsks -om{] ef ciently solve this issue by overlapping enqueue with
ﬁ: done f tr#e o add (il . ) the dequeue on different queues.
: i etch _and _add (q[i]:d_-consumed _gm; 1 f : ;
13 itj == olid-writen -gm then To determine when to signal the kernel to terminate, the
igg q[I]:hfcorisumed § q[i]:d_consumed _gm host process has to check whether all queues are empty
16 engip U TP (mod n-queues) after computation tasks have been enqueued. If it is true,
i;; else . . the host process enqueuBsHALT tasks, one for each
10 oy O TD (mod n-queues) of theB concurrently active TBs on the device. TBs exit
%2: _?ndd if after getting HALT, and eventually the kernel terminates.
52 endit ¢ Although our task queue scheme is presented for a sin-
23: block _barrier () gle device, we have extended it for multi-GPU systems

(on a single node), where a higher level task queue is
maintained on the host side for coordinating the multi-

I . ple GPUs. Extension to multiple nodes can also be car-
until this queue becomes ready (single-queue case), .Qr

. . “'ried out smoothly, but it is out of the scope of this paper.
checks other queues (multi-queue case). Otherwise, the
. : oreover, the task queue scheme can be extended to allow
host rst places tasks iml_tasks_gm starting from the

. : multiple host processes share the use of a single device,
starting location, and updatin_gm to the number of . .
: . : by sending heterogeneous tasks to the queue(s) associated
tasks enqueued. Then it waits dostwrite_fence()to

. ; W]ith the device, given host processes are orchestrated by
make sure that the previous writes have completed on Sofe synchronizations. This can potentially increase the
device. After that, the host process upddtesritten , y ; P y

andd_written _gm to inform the kernel that new tasks ar%!'zc?)trlgguc:;&i ?:Z\sgii tl;?)fhtzset g;?,fceess cannot fully use

available in the queue.

Onthe device, each TB uses asingle thread, i.e., the e Implementation and Microbench-
of local.id == 0, to dequeue tasks. It rst determines marks
whether a queue is empty by checkilngonsumed.gm
andd_written _gm. If a queue is empty, then it keepsn this section, we rst describe the platform used in
checking until this queue has tasks (single-queue casepor experiments and some implementation issues of task
checks other queues (multi-queue case). Otherwise, it tgleue scheme. We then present the benchmarking results
appliesfetch-and-addn d_n_gm with 1. If the return for operations used in our task queue scheme.
value of this atomic function is greater th@nit means .
there is a valid task available in the queue, and this 'I%l Implementation
can use this value as the index to retrieve a task frafve implemented our task queue scheme on a system
d_tasks_gm. The thread waits on the memory fence untéquipped withl quad-core AMD Phenom Il X4 940 pro-
the retrieval of the task is nished. It then applifstch- cessor and NVIDIA Tesla C1060 GPUs. The system is
and-addon d_written _gm with 1, and checks whetherrunning 64-bit Ubuntu version 8.10, with NVIDIA driver
the task just retrieved is the last task in the queue by comersion 190.10. CUDA Toolkit version 2.3 ,CUDA SDK
paring the return value of the atomic function just callegersion 2.3, and GCC version 4.3.2 were used in the de-
with d_written _gm. If yes, this thread is responsible fovelopment. The above system provides all necessary fea-
updatingh_consumedto inform the host process that thigures to implement our task queue scheme.
gueue is empty. Barrier (Algorithm 3:Line 23) is used To utilize the asynchronous concurrent execution fea-
to make sure that all threads in a TB will read the sanhere, CUDA requires using different, nonzero CUDA
task information fromtask _sm after the dequeue proce-streamswhere a stream is basically a sequence of com-
dure exits. The dequeue procedure is a wait-free [15] apands that are performed in order on the device, and the
proach, in the sense that in a xed number of steps, a E8ro stream is the default stream in CUDA. So, in our im-
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Figure 3: Data transfer time Figure 4: Barrier and fence functions (128Ts/B)

plementation, we use one stream for kernel launching, @much expensive, compared to both synchronous copies
other stream for performing queue operations. and asynchronous copies performed with the zero stream,
While CUDA does provide the required memory fendge., 5x-10x slower. Without exposing to the CUDA in-
function,__thread'ence _block(), it does not differentiate ternal, we do not really understand why such operation is
between stores and loads. In our implementations, it weigcostly. On the other hand, with the current CUDA pro-
used as a store fences. CUDA also provides a functiongi@mming environment, using nonzero streams is the only
synchronize all threads in a TB,syncthreads(), which way to achieve the asynchronous concurrent execution.
behaves as both a regular barrier and also a memory fenceor transfers initialized by the host process, the trans-
in a TB. Therefore, in our implementations, we took ader time changes slowly in the above data range due to
vantage of this and eliminated redundant operations. the high bandwidth, i.e 4GB/s. So, if the host-device
data transfer is inevitable, combining multiple data ac-
cesses into one single transaction is highly recommended.
Here we report benchmarking results for major compbs fact, in our implementation of the enqueue operation,
nents performed in queue operations, such as, host-deweeactually updatd_n_gm andd_tasks_gm with a single
data transfer, synchronizations, atomic instructionsl ahost-device transaction.
the complete enqueue/dequeue operations. Performandg@n the other hand, since there is no mechanism for a
measurements of these individual components help us kernel to copy a contiguous memory region, such copy
derstand how our designs work with the real applicatiortgas to be performed with assignments on basic data types.
Host-device data transfer The host-device interfaceTherefore, the transfer time is linearly proportional te th
equipped in our system is PCle 2.0x8. We measurgide of data.
the time to transfer contiguous data between the host &afrier and fence Barrier and memory fence functions
the device across this interface using the pinned meatie used in our task queue scheme to ensure the correct-
ory. Since queue operations only update objects of snraliss of the operations. In this test, we made all threads
sizes, i.e., tasks and index variables, we conducted (ha the device) calling a speci ¢ barrier or fence function
test for sizes fron8 bytes to4KB. Figure 3 shows mea-a large number of times, and measured the average com-
sured transfer times for transfers initialized by the hogletion time. For the fence function, we also measured
process, i.e., using the regular synchronous copies (Mdhe case that only one thread in each TB makes the call,
cpy) with the zero stream, asynchronous copies (Memhich emulates the scenario in dequeue operations.
cpyAsync) with the zero stream, and asynchronous copiegigure 4 shows the results for these functions with a TB
with a nonzero stream, and the transfers initialized Isjze 0f128 We observed thatthe completion time of these
the kernel, i.e., the mapped host memory, where BI- functions tends to keep constant regardless the number of
and D> H indicate the transfer from the host to the déFBs launched. Especially, the fence functions are very
vice, or the reverse, respectively. Note that one deviekcient; it takes a same amount of time to complete for
thread was used to perform transfers from the deviceth® case when called by a single thread in a TB (annotated
the mapped host memory. From the gure, it is clear thatith "one T/B” in the gure), and for the case when called
using a nonzero stream to perform asynchronous copigsall threads in a TB (annotated with "all Ts/B”). Similar

5.2 Microbenchmarks



results were observed for various TB sizes. 6.1 Molecular Dynamics

Atomic instructions Atomic functions are used in oury;q1ecular Dynamics (MD) [12] is a simulation method
task queue scheme to guarantee correct dequeue OR&fasmnputing dynamic particle interactions on the molec-
tions on the device. In this benchmark, one thread in eqﬂgr or atomic level. The method is based on knowing, at
TB performs a large number éétch-and-addunction on ¢ peginning of the simulation, the mass, position, and
a device's global memory address. Experimental resuli§qcity of each particle in the system (in general in a
show that atomic functions are being executed serialyty gpace). Each particle interacts with other particles
and the average completion time3&7s. Experiments j, the system and receives a net total force. This inter-
with other atomic functions show similar results. action is performed using a distance calculation, followed
Task queue operationsWe conducted experiments tdyy a force calculation. Force calculations are usually com-
show the average overhead of each enqueue and deqgeiged of long range, short range and bonded forces. While
operation for our task queue scheme. For the enquéddded forces are usually among few atoms composing
operation, this was measured by calling an enqueue opablecular bonds, the long range and short range forces
ation many times without running a kernel on the devicgre gated by a pre-determinegtoffradius, under the as-

In experiments, each enqueue operation pld@&asks sumption that only particles which are suf ciently close
in the queue. For the dequeue operations, we rst prgetually impact their respective net forces. When the net
loaded queues with a large number of tasks, and then fggce for each particle has been calculated, new positions
launched a kernel that only retrieves tasks from queugad velocities are computed through a series of motion
without performing any real work. The average enquedstimation equations. The process of net force calculation
time is1143 s, and the average dequeue timedids  and position integration repeats for each time step of the
when the dequeue kernel was run witkO TBs, each of simulation.

128threads. Comparing these numbers with Figure 3, itone of the common approaches used to parallelize
is clear that host-device data transfers account for the 8y simulations is atom-decomposition [25]. Atom-
jor overhead in enqueue operations. For exanpRCle gecomposition assigns the computation of a subgroup of
transactions in enqueue operations need approximatg§yms to each processing element (PE). Hereafter we as-
110s to nish, which is about95% of the overall en- gyme thatthél atom positions are stored in a linear array,
queue time. While this seems a very high overhead, Ry we denotéP as the number of PEs (GPUs in our spe-
overlapping enqueue operations with the computation gy case). A simple atom-decomposition strategy may
devices, our task queue scheme actually outperforms sg€ynsist in assignindl=P atoms to each PE. As simulated
eral alternative_s, for a molecular dynamics applicati@n, &stems may have non-uniform densities, it is important
shown in Section 6, to create balanced sub-group of atoms with similar num-
We also conducted experiments for enqueue operatites of forces to compute. Non-uniformity is found for
with varied number of tasks in each operation. We olmstance in gas simulation at molecular level with local
served that inserting more tasks with one operation ongriation of temperature and pressure [3]. The compu-
incurs negligible extra overhead, when a single queue ¢ational reason of this load unbalancing is that there is
hold these tasks. On the other hand, the average dequeatedirect correspondence between the atom position in
time is reduced when more TBs are used on the devigeand the spatial location in the 3D space. Two com-
For example, when increasing the number of TBs fdin mon approaches exist in literature to overcome this prob-
to 120, the average dequeue time decreases ofis  lem: randomizationand chunking They are both used
to 0:4 s, which is about the time to complete an atomi parallel implementations of state-of-the-art bioladic
function. This indicates that our dequeue algorithm actMD programs such as CHARMM [5] and GROMOS [9].
ally enables concurrent accesses to the shared queue firomandomization, elements in the arrAyare randomly
all TBs, with very small overhead. permuted at the beginning of the simulation, or every cer-
tain amount of time steps in the simulation. The arfay
6 Case Study: Molecular Dynamics is then equally partitioned among PEs. In chunking, the
array of atomsA is decomposed in more chunks than
In this section, we evaluate our task queue approach usiig number of available PEs. Then each PE performs the
a molecular dynamics application, which exhibits signi computation of a chunk and whenever it has nished, it
cant load imbalance. We compare the results with ottigrts the computation of the next unprocessed chunk.
load balance techniques based on the standard CUDAMe built a synthetic unbalanced system following a
APls. Gaussian distribution of helium atoms in a 3D box. The



system has a higher density in the center than in periphery.the cost of distance calculation and force calculation
The density decreases from the center to the periphlas to be proportionally taken in account. This solution is
following a Gaussian curve. Therefore the force contidesigned to take advantage of single GPU computing sac-
butions for the atoms at the periphery are much less théning multi-GPU load balancing. We use it in a multi-
those for the atoms close to the center. The force betw&&U con guration equally dividingA into P contiguous
atoms is calculated using both electrostatic potential aregdjions, knowing in advance that it will have poor load
Lennard-Jones potential [12]. We used a synthetic exalbalance behavior. The objective is to use it as a baseline to
ple for two reasons: (1) real life examples are quite comempare other load-balancing schemes in the multi-GPU
plex with many types of atoms and bonds (this would hae&periments.

required the development of a full MD simulator which is The “Solution 2” employs the randomization technique
out of the scope of this paper) (2) itis very dif cultto ndtg ensure all atoms are re-distributed in the arfaye-

real life examples where a particular atom distribution igardless their physical coordinates, therefore to eliteina
constant as the simulated system size scales up (therefRéeioad unbalance in the original array. For the multi-
it makes very hard to objectively evaluate different sol¢spy implementation the input array is equally divided
tions with different system sizes). into P contiguous regions and each device is responsible
6.2 Implementations for computing one region. This solution ensures almost

perfect load balance among multiple GPUs. However, it

Using the standard CUDA APIs we implemented two S@nqses the problem of thread divergence inside a warp,
lutions based on the randomization and chunking meth;

- ) 5 now atoms with a lot of forces interactions are mixed
ods on the array of the atom positioAs As randomiza- ,ith atoms with few force interaction.

tion of A may not be optimal for GPU computing (due to . .
! y bl puting (du The randomization procedure and counting sort are per-

the presence of thread divergence, as it is shown later, in q the host. and q t include thei
the rest of the paper), we also implemented a re-order{t? med on e Nost, and we do not Include heir exectl-
time into the overall computation time. Note that

scheme based on the spatial information of the simulalté domizati q " ; dure h
system. We also implemented our Task Queue solutigffidomization and counting sort procedure have compu-

where each task is the evaluatiorli@8atoms stored con- Fatlonal complexity( N ) and therefore can be fairly used

tiguously in the arrayA. In the rest of this section we ex-N atom-decomposition MD computation which has com-

i 2
plain in more detail the four implementations used both Hlex'ty ( N9).
single and multi-GPU con gurations. The “Solution 3" uses the chunking technique and it is
The “Solution 1” is the one that is based on the reordéPeci cally designed to take advantage of both load bal-
ing of A using the 3D spatial information of the simu@ncing among multiple-GPUs and thread convergence in
lated System' we call this techniqdecomposition_sort TBs. It basica"y invokes kernels with ne'grained work-
The reordering is perform using the counting sort algiad on the array reordered with tdecomposition-sort
rithm [10]. Speci cally, the 3D space is decomposed i#sed in "Solution 1". The chunking technique is imple-
boxes of size equal to theitoff radius. Then, these boxegnented as follows. The host process rst decomposes the
are selected using the counting sort algorithm. In this wiput array into many data chunks of equal atoms. Indi-
boxes with more atoms will be selected before boxes wifiual host control threads are then used to communicate
less atoms. Atoms in the selected box are restored b¥éth GPUs. Whenever a host control thread nds out that
in A starting from the beginning of the array. On each die corresponding device is free (nothing is running on
vice, a kernel is invoked for simulating one region, whetB€ device), it assigns the computation of a data chunk by
each TB is responsib|e for eva|uatimg8 atomS, and the |aUnChing a kernel with the data chunk information. This
number of TBs is determined by the size of the regioqa\evice then starts the computation of this data chunk. The
The Computation of a time Step nishes when all devicég)st Control thread WaitS Until a kernel eXitS and the deVice
nishes their regions. This approach practically perfomgecomes free again, then it launches another kernel with a
a partial sorting of atoms based on their interactions wit¢W data chunk. Since a device only receives a workload
the other atoms in the 3D space. This method reduces € it nishes the current one, this approach ensures a
thread divergence as atoms processed in a TB will foll@@od dynamic load balance. The computation completes
most likely the same control path, which is the most efthen all data chunks are computed.
cient execution way on GPUs. Due to this feature this The “Solution TQ" is the one based on our task queue
method is expected to be one of the fasted method fmheme presented in section 4, where each task is the eval-
single GPU, however patrtitioning at multi-GPU level isiation of128 atoms stored contiguously in the array. To
very dif cult. An uneven portioning has to be performeaxploit the spatial locality in the system, we also perform



thedecomposition-sogrocedure before the computationCUDA pro ler reports that Solution 2 occu®9% more

To ef ciently utilize the multiple-GPUs, we employ athread divergences than Solution 1, and its average run-
simple and ef cient load balance approach, based on dime per time step i4%slower than Solution 1.

task queue scheme. For each time step, the host procegne to the overhead of a large number of kernel invoca-
rst decomposes the computation to tasks and keeps thggghs and subsequent synchronizations, Solution 3 cannot
in a task pool. Then the host process spawns individghieve better performance than Solution 1 on a single-
host control threads for communicating with each GP\GPU system, although evaluating a larger data chunk with
On each GPU, two queues are used to overlap the hesth kernel invocation can alleviate such overhead.
enqueue with the device dequeue. Each queue holds ugolution TQ outperforms other approaches even when
to 20 tasks. Whenever a task queue of a GPU becomggning on a single GPU. In principle, for single GPU
empty, the corresponding host control thread tries to feteRecution it should behave similarly to Solution 1 (same
as much ag0tasks from the task pool at atime, and senql@ordermg scheme). However, fo5a2K atoms system,
them to the queue with a single enqueue operation. The average runtime per time stepdid6s and84:1s for
kernel was run witfL20 TBs, each ofl28threads. Note Sojution 1 and Solution TQ, respectively. This is almost a
these con guration numbers used were determined ennos, of difference.

pirically. Then host control threads send HALT tasks to Regarding this signi cant performance difference, our

devices to terminate the execution. ~ rst guess was that Solution 1 has to launch much more
Note that in all 4 solutions the same GPU function i8gs than our Solution TQ, therefore incurring in a large
used to perform the force computation. Also, before tilgyerhead. However, we experimentally measured that the
ing, the position data (arrak) are already available onextra overhead is relatively small. For example, when us-
GPUs. In this way we can ensure that all performanggy a simple kernel, launching it witd000TBs only in-
differences are only due to the load balancing mechanisgigs extra26s overhead, compared to launching it with
employed. 120 TBs, which does not justify the performance differ-
6.3 Results and Discussions ence betwee_n S_olutlon 1 a_nd Solution TQ. Therefore, the
only reason lies in how ef cient CUDA can schedule TBs
We evaluate the performance of all 4 implementatiogs different workload.
above with identical input data, for both single- and 1q investigate this issue, we create several workload
multiple-GPU scenario. patterns to simulate unbalanced load. To do this, we set up
6.3.1 Single-GPU scenario a balanced MD system &12K atom in which all atoms

i ) are uniformly distributedl Since the computation for
Figure 5 shows the normalized speedup of the averalfeh atom now involves equal amount of work, TBs con-

runtime per timg step over Solution 1 with r_espect to dié'lsting of computation of same amount of atoms should
ferent system sizes, when ofyGPU is used in the COM-also take a similar amount of time to nish. Based on this

putation. balanced system, we create several computations follow-
ing the patterns illustrated in Figure 6. In the gure, PO,
e —e , P4, represent systems of speci ¢ workload patterns.
All patterns consist of a same number of blocks. In Pattern
0, each block contains28atoms, which is the workload
o T— — for a TB (Solution 1), or in a task (Solution TQ). Pattern
o4 ooluton PO is actually the balanced system, and all blocks are of
02 Solution 3 equal workload. For the rest of patterns, some blocks are
i >Solton™ labelled aswilli ed . Whenever a TB reads such a block, it
s Tt either exits (Solution 1), or fetches another task immedi-
ately (Solution TQ). In Solution 1, the CUDA scheduler is
Qoti ed that a TB has completed and another TB is sched-
u‘gd. In Solution TQ, the persistent TB fetches another
task from the execution queue.

igure 7 shows the average run time per time step for

1.2

1

0.8

Relative speedup over Solution 1

System size (number of atoms)

Figure 5: Relative speedup over Solution 1 versus syst
size (1 GPU)

As discussed in the previous sub-section, unlike othelF

gpproaches, Solution 2 does not eXplOIt the Spatl(’.jll cha“l SWe use the balanced system only to understand this behawor,
in the system, and thus causes severe thread divergeggSeturn to the unbalanced Gaussian distributed systetheonext
on the TB. For example, for 812K atoms system, the section on multi-GPUs.
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lution 3), or queue operations (Solution TQ).

3

=¢=Solution 1
=#-Solution 2
2 Solution 3
«®-Solution TQ

_d—‘—'——__.—.

Figure 6: Workload patterns

Relative speed over Solution 1

Solution 1 and Solution TQ, for different workload pat- 32K 64K 128K 25K 512K 1M

terns. To our surprise the CUDA TB scheduler does not Sytem size (number of atoms)

handle properly unbalanced execution of TBs. When the

workload is balanced among all data blocks, i.e., Pattdrigure 8: Relative speedup over Solution 1 versus system
PO, Solution TQ is slightly worse than Solution 1 due t®z€ (4 GPUSs)

the overhead associated with queue operations. However,

for Pattern P1, P3, and P4, while Solution TQ achievedAs expected, when the system size becomes larger,
reduced runtime, which is proportional to the reduction #fe observe that solutions incorporated with load balance
the overall workload, Solution 1 failed to attain a similamechanisms remarkably outperform Solution 1. For ex-
reduction. For example, for Pattern P4, which impliesample, for a system size &12X atoms, Solution 2, 3,
reduction of75%workload over PO, Solution TQ and Soand TQ arel:24x, 2:02x, and2:45x faster than Solution
lution 1 achieved runtime reduction 84:5%, and48:4%, 1, respectively. Especially, for these large system sizes,
respectively. To ensure that this observation is not orfiplution TQ achieves the best performance among all so-
speci ¢ to our MD code, we conducted similar expetutions, i.e., itis constantly abot2x faster than Solution
iments withmatrixMul, a NVIDIAs implementation of 3, the second best approach.

matrix multiplication included in CUDA SDK. The results Figure 9 shows the speedup with respect to the number
also con rm our observation. This indicates that, wheof GPUSs, for &b12K-atom system. From the plot, we ob-
workload is unbalanced distributed among TBs, CUDgerve that, except Solution 1, ottapproaches achieve
cannot schedule new TBs immediately when some TBearly linearly speedup when more GPUs are used (they
terminate, while our task queue scheme can utilize thee so close that virtually there is only one curve visible

hardware more ef ciently. in the gure for Solution 2, 3, and TQ).
4
35 =¢=Solution 1 /
3 ||“®=Solution 2
25 Solution 3
=e-Solution TQ

05— |systemsize=512K [

1 2 3 4
Number of GPUs

Figure 7: Runtime for different load patterns .
Figure 9: Speedup versus number of GPUs

6.3.2 Multi-GPU scenario This is well explained by Figure 10, which shows the
Figure 8 shows the normalized speedup of the averaggual “busy” time of individual GPUs, whehGPUs are
runtime per time step over Solution 1, with respect to difised in the computation. As illustrated, for Solution 1, the
ferent system sizes, when 4lGPUs are used in the comdoad among GPUs is extremely unbalanced.

putation. When the system size is sma8BK), Solution 2 In contrast, otheB approaches achieve good load bal-
achieves the best performance (slightly over Solution Bnce. However, their absolute times vary. While Solution
while Solution 3 and Solution TQ incur relatively signif2 is effective in terms of load balancing, it1s9x slower
icant overhead associated multiple kernel launching (Sban Solution TQ for large systems, i.256K and up. As
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