
Dynamic Load Balancing on Single- and Multi-GPU Systems

Long Chen†, Oreste Villa‡, Sriram Krishnamoorthy‡, Guang R. Gao†

†Department of Electrical & Computer Engineering ‡High Performance Computing
University of Delaware Pacific Northwest National Laboratory

Newark, DE 19716 Richland, WA 99352
{lochen, ggao}@capsl.udel.edu {oreste.villa, sriram}@pnl.gov

Abstract
The computational power provided by many-core graph-
ics processing units (GPUs) has been exploited in many
applications. The programming techniques currently em-
ployed on these GPUs are not sufficient to address prob-
lems exhibiting irregular, and unbalanced workload. The
problem is exacerbated when trying to effectively exploit
multiple GPUs concurrently, which are commonly avail-
able in many modern systems. In this paper, we propose
a task-based dynamic load-balancing solution for single-
and multi-GPU systems. The solution allows load balanc-
ing at a finer granularity than what is supported in cur-
rent GPU programming APIs, such as NVIDIA’s CUDA.
We evaluate our approach using both micro-benchmarks
and a molecular dynamics application that exhibits signif-
icant load imbalance. Experimental results with a single-
GPU configuration show that our fine-grained task so-
lution can utilize the hardware more efficiently than the
CUDA scheduler for unbalanced workload. On multi-
GPU systems, our solution achieves near-linear speedup,
load balance, and significant performance improvement
over techniques based on standard CUDA APIs.

1 Introduction
Many-core Graphics Processing Units (GPUs) have be-
come an important computing platform in many scien-
tific fields due to the high peak performance, cost ef-
fectiveness, and the availability of user-friendly program-
ming environments, e.g., NVIDIA CUDA [21] and ATI
Stream [1]. In the literature, many works have been re-
ported on how to harness the massive data parallelism pro-
vided by GPUs [4, 8, 14, 20, 24, 26].

However, issues, such as load balancing and GPU re-
source utilization, cannot be satisfactorily addressed by
the current GPU programming paradigm. For example, as
shown in Section 6, CUDA scheduler cannot handle the
unbalanced workload efficiently. Also, for problems that
do not exhibit enough parallelism to fully utilize the GPU,

employing the canonical GPU programming paradigm
will simply underutilize the computation power. These
issues are essentially due to fundamental limitations on
the current data parallel programming methods.

In this paper, we propose a task-based fine-grained exe-
cution scheme that can dynamically balance workload on
individual GPUs and among GPUs, and thus utilize the
underlying hardware more efficiently.

Introducing tasks on GPUs is particularly attractive for
the following reasons. First, although many applications
are suitable for data parallel processing, a large number
of applications show more task parallelism than data par-
allelism, or a mix of both [7]. Having a task parallel
programming scheme will certainly facilitate the devel-
opment of this kind of applications on GPUs. Second, by
exploiting task parallelism, it is possible to show better
utilization of hardware features. For example, task paral-
lelism is exploited in [23] to efficiently use the on-chip
memory on the GPU. Third, in task parallel problems,
some tasks may not be able to expose enough data par-
allelism to fully utilize the GPU. Running multiple such
tasks on a GPU concurrently can increase the utilization
of the computation resource and thus improve the overall
performance. Finally, with the ability to dynamically dis-
tribute fine-grained tasks between CPUs and GPUs, the
workload can potentially be distributed properly to the
computation resources of a heterogeneous system, and
therefore achieve better performance.

However, achieving task parallelism on GPUs can be
challenging; the conventional GPU programming does
not provide sufficient mechanisms to exploit task par-
allelism in applications. For example, CUDA requires
all programmer-defined functions to be executed sequen-
tially on the GPU [22]. Open Computing Language
(OpenCL) [16] is an emerging programming standard for
general purpose parallel computation on heterogeneous
systems. It supports the task parallel programming model,
in which computations are expressed in terms of multiple
concurrent tasks where a task is a function executed by

1



a single processing element, such as a CPU thread. How-
ever, this task model is basically established for multi-core
CPUs, and does not address the characteristics of GPUs.
Moreover, it does not require a particular OpenCL imple-
mentation to actually execute multiple tasks in parallel.
For example, NVIDIA’s current OpenCL implementation
does not support concurrent execution of multiple tasks
due to the hardware limitations.

To address the problem of achieving dynamic load bal-
ance with fine-grained task execution on GPUs, in this
paper, we make the following contributions.

• We first identify the mechanisms to enable correct
and efficient CPU-GPU interactions while the GPU
is computing, based on the current CUDA technol-
ogy. This provides means for building uninterrupted
communication schemes between CPUs and GPUs.

• Based on the above contribution, we introduce a task
queue scheme, which enables dynamic load balanc-
ing at a finer granularity than what is supported in
existing CUDA programming paradigm. We also
study the optimal memory sub-system locations for
the queue data structures.

• We implement our task queue scheme with CUDA.
This implementation features concurrent host en-
queue and device dequeue, and wait-free dequeue
operations on the device. We evaluate the perfor-
mance of the queue operations with benchmarks.

• As a case study, we apply our task queue scheme
to a molecular dynamics application. Experimental
results with a single-GPU configuration show that
our scheme can utilize the hardware more efficiently
than the CUDA scheduler, for unbalanced problems.
For multi-GPU configurations, our solution achieves
nearly linear speedup, load balance, and significant
performance improvement over alternative imple-
mentations based on the canonical CUDA paradigm.

The rest of the paper is organized as follows. Section 2
presents a brief overview of the research on load balanc-
ing and task parallelism on GPUs. Section 3 describes
the CUDA architecture. Section 4 presents the design of
our task queue scheme. Section 5 discusses implementa-
tion issues and benchmarking results of queue operations.
Section 6 evaluates our task queue scheme with a molec-
ular dynamics application on single- and multi-GPU sys-
tems. Section 7 concludes with future work.

2 Related Work
Load balance is a critical issue for parallel processing.
However, in the literature, there are few studies address-
ing this issue on GPUs. The load imbalance issue of

graphic problems was discussed in [11, 19], and authors
observed that it is of fundamental importance for high per-
formance implementations on GPUs. Several static and
dynamic load balancing strategies were evaluated for an
octree partitioning problem on GPUs in [6]. Our work
differs from this study in several ways. First, in the for-
mer study, the load balancing strategies were carried out
solely on the GPU; the CPU cannot interact with the GPU
during the execution. Second, the former study only in-
vestigated single-GPU systems. Our work is performed
on both single- and multi-GPU systems, and can be easily
extended to GPU clusters.

A runtime scheduler is presented for situations where
individual kernels cannot fully utilize GPUs [13]. It ex-
tracts the workloads from multiple kernels and merges
them into a super-kernel. However, such transformations
have to be performed statically, and thus dynamic load
balance cannot be guaranteed. Recently, researchers have
begun to investigate how to exploit heterogeneous plat-
forms with the concept of tasks. Merge [17] is such
a programming framework proposed for heterogeneous
multi-core systems. It employs a library-based method
to automatically distribute computation across the under-
lying heterogeneous computing devices. STARPU [2]
is another framework for task scheduling on heteroge-
neous platforms, in which hints, including the perfor-
mance models of tasks, can be given to guide the schedul-
ing policies. Our work is orthogonal to prior efforts in
that our solution exhibits excellent dynamic load balance.
It also enables the GPU to exchange information with
the CPU during execution, which enables these platforms
to understand the runtime behavior of the underlying de-
vices, and further improve the performance of the system.

3 CUDA Architecture
In this section we provide a brief introduction of the
CUDA architecture and the programming model. More
details are available on the CUDA website [21]. In the
literature, GPUs and CPUs are usually referred to as the
devicesand thehosts, respectively. We follow the same
terminology in this paper.

CUDA devices have one or multiple streaming multi-
processors (SMs), each of which consists of one instruc-
tion issue unit, eight scalar processor (SP) cores, two tran-
scendental function units, and on-chip shared memory.
For some high-end devices, the SM also has one double-
precision floating point unit. CUDA architecture features
both on-chip memory and off-chip memory. The on-chip
memory consists of the register file, shared memory, con-
stant cache and texture cache. The off-chip memory con-
sists of the local memory and the global memory. Since

2



there is no ordering guarantee of memory accesses on
CUDA architectures, programmers may need to use mem-
ory fence instructions to explicitly enforce the ordering,
and thus the correctness of the program. The host can only
access the global memory of the device. On some devices,
part of the host memory can be pinned and mapped into
the device’s memory space, and both the host and the de-
vice can access that memory region using normal memory
load and store instructions.

A CUDA program consists of two parts. One part is
the portions to be executed on the CUDA device, which
are calledkernels; another part is to be executed on the
host, which we call thehost process. The device exe-
cutes one kernel at a time, while subsequent kernels are
queued by the CUDA runtime. When launching a ker-
nel, the host process specifies how many threads are re-
quired to execute the kernel, and how manythread blocks
(TB) these threads should be equally divided into. On the
device, all threads can access the global memory space,
but only threads within a TB can access the associated
shared memory, with very low latency. A thread can ob-
tain its logic thread index within a TB and its logic TB
index via built-in system variables. The hardware sched-
ules and distributes TBs to SMs with available execution
capacity. One or multiple TBs can reside concurrently on
one SM, given sufficient hardware resources, i.e., regis-
ter file, shared memory, etc. TBs do not migrate during
the execution. As they terminate, the hardware launches
new TBs on these vacated SMs, if there are still some TBs
to be executed for this kernel. Each thread is mapped to
one SP core. Moreover, the SM manages the threads in
groups of 32 threads calledwarps, in the sense that all
threads in a warp execute one common instruction at a
time. Thread divergences occur when the threads within
a wrap take different execution paths. The execution of
those taken paths will be serialized, which can signifi-
cantly degrade the performance. While CUDA provides
a barrier function to synchronize threads within a TB,
it does not provide any mechanism for communications
across TBs. However, with the availability of the atomic
instructions and memory fence functions, it is possible to
achieve inter-TB communications.

4 System Design

In this section, we first describe the basic idea of our task
queue scheme. Then we discuss the necessary mecha-
nisms to perform host-device interactions correctly and
efficiently, and then present the design of our task queue
scheme in detail.

4.1 Basic Idea
With the current CUDA programming paradigm, to exe-
cute multiple tasks, the host process has to sequentially
launch multiple, different kernels, and the hardware is
responsible for arranging how kernels run on the de-
vice [22]. This paradigm is illustrated in Figure 1. On the

Figure 1: CUDA programming paradigm

other hand, in our task queue scheme, instead of launch-
ing multiple kernels for different tasks, we launch aper-
sistentkernel withB TBs, whereB can be as big as the
maximum number of concurrently active TBs that a spe-
cific device can support. Since CUDA will notswap out
TBs during their execution, after being launched, all TBs
will stay active, and wait for executing tasks until the ker-
nel terminates. When the kernel is running on the device,
the host process enqueues both computation tasks and sig-
nalling tasks to one or more task queues associated with
the device. The kernel dequeues tasks from the queues,
and executes them according to the pre-defined task in-
formation. In other words, the host process dynamically
controls the execution of the kernel by enqueuing tasks,
which could be homogeneous or heterogeneous. This task
queue idea is illustrated in Figure 2.

Figure 2: Task queue paradigm

4.2 Preliminary Considerations
Since task queues are usually generalized as producer-
consumer problems, let us first consider the single-

3



producer single-consumer case. Algorithm 1 shows the
pseudo-code ofenqueueanddequeueoperations for such
scenario on a shared memory system.queueis a shared
buffer between the producer and the consumer.start and
endare indexes of next location for dequeue and enqueue,
respectively. At the beginning, both indexes are initialized
as0. By pollingstartandend, the producer/consumer can
determine if it can enqueue/dequeue tasks.

Algorithm 1
Enqueue

Data: a task objecttask, a task queuequeue of a capacity ofsize

Result: task is inserted intoqueue

1: repeat
2: l← (end − start + size) (mod size)
3: until l < (size− 1)
4: queue[end] ← task

5: end← (end + 1) (mod size)

Dequeue
Data: a task queuequeue of a capacity ofsize

Result: a task object is removed fromqueue into task

1: repeat
2: l← (end − start + size) (mod size)
3: until l > 0
4: task ← queue[start]
5: start← (start + 1) (mod size)

If we want to establish a similar scheme for the host-
device communication, where the host process is the pro-
ducer, and the kernel is the consumer, the following issues
have to be addressed properly.

The first issue is how to enable the host process to per-
form copies between the host memory and device mem-
ory without interrupting the kernel execution, which is of
fundamental importance for our task queue scheme.

The second issue is where to keep the queue and asso-
ciated index variables. For index variables, a naı̈ve choice
would be havingend in the host’s memory system, and
havingstart in the device’s memory system. In this case,
all updates to index variables can be performed locally.
However, this choice introduces serious performance is-
sue, i.e., each queue polling action requires an access to a
index variable in another memory system, which implies
a transaction across the host-device interface. This incurs
significant latency (as shown in Section 5 for a PCIe bus).
On the other hand, having bothstartandendon one mem-
ory system will not help; either the host process or the ker-
nel has to perform two transactions across the host-device
interface, which actually aggravates the situation.

The third issue is how to guarantee the correctness
of the queue operations in this host-device situation.
Since each enqueue/dequeue operation consists of mul-
tiple memory updates, i.e., write/read to the queue and
write to an index, it is crucial to ensure the correct or-
dering of these memory accesses while across the host-

device interface. For example, for an enqueue operation
described in Algorithm 1, by the updated value ofend
(Enqueue:line-5) is visible to the kernel, the insertion of
task (Enqueue:line-4) should have completed. If the or-
dering of these two memory accesses were reversed by the
hardware/software for some reason, the kernel will not be
able to see the consistent queue state, and therefore the
whole scheme will not work correctly.

The final issue is how to guarantee the correctness on
accessing shared objects, if we allow dynamic load bal-
ance on the device. Lock is extensively used for this pur-
pose. However, as presented in [6], a lock-based blocking
method is very expensive on GPUs.

With evolving GPU technologies, now it is possible to
address above issues by exploiting the new hardware and
software features. More specifically, the current CUDA
allows “asynchronous concurrent execution”1. This fea-
ture enables copies between pinned host memory and
device memory concurrently with the kernel execution,
which solves our first issue.

Since CUDA 2.2, a region of the host’s memory can
be mapped into the device’s address space, and kernels
can directly access this region of memory using normal
load/store memory operations2. By duplicating index
variables, and cleverly utilizing this feature, as we shall
demonstrate in our design, the queue polling in the en-
queue and dequeue operations only incurs local memory
accesses, and at most one remote memory access to an in-
dex variable is needed for a successful enqueue/dequeue
operation. This addresses part of the second issue, i.e.,
where to keep index variables.

The solution to the rest of the second issue and the third
issue essentially requires mechanisms to enforce the or-
dering of memory access across the host-device interface.
Memory fence functions are included in the new CUDA
runtime. But they are only for memory accesses (made
by the kernel) to the global and shared memory on the
device. On the other hand, CUDAeventcan be used by
the host process to asynchronously monitor the device’s
progress, e.g., memory accesses. Basically, an event can
be inserted into a sequence of commands issued to a de-
vice. If this event isrecorded, then all commands pre-
ceding it must have completed. Therefore, by inserting
an event immediately after a memory access to the de-
vice’s memory system and waiting for its being recorded,
the host process can guarantee that such memory opera-
tion has completed on the device, before it proceeds. This
is equivalent to a memory fence for the host process to

1. This feature is available on CUDA devices that supportde-
viceOverlap.

2Provided that this CUDA device supportscanMapHostMemory.

4



access the device’s memory system. However, at this mo-
ment, there is no sufficient mechanism to ensure the order-
ing of memory accesses made by a kernel to the mapped
host memory [18]. In this case, if we had the task queues
residing on the host memory system, in the dequeue op-
eration, the kernel cannot guarantee that the memory read
on the task object has completed before updating the cor-
responding index variables. Therefore, the queue(s) can
only reside in the global memory on the device. On the
whole, by having the queue(s) on the device, and using
both the event-based mechanism mentioned above and the
device memory fence functions, we can develop correct
enqueue and dequeue semantics that consist of memory
accesses to both the host’s memory system and the de-
vice’s memory system.

With the advent of atomic functions on GPUs, such as
fetch-and-addandcompare-and-swap, it is possible to al-
low non-blocking synchronization mechanisms. This re-
solves the last issue.

Here we summary all necessary mechanisms to enable
correct, efficient host-device interactions as follows.

1. Asynchronous concurrent execution: overlap the
host-device data transfer with kernel execution.

2. Mapped host memory: enable the light-weight queue
polling without generating host-device traffic.

3. Event: asynchronously monitor the device’s
progress.

4. Atomic instructions: enable the non-blocking syn-
chronization.

4.3 Notations

Before we present the task queue scheme, we first intro-
duce terminologies that will be used throughout the pa-
per. On a device, threads have a uniquelocal id within a
TB. hostwrite fence()is the event-based mechanism de-
scribed above, which guarantees the correct ordering of
memory stores made by the host process to the device’s
memory system.block write fence()is a fence function
that guarantees that all device memory stores (made by
the calling thread on the device) prior to this function are
visible to all thread in the TB.block barrier() synchro-
nizes all threads within a TB.

For variables that are referred by both the host process
and the kernel, we prefix them with eitherh or d to de-
note their actual residence on the host or the device, re-
spectively. For variables residing in the device’s memory
system, we also postfix them withsmor gm to denote
whether they are in the shared memory or in the global
memory. For those variables without any prefix or postfix
just described, they are simply host/device local variables.

4.4 Task Queue Scheme
Here we present our novel task queue scheme, which al-
lows automatic, dynamic load balancing on the device
without using expensive locks. In this scheme, the host
process sends tasks to the queue(s) without interrupting
the execution of the kernel. On the device, all TBs con-
currently retrieve tasks from these shared queue(s). Each
task will be executed by a single TB.

A queue object is described by the following variables.
At the beginning of a computation, all those variables are
initialized to0s.

• d tasks gm: an array of task objects.
• d n gm: the number of tasks ready to be dequeued

from this queue.
• h written: the host’s copy of the accumulated num-

ber of tasks written to this queue.
• d written gm: the device’s copy of the accumu-

lated number of tasks written to this queue.
• h consumed: the host’s copy of the accumulated

number of tasks dequeued by the device.
• d consumed gm: the device’s copy of the accumu-

lated number of tasks dequeued by the device.

Algorithm 2 Host Enqueue
Data: n task objectstasks, n queue task queuesq , each of a capacity of

size, i next queue to insert
Result: host process enqueuestasks into q

1: n remaining ← n

2: if n remaining > size then
3: n to write← size

4: else
5: n to write← n remaining

6: end if
7: repeat
8: if q[i].h consumed == q[i].h written then
9: q[i].d tasks gm ← tasks[n − n remaining : n −

n remaining + n to write− 1]
10: q[i].d n gm ← n to write

11: host write fence()
12: q[i].h written← q[i].h written + n to write

13: q[i].d written gm← q[i].h written

14: i← (i + 1) (mod n queues)
15: n remaining ← n remaining − n to write

16: if n remaining > size then
17: n to write← size

18: else
19: n to write← n remaining

20: end if
21: else
22: i← (i + 1) (mod n queues)
23: end if
24: until n to write == 0

The complete enqueue and dequeue procedures are de-
scribed in Algorithm 2, and Algorithm 3, respectively. To
enqueue tasks, the host first has to check whether a queue
is ready. In our scheme, we require that a queue is ready
when it is empty, which is identified byh consumed ==
h written. If a queue is not ready, the host either waits

5



Algorithm 3 Device Dequeue
Data: n queue task queuesq, i next queue to work on
Result: TB fetches a task object fromq into task sm

1: done← false
2: if local id == 0 then
3: repeat
4: if q[i].d consumed gm == q[i].d written gm then
5: i← (i + 1) (mod n queues)
6: else
7: j ← fetch and add(q[i].d n gm,−1)− 1
8: if j ≥ 0 then
9: task sm← q[i].d tasks gm[j]

10: block write fence()
11: done← true
12: jj ← fetch and add(q[i].d consumed gm, 1)
13: if jj == q[i].d written gm then
14: q[i].h consumed← q[i].d consumed gm

15: i← (i + 1) (mod n queues)
16: end if
17: else
18: i← (i + 1) (mod n queues)
19: end if
20: end if
21: until done

22: end if
23: block barrier()

until this queue becomes ready (single-queue case), or
checks other queues (multi-queue case). Otherwise, the
host first places tasks ind tasks gm starting from the
starting location, and updated n gm to the number of
tasks enqueued. Then it waits onhostwrite fence()to
make sure that the previous writes have completed on the
device. After that, the host process updatesh written,
andd written gm to inform the kernel that new tasks are
available in the queue.

On the device, each TB uses a single thread, i.e., the one
of local id == 0, to dequeue tasks. It first determines
whether a queue is empty by checkingd consumed gm
and d written gm. If a queue is empty, then it keeps
checking until this queue has tasks (single-queue case) or
checks other queues (multi-queue case). Otherwise, it first
appliesfetch-and-addon d n gm with −1. If the return
value of this atomic function is greater than0, it means
there is a valid task available in the queue, and this TB
can use this value as the index to retrieve a task from
d tasks gm. The thread waits on the memory fence until
the retrieval of the task is finished. It then appliesfetch-
and-addon d written gm with 1, and checks whether
the task just retrieved is the last task in the queue by com-
paring the return value of the atomic function just called
with d written gm. If yes, this thread is responsible for
updatingh consumed to inform the host process that this
queue is empty. Barrier (Algorithm 3:Line 23) is used
to make sure that all threads in a TB will read the same
task information fromtask sm after the dequeue proce-
dure exits. The dequeue procedure is a wait-free [15] ap-
proach, in the sense that in a fixed number of steps, a TB

either retrieves a task from a queue, or finds out that queue
is empty.

To avoid data race, this scheme does not allow the host
process to enqueue tasks to an non-empty queue that is
possibly being accessed by the kernel. This seems to be a
shortcoming of this scheme because enqueue and dequeue
operations cannot be carried out concurrently on a same
queue. However, simply employing multiple queues can
efficiently solve this issue by overlapping enqueue with
the dequeue on different queues.

To determine when to signal the kernel to terminate, the
host process has to check whether all queues are empty
after computation tasks have been enqueued. If it is true,
the host process enqueuesB HALT tasks, one for each
of theB concurrently active TBs on the device. TBs exit
after getting HALT, and eventually the kernel terminates.

Although our task queue scheme is presented for a sin-
gle device, we have extended it for multi-GPU systems
(on a single node), where a higher level task queue is
maintained on the host side for coordinating the multi-
ple GPUs. Extension to multiple nodes can also be car-
ried out smoothly, but it is out of the scope of this paper.
Moreover, the task queue scheme can be extended to allow
multiple host processes share the use of a single device,
by sending heterogeneous tasks to the queue(s) associated
with the device, given host processes are orchestrated by
some synchronizations. This can potentially increase the
utilization of the device if a host process cannot fully use
the computation capacity of the device.

5 Implementation and Microbench-
marks

In this section, we first describe the platform used in
our experiments and some implementation issues of task
queue scheme. We then present the benchmarking results
for operations used in our task queue scheme.

5.1 Implementation
We implemented our task queue scheme on a system
equipped with1 quad-core AMD Phenom II X4 940 pro-
cessor and4 NVIDIA Tesla C1060 GPUs. The system is
running 64-bit Ubuntu version 8.10, with NVIDIA driver
version 190.10. CUDA Toolkit version 2.3 ,CUDA SDK
version 2.3, and GCC version 4.3.2 were used in the de-
velopment. The above system provides all necessary fea-
tures to implement our task queue scheme.

To utilize the asynchronous concurrent execution fea-
ture, CUDA requires using different, nonzero CUDA
streams, where a stream is basically a sequence of com-
mands that are performed in order on the device, and the
zero stream is the default stream in CUDA. So, in our im-

6



Figure 3: Data transfer time

plementation, we use one stream for kernel launching, an-
other stream for performing queue operations.

While CUDA does provide the required memory fence
function, threadfence block(), it does not differentiate
between stores and loads. In our implementations, it were
used as a store fences. CUDA also provides a function to
synchronize all threads in a TB,syncthreads(), which
behaves as both a regular barrier and also a memory fence
in a TB. Therefore, in our implementations, we took ad-
vantage of this and eliminated redundant operations.

5.2 Microbenchmarks

Here we report benchmarking results for major compo-
nents performed in queue operations, such as, host-device
data transfer, synchronizations, atomic instructions, and
the complete enqueue/dequeue operations. Performance
measurements of these individual components help us un-
derstand how our designs work with the real applications.
Host-device data transfer The host-device interface
equipped in our system is PCIe 2.0x8. We measured
the time to transfer contiguous data between the host and
the device across this interface using the pinned mem-
ory. Since queue operations only update objects of small
sizes, i.e., tasks and index variables, we conducted the
test for sizes from8 bytes to4KB. Figure 3 shows mea-
sured transfer times for transfers initialized by the host
process, i.e., using the regular synchronous copies (Mem-
cpy) with the zero stream, asynchronous copies (Mem-
cpyAsync) with the zero stream, and asynchronous copies
with a nonzero stream, and the transfers initialized by
the kernel, i.e., the mapped host memory, where H->D
and D->H indicate the transfer from the host to the de-
vice, or the reverse, respectively. Note that one device
thread was used to perform transfers from the device to
the mapped host memory. From the figure, it is clear that
using a nonzero stream to perform asynchronous copies

Figure 4: Barrier and fence functions (128Ts/B)

is much expensive, compared to both synchronous copies
and asynchronous copies performed with the zero stream,
i.e., 5x-10x slower. Without exposing to the CUDA in-
ternal, we do not really understand why such operation is
so costly. On the other hand, with the current CUDA pro-
gramming environment, using nonzero streams is the only
way to achieve the asynchronous concurrent execution.

For transfers initialized by the host process, the trans-
fer time changes slowly in the above data range due to
the high bandwidth, i.e.,4GB/s. So, if the host-device
data transfer is inevitable, combining multiple data ac-
cesses into one single transaction is highly recommended.
In fact, in our implementation of the enqueue operation,
we actually updated n gm andd tasks gm with a single
host-device transaction.

On the other hand, since there is no mechanism for a
kernel to copy a contiguous memory region, such copy
has to be performed with assignments on basic data types.
Therefore, the transfer time is linearly proportional to the
size of data.
Barrier and fence Barrier and memory fence functions
are used in our task queue scheme to ensure the correct-
ness of the operations. In this test, we made all threads
(on the device) calling a specific barrier or fence function
a large number of times, and measured the average com-
pletion time. For the fence function, we also measured
the case that only one thread in each TB makes the call,
which emulates the scenario in dequeue operations.

Figure 4 shows the results for these functions with a TB
size of128. We observed that the completion time of these
functions tends to keep constant regardless the number of
TBs launched. Especially, the fence functions are very
efficient; it takes a same amount of time to complete for
the case when called by a single thread in a TB (annotated
with ”one T/B” in the figure), and for the case when called
by all threads in a TB (annotated with ”all Ts/B”). Similar

7



results were observed for various TB sizes.

Atomic instructions Atomic functions are used in our
task queue scheme to guarantee correct dequeue opera-
tions on the device. In this benchmark, one thread in each
TB performs a large number offetch-and-addfunction on
a device’s global memory address. Experimental results
show that atomic functions are being executed serially,
and the average completion time is327ns. Experiments
with other atomic functions show similar results.

Task queue operations We conducted experiments to
show the average overhead of each enqueue and dequeue
operation for our task queue scheme. For the enqueue
operation, this was measured by calling an enqueue oper-
ation many times without running a kernel on the device.
In experiments, each enqueue operation places120 tasks
in the queue. For the dequeue operations, we first pre-
loaded queues with a large number of tasks, and then we
launched a kernel that only retrieves tasks from queues,
without performing any real work. The average enqueue
time is 114.3µs, and the average dequeue time is0.4µs
when the dequeue kernel was run with120 TBs, each of
128 threads. Comparing these numbers with Figure 3, it
is clear that host-device data transfers account for the ma-
jor overhead in enqueue operations. For example,2 PCIe
transactions in enqueue operations need approximately
110µs to finish, which is about95% of the overall en-
queue time. While this seems a very high overhead, by
overlapping enqueue operations with the computation on
devices, our task queue scheme actually outperforms sev-
eral alternatives, for a molecular dynamics application, as
shown in Section 6,

We also conducted experiments for enqueue operations
with varied number of tasks in each operation. We ob-
served that inserting more tasks with one operation only
incurs negligible extra overhead, when a single queue can
hold these tasks. On the other hand, the average dequeue
time is reduced when more TBs are used on the device.
For example, when increasing the number of TBs from16
to 120, the average dequeue time decreases from0.7µs
to 0.4µs, which is about the time to complete an atomic
function. This indicates that our dequeue algorithm actu-
ally enables concurrent accesses to the shared queue from
all TBs, with very small overhead.

6 Case Study: Molecular Dynamics

In this section, we evaluate our task queue approach using
a molecular dynamics application, which exhibits signifi-
cant load imbalance. We compare the results with other
load balance techniques based on the standard CUDA
APIs.

6.1 Molecular Dynamics

Molecular Dynamics (MD) [12] is a simulation method
of computing dynamic particle interactions on the molec-
ular or atomic level. The method is based on knowing, at
the beginning of the simulation, the mass, position, and
velocity of each particle in the system (in general in a
3D space). Each particle interacts with other particles
in the system and receives a net total force. This inter-
action is performed using a distance calculation, followed
by a force calculation. Force calculations are usually com-
posed of long range, short range and bonded forces. While
bonded forces are usually among few atoms composing
molecular bonds, the long range and short range forces
are gated by a pre-determinedcutoffradius, under the as-
sumption that only particles which are sufficiently close
actually impact their respective net forces. When the net
force for each particle has been calculated, new positions
and velocities are computed through a series of motion
estimation equations. The process of net force calculation
and position integration repeats for each time step of the
simulation.

One of the common approaches used to parallelize
MD simulations is atom-decomposition [25]. Atom-
decomposition assigns the computation of a subgroup of
atoms to each processing element (PE). Hereafter we as-
sume that theN atom positions are stored in a linear array,
A. We denoteP as the number of PEs (GPUs in our spe-
cific case). A simple atom-decomposition strategy may
consist in assigningN/P atoms to each PE. As simulated
systems may have non-uniform densities, it is important
to create balanced sub-group of atoms with similar num-
ber of forces to compute. Non-uniformity is found for
instance in gas simulation at molecular level with local
variation of temperature and pressure [3]. The compu-
tational reason of this load unbalancing is that there is
not direct correspondence between the atom position in
A and the spatial location in the 3D space. Two com-
mon approaches exist in literature to overcome this prob-
lem: randomizationand chunking. They are both used
in parallel implementations of state-of-the-art biological
MD programs such as CHARMM [5] and GROMOS [9].
In randomization, elements in the arrayA are randomly
permuted at the beginning of the simulation, or every cer-
tain amount of time steps in the simulation. The arrayA
is then equally partitioned among PEs. In chunking, the
array of atomsA is decomposed in more chunks thanP ,
the number of available PEs. Then each PE performs the
computation of a chunk and whenever it has finished, it
starts the computation of the next unprocessed chunk.

We built a synthetic unbalanced system following a
Gaussian distribution of helium atoms in a 3D box. The

8



system has a higher density in the center than in periphery.
The density decreases from the center to the periphery
following a Gaussian curve. Therefore the force contri-
butions for the atoms at the periphery are much less than
those for the atoms close to the center. The force between
atoms is calculated using both electrostatic potential and
Lennard-Jones potential [12]. We used a synthetic exam-
ple for two reasons: (1) real life examples are quite com-
plex with many types of atoms and bonds (this would have
required the development of a full MD simulator which is
out of the scope of this paper) (2) it is very difficult to find
real life examples where a particular atom distribution is
constant as the simulated system size scales up (therefore
it makes very hard to objectively evaluate different solu-
tions with different system sizes).

6.2 Implementations
Using the standard CUDA APIs we implemented two so-
lutions based on the randomization and chunking meth-
ods on the array of the atom positionsA. As randomiza-
tion of A may not be optimal for GPU computing (due to
the presence of thread divergence, as it is shown later in
the rest of the paper), we also implemented a re-ordering
scheme based on the spatial information of the simulated
system. We also implemented our Task Queue solution,
where each task is the evaluation of128 atoms stored con-
tiguously in the arrayA. In the rest of this section we ex-
plain in more detail the four implementations used both in
single and multi-GPU configurations.

The “Solution 1” is the one that is based on the reorder-
ing of A using the 3D spatial information of the simu-
lated system, we call this techniquedecomposition-sort.
The reordering is perform using the counting sort algo-
rithm [10]. Specifically, the 3D space is decomposed in
boxes of size equal to thecutoff radius. Then, these boxes
are selected using the counting sort algorithm. In this way
boxes with more atoms will be selected before boxes with
less atoms. Atoms in the selected box are restored back
in A starting from the beginning of the array. On each de-
vice, a kernel is invoked for simulating one region, where
each TB is responsible for evaluating128 atoms, and the
number of TBs is determined by the size of the region.
The computation of a time step finishes when all devices
finishes their regions. This approach practically performs
a partial sorting of atoms based on their interactions with
the other atoms in the 3D space. This method reduces the
thread divergence as atoms processed in a TB will follow
most likely the same control path, which is the most ef-
ficient execution way on GPUs. Due to this feature this
method is expected to be one of the fasted method for
single GPU, however partitioning at multi-GPU level is
very difficult. An uneven portioning has to be performed

as the cost of distance calculation and force calculation
has to be proportionally taken in account. This solution is
designed to take advantage of single GPU computing sac-
rificing multi-GPU load balancing. We use it in a multi-
GPU configuration equally dividingA into P contiguous
regions, knowing in advance that it will have poor load
balance behavior. The objective is to use it as a baseline to
compare other load-balancing schemes in the multi-GPU
experiments.

The “Solution 2” employs the randomization technique
to ensure all atoms are re-distributed in the arrayA re-
gardless their physical coordinates, therefore to eliminate
the load unbalance in the original array. For the multi-
GPU implementation the input array is equally divided
into P contiguous regions and each device is responsible
for computing one region. This solution ensures almost
perfect load balance among multiple GPUs. However, it
exposes the problem of thread divergence inside a warp,
as now atoms with a lot of forces interactions are mixed
with atoms with few force interaction.

The randomization procedure and counting sort are per-
formed on the host, and we do not include their execu-
tion time into the overall computation time. Note that
randomization and counting sort procedure have compu-
tational complexityΘ(N) and therefore can be fairly used
in atom-decomposition MD computation which has com-
plexity Θ(N2).

The “Solution 3” uses the chunking technique and it is
specifically designed to take advantage of both load bal-
ancing among multiple-GPUs and thread convergence in
TBs. It basically invokes kernels with fine-grained work-
load on the array reordered with thedecomposition-sort
used in ”Solution 1”. The chunking technique is imple-
mented as follows. The host process first decomposes the
input array into many data chunks of equal atoms. Indi-
vidual host control threads are then used to communicate
with GPUs. Whenever a host control thread finds out that
the corresponding device is free (nothing is running on
the device), it assigns the computation of a data chunk by
launching a kernel with the data chunk information. This
device then starts the computation of this data chunk. The
host control thread waits until a kernel exits and the device
becomes free again, then it launches another kernel with a
new data chunk. Since a device only receives a workload
after it finishes the current one, this approach ensures a
good dynamic load balance. The computation completes
when all data chunks are computed.

The “Solution TQ” is the one based on our task queue
scheme presented in section 4, where each task is the eval-
uation of128 atoms stored contiguously in the array. To
exploit the spatial locality in the system, we also perform

9



thedecomposition-sortprocedure before the computation.
To efficiently utilize the multiple-GPUs, we employ a
simple and efficient load balance approach, based on our
task queue scheme. For each time step, the host process
first decomposes the computation to tasks and keeps them
in a task pool. Then the host process spawns individual
host control threads for communicating with each GPU.
On each GPU, two queues are used to overlap the host
enqueue with the device dequeue. Each queue holds up
to 20 tasks. Whenever a task queue of a GPU becomes
empty, the corresponding host control thread tries to fetch
as much as20 tasks from the task pool at a time, and sends
them to the queue with a single enqueue operation. The
kernel was run with120 TBs, each of128 threads. Note
these configuration numbers used were determined em-
pirically. Then host control threads send HALT tasks to
devices to terminate the execution.

Note that in all 4 solutions the same GPU function is
used to perform the force computation. Also, before tim-
ing, the position data (arrayA) are already available on
GPUs. In this way we can ensure that all performance
differences are only due to the load balancing mechanisms
employed.

6.3 Results and Discussions
We evaluate the performance of all 4 implementations
above with identical input data, for both single- and
multiple-GPU scenario.

6.3.1 Single-GPU scenario

Figure 5 shows the normalized speedup of the average
runtime per time step over Solution 1, with respect to dif-
ferent system sizes, when only1 GPU is used in the com-
putation.

Figure 5: Relative speedup over Solution 1 versus system
size (1 GPU)

As discussed in the previous sub-section, unlike other
approaches, Solution 2 does not exploit the spatial locality
in the system, and thus causes severe thread divergences
on the TB. For example, for a512K atoms system, the

CUDA profiler reports that Solution 2 occurs49% more
thread divergences than Solution 1, and its average run-
time per time step is74% slower than Solution 1.

Due to the overhead of a large number of kernel invoca-
tions and subsequent synchronizations, Solution 3 cannot
achieve better performance than Solution 1 on a single-
GPU system, although evaluating a larger data chunk with
each kernel invocation can alleviate such overhead.

Solution TQ outperforms other approaches even when
running on a single GPU. In principle, for single GPU
execution it should behave similarly to Solution 1 (same
reordering scheme). However, for a512K atoms system,
the average runtime per time step is93.6s and84.1s for
Solution 1 and Solution TQ, respectively. This is almost a
10% of difference.

Regarding this significant performance difference, our
first guess was that Solution 1 has to launch much more
TBs than our Solution TQ, therefore incurring in a large
overhead. However, we experimentally measured that the
extra overhead is relatively small. For example, when us-
ing a simple kernel, launching it with4000 TBs only in-
curs extra26µs overhead, compared to launching it with
120 TBs, which does not justify the performance differ-
ence between Solution 1 and Solution TQ. Therefore, the
only reason lies in how efficient CUDA can schedule TBs
of different workload.

To investigate this issue, we create several workload
patterns to simulate unbalanced load. To do this, we set up
a balanced MD system of512K atom in which all atoms
are uniformly distributed3. Since the computation for
each atom now involves equal amount of work, TBs con-
sisting of computation of same amount of atoms should
also take a similar amount of time to finish. Based on this
balanced system, we create several computations follow-
ing the patterns illustrated in Figure 6. In the figure, P0,
· · ·, P4, represent systems of specific workload patterns.
All patterns consist of a same number of blocks. In Pattern
0, each block contains128 atoms, which is the workload
for a TB (Solution 1), or in a task (Solution TQ). Pattern
P0 is actually the balanced system, and all blocks are of
equal workload. For the rest of patterns, some blocks are
labelled asnullified. Whenever a TB reads such a block, it
either exits (Solution 1), or fetches another task immedi-
ately (Solution TQ). In Solution 1, the CUDA scheduler is
notified that a TB has completed and another TB is sched-
uled. In Solution TQ, the persistent TB fetches another
task from the execution queue.

Figure 7 shows the average run time per time step for

3We use the balanced system only to understand this behavior,we
then return to the unbalanced Gaussian distributed system on the next
section on multi-GPUs.

10



Figure 6: Workload patterns

Solution 1 and Solution TQ, for different workload pat-
terns. To our surprise the CUDA TB scheduler does not
handle properly unbalanced execution of TBs. When the
workload is balanced among all data blocks, i.e., Pattern
P0, Solution TQ is slightly worse than Solution 1 due to
the overhead associated with queue operations. However,
for Pattern P1, P3, and P4, while Solution TQ achieved
reduced runtime, which is proportional to the reduction of
the overall workload, Solution 1 failed to attain a similar
reduction. For example, for Pattern P4, which implies a
reduction of75% workload over P0, Solution TQ and So-
lution 1 achieved runtime reduction of74.5%, and48.4%,
respectively. To ensure that this observation is not only
specific to our MD code, we conducted similar exper-
iments withmatrixMul, a NVIDIA’s implementation of
matrix multiplication included in CUDA SDK. The results
also confirm our observation. This indicates that, when
workload is unbalanced distributed among TBs, CUDA
cannot schedule new TBs immediately when some TBs
terminate, while our task queue scheme can utilize the
hardware more efficiently.

Figure 7: Runtime for different load patterns

6.3.2 Multi-GPU scenario

Figure 8 shows the normalized speedup of the average
runtime per time step over Solution 1, with respect to dif-
ferent system sizes, when all4 GPUs are used in the com-
putation. When the system size is small (32K), Solution 2
achieves the best performance (slightly over Solution 1),
while Solution 3 and Solution TQ incur relatively signif-
icant overhead associated multiple kernel launching (So-

lution 3), or queue operations (Solution TQ).

Figure 8: Relative speedup over Solution 1 versus system
size (4 GPUs)

As expected, when the system size becomes larger,
we observe that solutions incorporated with load balance
mechanisms remarkably outperform Solution 1. For ex-
ample, for a system size of512K atoms, Solution 2, 3,
and TQ are1.24x, 2.02x, and2.45x faster than Solution
1, respectively. Especially, for these large system sizes,
Solution TQ achieves the best performance among all so-
lutions, i.e., it is constantly about1.2x faster than Solution
3, the second best approach.

Figure 9 shows the speedup with respect to the number
of GPUs, for a512K-atom system. From the plot, we ob-
serve that, except Solution 1, other3 approaches achieve
nearly linearly speedup when more GPUs are used (they
are so close that virtually there is only one curve visible
in the figure for Solution 2, 3, and TQ).

Figure 9: Speedup versus number of GPUs

This is well explained by Figure 10, which shows the
actual “busy” time of individual GPUs, when4 GPUs are
used in the computation. As illustrated, for Solution 1, the
load among GPUs is extremely unbalanced.

In contrast, other3 approaches achieve good load bal-
ance. However, their absolute times vary. While Solution
2 is effective in terms of load balancing, it is1.9x slower
than Solution TQ for large systems, i.e.,256K and up. As

11



Figure 10: Dynamic load on GPUs

explained earlier, this is because it does not exploit the
spatial locality, and therefore significantly increases the
overall runtime.

Solution 3 balances the load among GPUs by assigning
fine-grained data chunks with different kernel invocations.
However, it does not solve the load imbalance issue within
each data chunk; in a kernel invocation (for a data chunk),
some TBs may need a longer time to finish than oth-
ers, due to the unbalanced computation workload among
them. Also it involves the overhead of kernel invocations
and following synchronizations. One may argue that us-
ing larger data chunks can reduce such overhead. We
investigated the effect of different sizes of data chunks,
and discovered that using small data chunks, i.e., each of
15360 (120x128) atoms, actually achieved the best perfor-
mance; using larger data chunks introduced load imbal-
ance among devices, and using smaller data chunks sim-
ply underutilized the computation power of devices.

In contrast, Solution TQ both exploits the spatial local-
ity, and achieves dynamic load balancing on individual de-
vices, and among devices. Also, it is very easy to integrate
the task queue solution with existing CUDA code. For ex-
ample, given a molecular dynamics CUDA code and the
task queue module, a first version of a task queue-enabled
molecular dynamics code was obtained within 2 hours.

7 Conclusion and Future Work
We have presented the design of a task queue scheme,
which can be employed to achieve dynamical load bal-
ance on single- and multi-GPU systems. In a case study of
a molecular dynamics application, our task queue scheme
achieved excellent speedup and performance improve-
ment over other alternative approaches. We expect that
our task queue scheme can be beneficial to other load im-
balanced problems on GPU-enabled systems.

References
[1] AMD. ATI Stream. http://www.amd.com.

[2] C. Augonnet, S. Thibault, R. Namyst, and P.-A. Wacrenier.
StarPU: A Unified Platform for Task Scheduling on Heterogeneous
Multicore Architectures. InEuro-Par 2009, pages 863–874, Delft,
Netherlands, 2009.

[3] G. Bird, editor.Molecular gas dynamics and the direct simulation
of gas flows : GA Bird Oxford engineering science series: 42.
Oxford University Press, 1995.

[4] M. Boyer, D. T., S. A., and K. S. Accelerating leukocyte tracking
using CUDA: A case study in leveraging manycore coprocessors.
In IPDPS 2009, pages 1–12, 2009.

[5] B. Brooks and H. M. Parallelization of Charmm for MIMD Ma-
chines.Chemical Design Automation News, 7(16):16–22, 1992.

[6] D. Cederman and P. T. On Dynamic Load Balancing on Graphics
Processors. InGH 2008, pages 57–64, 2008.

[7] S. Chakrabarti, J. Demmel, and K. Yelick. Modeling the benefits
of mixed data and task parallelism. InSPAA’95, pages 74–83, New
York, NY, USA, 1995. ACM.

[8] S. Che, M. B., J. M., D. T., J. W. S., and K. S. A performance study
of general-purpose applications on graphics processors using cuda.
JPDC, 68(10):1370–1380, 2008.

[9] T. Clark, M. J.A., and S. L.R. Parallel Molecular Dynamics. In
SIAM PP’91, pages 338–344, March 1991.

[10] T. H. Cormen, C. Stein, R. L. Rivest, and C. E. Leiserson.Intro-
duction to Algorithms. McGraw-Hill Higher Education, 2001.

[11] T. Foley and J. Sugerman. Kd-tree acceleration structures for a gpu
raytracer. InHWWS’05, pages 15–22, New York, NY, USA, 2005.

[12] D. Frenkel and B. Smit, editors.Understanding Molecular Sim-
ulation: From Algorithms to Applications. Academic Press, Inc.,
Orlando, FL, USA, 1996.

[13] M. Guevara, C. Gregg, and S. K. Enabling task parallelism in the
cuda scheduler. InPEMA 2009, 2009.

[14] P. Harish and N. P.J. Accelerating large graph algorithms on the
gpu using cuda. InHiPC, pages 197–208, 2007.

[15] M. Herlihy. Wait-free synchronization.ACM TPLS., 13(1):124–
149, 1991.

[16] Khronos. OpenCL.http://www.khronos.org.

[17] M. D. Linderman, J. D. Collins, H. Wang, and T. H. M. Merge: a
programming model for heterogeneous multi-core systems.SIG-
PLAN Not., 43(3):287–296, 2008.

[18] T. Murray. Personal communication, June 2009.

[19] M. Mller, C.and Strengert and T. Ertl. Adaptive load balancing for
raycasting of non-uniformly bricked volumes.Parallel Computing,
33(6):406 – 419, 2007. Parallel Graphics and Visualization.

[20] J. Nickolls, I. Buck, M. G., and K. S. Scalable Parallel Program-
ming with CUDA. Queue, 6(2):40–53, 2008.

[21] Nvidia. CUDA. http://www.nvidia.com.

[22] Nvidia. NVIDIA CUDA Programming Guide 2.3, 2009.

[23] T. Okuyama, F. I., and K. H. A task parallel algorithm forcom-
puting the costs of all-pairs shortest paths on the cuda-compatible
gpu. InISPA’08, pages 284–291, 2008.

[24] S. Ryoo, C. I. Rodrigues, S. S. Baghsorkhi, S. S. Stone, D. B. Kirk,
and W. M. Hwu. Optimization principles and application perfor-
mance evaluation of a multithreaded gpu using cuda. InPPoPP’08,
pages 73–82, 2008.

[25] W. Smith. Molecular dynamics on hypercube parallel computers.
Computer Physics Communications, 62:229–248, 1991.

[26] V. Volkov and J. W. Demmel. Benchmarking GPUs to tune dense
linear algebra. InSC 2008, pages 1–11, 2008.

12


