
Performance modelling and optimization of memory
access on cellular computer architecture Cyclops64

Yanwei Niu, Ziang Hu, Kenneth Barner and Guang R. Gao

Department of ECE, University of Delaware, Newark, DE, 19711, USA
{niu, hu, barner, ggao}@ee.udel.edu

Abstract. This paper focuses on the Cyclops64 computer architecture and presents
an analytical model and performance simulation results for the preloading and
loop unrolling approaches to optimize the performance of SVD (Singular Value
Decomposition) benchmark. A performance model for dissecting the total execu-
tion cycles is presented. The data preloading using “memcpy” or hand optimized
“inline” assembly code, and the loop unrolling approach are implemented and
compared with each other in terms of the total number of memory access cycles.
The key idea is to preload data from offchip to onchip memory and store thedata
back after the computation. These approaches can reduce the total memory access
cycles and can thus improve the benchmark performance significantly.

1 Introduction

The design concept of computer architecture over the last two decades has been mainly
on the exploitation of the instruction level parallelism, such as pipelining,VLIW or
superscalar architecture. For the next generation of computer architecture, hardware
threading multiprocessor is becoming more and more popular. One approach of hard-
ware multithreading is called CMP (Chip MultiProcessor) approach, which proposes a
single chip design that uses a collection of independent processors with less resource
sharing. An example of CMP architecture design is Cyclops64[1–5], a new architec-
ture for high performance parallel computers being developed at the IBM T. J. Watson
Research Center and University of Delaware. More details ofCyclops64 architecture
are described in Section 2.

This paper focuses on the Cyclops64 computer architecture and presented perfor-
mance model and simulation results for the preloading and loop unrolling approach to
optimize the performance of SVD benchmark. The key idea is topreload data from
offchip to onchip memory and store the data back after the computation. The contri-
butions include: (1) a performance model for dissecting thetotal execution cycles; (2)
detailed analysis of the tradeoff of the data preloading approaches using “memcpy” or
hand optimized “inline” assembly code, and the loop unrolling approach.

The remainder of this paper is organized as follows. The target platform Cyclops64
will be introduced in Section 2. The SVD benchmark and the GaoThomas algorithm are
presented in Section 3. Different memory access approachesare introduced in Section 4
and detailed analysis of these approaches in Section 5. Simulation results and validation
of the analysis are shown in Section 6. The conclusions are summarized in Section 7.

2 Cyclops64 hardware and software

Cyclops64(C64) is a petaflop supercomputer project under development at IBM re-
search Laboratory. The Cyclops64 project is a renovative idea to explore the thread-
level parallelism. Figure.1 shows the hardware architecture of a Cyclops64 chip, the
main component of a Cyclops64 node. Each Cyclops64 chip has 80 processors, each
consisting of two thread units, a floating-point unit and twoSRAM memory banks of
32KB each. A 32KB instruction cache, not shown in the figure, is shared among five
processors. In a Cyclops64 chip architecture there is no data cache. Instead a half of
each SRAM bank can be configured as scratch-pad memory. Such amemory provides a
fast temporary storage to exploit locality under software control. The latency of onchip
scratch-pad memory is 2 cycles. Cyclops64 system also has offchip memory modules.
The default offchip latency is 36 cycles. It could become larger when there is heavy
load of memory accesses from many thread units. This parameter can be preset in the
Cyclops64 simulator. In this paper, we preset the offchip latency to be 36 or 80.

M
em

or
y

O
ff−

ch
ip

M
em

or
y

O
ff−

ch
ip

M
em

or
y

O
ff−

ch
ip

M
em

or
y

O
ff−

ch
ip

TU

FP

SP SP

TU TU

FP

SP SP

TU TU

FP

SP SP

TU TU

FP

SP SP

TU

GM GM GM GM GM GM GM GM

Chip

A
−

sw
itc

h

Processor

Board

et
he

rn
et

G
ig

ab
it

HD

3D
−

m
es

h

ATA

Crossbar Network

Fig. 1.Cyclops64 Chip

On the software side, one important part of the Cyclops64 system software is the
Cyclops64 thread virtual machine. CThread is implemented directly on top of the hard-
ware architecture as a micro-kernel/run-time system that fully takes advantage of the
Cyclops64 hardware features. Cyclops64 thread virtual machine includes a thread model,
a memory model and a synchronization model. The details of those models are ex-
plained in [6]. Suffice it to say that, the Cyclops64 chip hardware supports a shared
address space model: all on chip SRAM and off-chip DRAM banksare addressable
from all thread units/processors on the same chip.

3 SVD for Complex Matrices

In our implementation, we will focus on the one sided Jacobi SVD method since it is
most suitable for parallel computing. The idea is to generate an orthogonal matrixV
such that the transformed matrixAV = W has orthogonal columns. Normalizing the
Euclidean length of each nonnull column ofW to unity, we will get the relation:

W = UΣ, (1)

where theU is a matrix whose nonnull columns form an orthonormal set of vectors and
Σ is a nonnegative diagonal matrix. SinceV HV = I, whereI is the identity matrix,
we have the SVD ofA given byA = UΣV H .

Hestenes [7] uses plane rotations to constructV . He generates a sequence of matri-
ces{Ak} using the rotation

Ak+1 = AkQk (2)

where the initialA1 = A andQk is a plane rotation matrix. The post-multiplication by
Qk affects only two columns, denoted byu andv, for real matrices, we have:

(u′,v′) = (u,v)

(

c s
−s c

)

. (3)

For complex matrices, we have

(u′,v′) = (u,v)

(

ejβ 0
0 1

)(

c s
−s c

)(

e−jβ 0
0 1

)

. (4)

where the angelβ is fromw: w = |w|ejβ , the formulas to getc ands are:

α =
y − x

2|w| , τ =
sign(α)

|α| +
√

1 + α2

c =
1√

1 + τ2
, s = τc. (5)

We setc = 1 ands = 0 if |w| = 0. The peudocode of the one-sided Jacobi routine for
complex matrices is show in Listing.1.1, which we refer to as“basic rotation routine”.

1 R o t a t i o n o f t w o c o l u m n (co lu , co l v)
2 {
3 /∗ c o l u and c o l v are two columns o f complex numbers ∗ /
4 w= i n n e r p r o d u c t (co lu , co l v) ;
5 i f (|w| <= d e l t a) {converged<− t r u e ; re turn ;} ;
6 x= i n n e r p r o d u c t (co lu , co lu) ;
7 y= i n n e r p r o d u c t (co lv , co l v) ;
8
9 computer r o t a t i o n p a r a m e t e r c , s from w, x , y a c c o r d i n g t o Equa t ion 5 ;

10 upda te co lu , co l v a c c o r d i n g t o r o t a t i o n Equa t ion 4 ;
11 }

Listing 1.1. Rotation of two column of complex numbers

3.1 GaoThomas Algorithm

The plane rotations have to be applied to all column pairs exactly once in any sequence
(a sweep) ofn(n − 1)/2 rotations. Several sweeps are required so that the matrix con-
verges. A simple sweep can be a cyclic-by-rows ordering. Forinstance, let us consider
a matrix with 4 columns, with the cyclic-by-rows order, the sequence of a sweep is:

(1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4). (6)

1 R o t a t i o n o f t w o c o l u m n (co lu , co l v)
2 {
3
4 A l l o c a t e l o c a l c o l u , l o c a l c o l v
5 on t h e s c r a t c h−pad ;
6
7 memcpy (l o c a l c o l u <−co lu) ;
8 memcpy (l o c a l c o l v <−co l v) ;
9

10 conduc t t h r e e i n n e r p r o d u c t sand
11 column r o t a t i o n on l o c a lc o l u , l o c a l c o l v
12 as i n L i s t i n g . 1.1
13
14 memcpy (co lu<−l o c a l c o l u) ;
15 memcpy (co l v<−l o c a l c o l v) ;
16 }

Listing 1.2. Basic rotation routine with preloading using “memcpy”

It is easy to see some pairs are independent and may be executed in parallel if we
change the order in the sequence. Another possible sequencefor a sweep can group
independent pairs and executes them in parallel:

{(1, 2), (3, 4)}, {(1, 4), (2, 3)}, {(1, 3), (2, 4)}, (7)

where the pairs in curly brackets are independent.We call each of these groups a step.
In this research, we implemented the GaoThomas algorithm. This algorithm com-

putes the pairs ofn elements onn/2 processors whenn is a power of 2. A sweep is
composed ofn − 1 steps, each step consisting ofn/2 pairs of rotations. Therefore,
one sweep consists ofn(n− 1)/2 rotations. In our shared memory implementation, the
number of slave threadsp can be set to be equal to the number of available processors.
All the column pairs in one step can be treated as a work pool, the works in this work
pool are shared among thep slave threads, where1 ≤ p ≤ n

2
.

GaoThomas algorithm can computen(n−1)/2 rotations of a matrix withn columns
on n/2 processors. When the size of the matrix increases, group based GaoThomas
algorithm can be adopted. For instance, when the matrix sizeis now 2n and we only
haven/2 processors, we can group two columns together and treat themas one single
unit. Generally speaking, for a matrix withn columns, if we groupg columns together
as a group, then we haven/g groups and can use the basic GaoThomas algorithm for
n/g elements, except now each element is a group. For a matrix with n columns and
group sizeg, one sweep containsn/g − 1 steps, each step containsn/2g instances of
a rotation of two groups, which can run in parallel on maximumn/2g processors. The
rotation of two groups includes the rotation of all possiblepairs of matrix columns in
these two groups.

4 Optimization of Memory Access

4.1 Naive Approach

The default memory allocation using “malloc()” in the Cyclops64 simulator is from
the offchip memory, while the local variables are allocatedfrom the stack located on

the onchip scratch-pad memory. Assuming that the matrix data originally reside on the
offchip memory, we implemented an SVD program where all the memory accesses are
from the offchip memory. This implementation is referred toas the naive version in
the following discussions. Also, the loop within the inner product computation of the
rotation routine is implemented without any loop unrollingin the naive approach.

4.2 Preloading

In order to reduce the cycles spent on memory accesses, we canpreload the data from
the offchip memory to the onchip scratch-pad memory. Thus the data accesses in the
computation part of the rotation routine are directly from the onchip memory. The up-
dated data are then stored back to the offchip memory.

There are two ways to preload data. The simplest way is to use the “memcpy”
function from the C library. The pseudo-code for the “memcpy” preloading in the two-
column rotation routine is shown in Listing 1.2. We refer to the code segment from
the line 10 to line 12 as the “computation core”, which consists of the computation
of three inner products and a column rotation. Preloading for the group based rotation
routine is similar, except that two “groups” of columns are preloaded. The “memcpy”
function based preloading has the problem of paying extra overhead of function calling.
Additionally, the assembly code of the “memcpy” function isnot fully optimized, which
is shown with analysis in the next section.

To overcome these two problems, we implement preloading by using an optimized
inline assembly code instead of a function call. We refer to this approach as the “inline”
approach. For this approach, each “memcpy” function call isreplaced with a segment
of inline assembly code. The assembly code segment for the “memcpy” and “inline”
preloading approaches (either group based rotation routine or basic rotation routine)
are shown in Listing 1.4 and Listing 1.5. From the listings, we can see that memcpy and
inline approaches have different instruction scheduling.The effect of different ways of
instruction scheduling on the total memory access cycles isanalyzed in Section 5.

4.3 Loop Unrolling of Inner Product Computation

There are three inner product function calls in the rotationroutine. We implemented
two versions of loop unrolling for the loop in the inner product computation: unrolling
the loop body 4 times or 8 times. The idea is that loop unrolling makes it possible
to schedule instructions from multiple iterations, thus facilitating the exploitation of
instruction level parallelism.

5 Performance Model

5.1 Dissection of Execution Cycles

We begin with a simple execution trace example in Listing 1.3to illustrate how to
dissect total execution cycles into several parts. In the listing, the first column is the
current cycle number. We notice that at cycle 98472, there isa note “DLL = 1”, which

means that there is a one-cycle latency related to memory access. The reason is that at
cycle 98472, the instruction needs the operand R9, which is not ready at cycle 98472
because the LDD instruction at cycle 98470 has two cycles of latency. Similarly, at cycle
98475, the FMULD instruction needs the input operand R8 generated by the FDIVD
instruction at cycle 98469. R8 is not ready at cycle 98475 andneeds an extra latency
of 25 cycles since the FDIVD instruction has 30 cycles of latency from the float point
unit. Counting the total number of cycles from cycle 98469 till cycle 98501, there are
33 cycles which include 7 instructions, 1 cycle of “DLL” and 25 cycles of “DLF”. The
integer unit may also cause certain latency called “DLI”, which is similar to the “DLF”
in the trace example. Therefore, we have the following equation:

Total cycles = INST
+ DLL + DLF + DLI,

(8)

where the “ INST” part stands for the total number of instructions, “DLL” represents the
cycles spent on memory access, “DLF” represents the latencycycles related to floating
point instructions, and “DLI” represents the latency cycles related to integer instruc-
tions.

98469 FDIVD R8 , R60 , R8
98470 LDD R9 , R3 ,96
98471 ORI R21 , R0 , 0
98472 FDIVD R20 , R9 , R62 DLL = 1
98474 LDD R60 , R3 ,104
98475 FMULD R6 , R61 , R8 DLF = 25
98501 STD R8 , R3 ,160

Listing 1.3. Example of dissection of execution cycles

5.2 Analysis of Naive Approach

All memory accesses in the naive approach are from the offchip memory and the com-
putation core part has a large number of “DLL” latency cycles. We denote the size of the
matrix asn× n. Each element of this matrix is a double complex number. We focus on
one sweep that consists of

(

n
2

)

basic rotations for either the non-group based approach
or the group based approach. A basic rotation, as shown in Listing 1.1 consists of two
different parts, the inner product part and the column rotation part. We analyze the total
“DLL” latency cycles for both of them in this subsection.

First, there are three inner product function calls in the basic rotation routine. Each
one of them consists ofn iterations, each iteration producing a multiplication of two
complex numbers and adding it to the sum. From the trace of theinnermost iteration
(the offchip latency is set to be 80 cycles), we see that the innermost iteration has a
“DLL = 76”. In general, if we preset the offchip latency to beL cycles, then the total
number of “DLL” cycles in each iteration isL − 4. Therefore, in one sweep, the total

number of “DLL” cycles within the inner product part is:

DLLinnerproduct =

(

n

2

)

× 3 × n × (L − 4), (9)

Second, for the column rotation part in the basic rotation routine, we conduct a
similar analysis. The total number of “DLL” cycles of this part is:

DLLcolumn rotation =

(

n

2

)

× n × (L − 4). (10)

Therefore the total number of “DLL” cycles in the naive implementation of GaoThomas
algorithm (either group based or nongroup based, just one sweep) including both inner
product and column rotation is:

DLLnaive = DLLinnerproduct + DLLcolumn rotation

=
(

n
2

)

× n × (4L − 16).
(11)

5.3 Analysis of “Memcpy” Approach

Using either the “memcpy” or “inline” preloading approach,the computation core ac-
cesses data from the onchip memory. The “DLL” part in the computation core is roughly
zero due to the overlap of the short onchip memory access latency (2 cycles) with the
float point unit latency. Therefore, from the program without preloading to the program
with preloading, the decrease of the total number of “DLL” cycles in the computation
core isDLLnaive, which is the cycles we save by using preloading, and thus thegain
we expect to get.

Moving data from the offchip memory to the onchip memory results in an extra cost,
which consists of two parts: the first part is the total “DLL” cycles in the code segment
that is responsible for moving data, and the second part is the extra instructions incurred.
The equation for the first part is derived as follows.

First, we derive the total number of “memcpy” function calls(which are responsible
for loading data “in”). For the basic non-group-based GaoThomas algorithm, there are
totally

(

n
2

)

basic rotations (shown in Listing 1.1) in one sweep. A basic rotation needs
to load in two columns, each of lengthn. Loading a double complex number needs two
“LDD” instructions. Therefore, the total number of “LDD”s for preloading data is:

LDDmemcpy no group =
(

n
2

)

× 2 × n × 2
=

(

n
2

)

× 4n,
(12)

where the first “2” stands for loading “two” columns,n is that the length of the column,
and the second “2” means that loading a double complex numberneeds two LDDs.

For the group based algorithm, if the group size isg, there are totally
(

n/g
2

)

group
based rotations. At the beginning of each group based rotation, we need to load in two
groups of columns (i.e,2× g columns) and each column needsn× 2 LDDs. Therefore,
the total number of LDDs for preloading data during one sweepis:

LDDmemcpy =
(

n/g
2

)

× 2g × n × 2

=
(

n/g
2

)

× g × 4n.
(13)

If we treat the non-group-based GaoThomas algorithm as a group-based algorithm with
group size one, then we can use (13) for either the group basedalgorithm or non-group-
based algorithm.

Second, we compute the latency incurred by the LDDs. The execution trace seg-
ment of the assembly code for the “memcpy” function is shown in Listing 1.4, with the
offchip latency set to be 80. From the Listing 1.4, we observethat each LDD instruc-
tion causes a long latency of 80 cycles, which is reflected where the “STD” instructions
exist. If we preset the offchip latency to beL, then each “LDD” causes a latency ofL
cycles. So the total number of “DLL” cycles for preloading data using “memcpy” is:

DLLmemcpy = LDDmemcpy × L

=
(

n/g
2

)

× g × 4n × L.
(14)

In addition to the change in the total “DLL”s, we also observethe increase in the
total instruction count as:

Total INST increase =

(

n/g

2

)

× g × 4n × 2 × 2, (15)

where the first part
(

n/g
2

)

× g × 4n is the total number of “LDD”s for preloading data.
We need a same amount of “STD”, thus a multiplication by 2. Also we need to use
“LDD” and “STD” to store data back, thus another multiplication by 2.

5.4 Analysis of “Inline” Approach

The total amount of data preloaded for the “inline” preloading approach is the same as
the “memcpy” approach. Therefore the total number of “LDD”sof the inline approach
is the same as the “memcpy” approach:

LDDinline =
(

n/g
2

)

× 2g × n × 2 (16)

In the “inline” approach, 8 LDDs in a row are followed by 8 STDsin a row, as
shown in Listing 1.5. From the trace we can see that we will have one “DLL=73” every
8 LDDs if we preset the offchip latency to be 80. If the offchiplatency isL cycles, there
is a “DLL=L − 7” every 8 “LDD” instructions. Therefore, the total number of“DLL”
cycles for preloading data using the “inline” approach is:

DLLinline = LDDinline/8 × (L − 7)

= 1

8
×

(

n/g
2

)

× g × 4n × (L − 7).
(17)

From (17), we can see very clearly that preloading data usingthe “inline” approach is
better than using the “memcpy” approach becauseDLLinline is approximately1/8 of
DLLmemcpy.

5.5 Analysis of the Loop Unrolling

The loop unrolling method only affects the inner product routine. For unrolling 4 times,
each inner product routine now containsn/4 iterations, each iteration consisting of

105375 LDD R6 , R9 , 0
105376 STD R6 , R7 , 0 DLL = 80
105457 ADDI R9 , R9 , 8
105458 ADDI R7 , R7 , 8
105459 LDD R6 , R9 , 0
105460 STD R6 , R7 , 0 DLL = 80
105541 ADDI R9 , R9 , 8
105542 ADDI R7 , R7 , 8
105543 LDD R6 , R9 , 0
105544 STD R6 , R7 , 0 DLL = 80
105625 ADDI R9 , R9 , 8
105626 ADDI R7 , R7 , 8
105627 LDD R6 , R9 , 0
105628 STD R6 , R7 , 0 DLL = 80

Listing 1.4. Trace of the memcpy approach

112688 LDD R16 , R9 , 0
112689 LDD R17 , R9 , 8
112690 LDD R18 , R9 ,16
112691 LDD R19 , R9 ,24
112692 LDD R20 , R9 ,32
112693 LDD R21 , R9 ,40
112694 LDD R22 , R9 ,48
112695 LDD R28 , R9 ,56
112696 STD R16 , R6 , 0 DLL = 73
112770 STD R17 , R6 , 8
112771 STD R18 , R6 ,16
112772 STD R19 , R6 ,24
112773 STD R20 , R6 ,32
112774 STD R21 , R6 ,40
112775 STD R22 , R6 ,48
112776 STD R28 , R6 ,56

Listing 1.5. Trace of the “inline” approach

computation of the sum of 4 multiplications of complex number. Based on the trace
of the innermost iteration, the “DLL” incurred inside the inner product part can be
summarized in (18):

DLLinnerproduct unroll4 =

(

n

2

)

× 3 × n

4
× (L − 8). (18)

Similar analysis of unrolling 8 times can give us:

DLLinnerproduct unroll8 =

(

n

2

)

× 3 × n

8
× (L − 13). (19)

6 Simulation Result

6.1 Cyclops64 Simulation Environment

The software tool chain of Cyclops64 platform currently provides a compiler, linker and
simulator for users. A number of optimization levels are supported by the compiler. A

multi-chip multi-threading functional accurate simulator (FAST) is also provided. We
developed a Trace Analyzer that can take the output trace from the simulator and gener-
ate the dissection of execution cycles and analysis of the code simulated. The analyzer
can generate statistics about the total “DLL” related to a certain instruction. For in-
stance, in the example shown in Listing 1.5, the “DLL” latencies caused by the “LDD”
instruction are reflected in the STD instruction. we call such latencies “related/associ-
ated” to the STD instruction.

6.2 Model Validation

Table 1 shows the change of total “DLL”s for different approaches with the group size
set to be one. In the table, for the preloading based approaches (memcpy or inline), the
change of the “STD associated DLL latency” is the cost we pay for preloading, as shown
in the third and fifth column of this table. The predicted value of this part is computed
using (14) for the memcpy approach, and (17) for the “inline”approach. The change
of the total “DLL”s in the computation core (inner product and column rotation) is the
gain we achieved. Without preloading the equation for this part is (11), with preloading,
the number of total “DLL” cycles in this part is approximately zero. Therefore, for two
preloading approaches, the equation for the cycles saved inthe computation core is (11).

The difference percentage between the measured value from the simulation trace
and the predicted value from the equations is computed usingthe following equation:

Diff.Percentage =
|Measurement − Prediction|

(Measurement + Prediction)/2
. (20)

From the table, we can see the predicted value is very close tothe measured value and
the difference percentage is quite small. The prediction for the “memcpy” approach has
a relatively bigger difference percentage since the extra overhead of function calling is
not accounted for in our simplified model.

6.3 Comparison of different approaches

Figure. 2 shows the comparison of total execution cycles andthe dissection to four
parts as in (8). Each figure is composed of five clusters of stacked bars. Within each
cluster, the leftmost stacked bar is the microlevel breakdown of the naive approach, the
second from the left shows the four times unrolling approach, the third one is the eight
times unrolling approach, the fourth one is the “memcpy” approach, the fifth one is the
“inline” approach. The first cluster shows the five approaches when group size equals
one, the second cluster has group size 2, so on so forth. Within each stacked bar, the
brown bar (the top bar) shows the total “DLL” cycles, the deepblue bar (the bottom
bar) shows the total number of instructions, the light blue bar shows the total “DLI”
latency, the yellow bar (in the middle) shows the total “DLF”float point unit latency.

There are several observations from the figures. (1) All the proposed approaches
have performance improvement over the naive approach except the “memcpy” method
(for group size 1). (2) The figure also shows how the “DLL” cycles change with the
increase of the group size. For preloading based approaches(“memcpy” and “inline”),

Table 1.Model validation

Latency=36 Latency=80
STD relatedComputation core STD relatedComputation core

DLL Latency DLL Latency DLL Latency DLL Latency

naive Measured 52416 16646112 52416 39354336
Measured 19664064 2016 42372288 2016

memcpy Change from Naive 19611648 16644096 42319872 39354336
Predicted change 18579456 16515072 41287680 39223296
Diff percentage 5.41% 0.78% 2.47% 0.33%
Measured 1943424 2016 4781952 2016

inline Change from Naive 1891008 16644096 4729536 39354336
Predicted change 1870848 16515072 4709376 39223296
Diff percentage 1.08% 0.78% 0.43% 0.33%
Measured 46368 6711264 46368 16646112

unroll 4 Change from Naive 6048 9934848 6048 22708224
Predicted change - 9676800 - 22450176
Diff percentage - 2.63% - 1.14%
Measured 46368 5114592 46368 12920544

unroll 8 change from Naive 6048 11531580 6048 26433792
Predicted change - 11273472 - 26175744
Diff percentage - 2.26% - 0.98%

as the group size doubles, the “DLL” will reduce to one half. The loop unrolling based
approach does not change with the change of the group size because the loop unrolling
based approach only change the inner product routine of the basic rotation routine of
two columns and the total number of basic rotations within one sweep is not changed
when the group size changes. (3) This figure also shows the total instructions change
for different approaches. It can be seen that for preloadingbased approaches, the total
number of instructions increases from the naive approach due to the extra instructions
for preloading. On the other hand, the loop unrolling approach can reduce the total
instruction count from the naive approach since the loop unrolling reduces the total
numbers that the loop control statement are executed. (4) The “DLF” part in the figure
roughly does not change no matter what approach we are using.This is true because
the “DLF” is related to the floating point instructions in thecomputation core, which is
kept unchanged. (5) It can be seen the “inline” preloading approach performs the best
out of all five approaches.

7 Conclusions

This paper focus on the Cyclops64 computer architecture andpresented an analyti-
cal model and performance simulation results for the preloading and loop unrolling
approach to optimize the performance of SVD benchmark. The major contributions in-
clude: (1), We developed a performance model and trace analyzer to dissect the total
execution cycles. This model allows us to study the application performance tradeoff for
different algorithm or architectural design ideas. (2), Wepresented a clear understand-
ing of SVD benchmark. (3), We used cycle accurate simulator to validate the model
and compare the effect of four approaches on the “DLL” part and the total execution
cycle. We find the hand optimized “inline” method can improvethe performance sig-
nificantly and performs best among several approaches. We would like to thank Juan

0

1

2

3

4

5

6

7
x 10

7

To
tal

 ex
ec

uti
on

 cy
cle

s

 g =1

 g =2

 g =4

 g =8

 g =16

INST CNT
DLI
DLF
DLL

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

7

To
tal

 ex
ec

uti
on

 cy
cle

s

 g =1

 g =2

 g =4

 g =8

 g =16

INST CNT
DLI
DLF
DLL

(a) (b)

0

1

2

3

4

5

6

7

8

9
x 10

6

To
tal

 ex
ec

uti
on

 cy
cle

s

 g =1

 g =2

 g =4

 g =8

 g =16

INST CNT
DLI
DLF
DLL

0

1

2

3

4

5

6
x 10

6

To
tal

 ex
ec

uti
on

 cy
cle

s

 g =1

 g =2

 g =4

 g =8

 g =16

INST CNT
DLI
DLF
DLL

(c) (d)

Fig. 2. comparison of different approaches (a)Problem size 64 by 64, L=80 (b) Problem size 64
by 64, L=36, (c) Problem size 32 by 32, L=80 (d) Problem size 32 by 32, L=36

B. del Cuvillo, Fei Chen, Weirong Zhu, and other members in the CAPSL (Computer
Architecture and Parallel Systems Laboratory) group for their help.

References

1. C. Cascaval, J. G. C. nos, L. Ceze, M. Denneau, M. Gupta, D. Lieber, J. E. Moreira, K. Strauss,
and H. S. W. Jr., “Evaluation of a multithreaded architecture for cellular computing,” inHPCA,
2002, pp. 311–322.

2. G. Almái, C. Cascaval, J. G. Castaños, M. Denneau, D. Lieber, José E. Moreira, and J. Henry
S. Warren, “Dissecting cyclops: a detailed analysis of a multithreaded architecture,”SPECIAL
ISSUE: MEDEA workshop, vol. 31, pp. 26 – 38, 2003.

3. G. S. Almasi, C. Caşcaval, J. E. Moreira, M. Denneau, W. Donath,M. Eleftheriou, M. Gi-
ampapa, H. Ho, D. Lieber, D. Newns, M. Snir, and J. Henry S. Warren, “Demonstrating the
scalability of a molecular dynamics application on a petaflop computer,” inICS ’01: Proceed-
ings of the 15th international conference on Supercomputing. New York, NY, USA: ACM
Press, 2001, pp. 393–406.

4. J. del Cuvillo, W. Zhu, Z. Hu, and G. R. Gao, “Fast: A functionally accurate simulation toolset
for the cyclops-64 cellular architecture,” inWorkshop on Modeling, Benchmarking and Simu-
lation (MoBS), held in conjunction with the 32nd Annual Interantional Symposium on Com-
puter Architecture (ISCA’05), Madison, Wisconsin, June 4 2005.

5. ——, “Tiny threads: a thread virtual machine for the cyclops64 cellulararchitecture,” inFifth
Workshop on Massively Parallel Processing (WMPP), held in conjunction with the 19th Inter-
national Parallel and Distributed Processing System, Denver, Colorado, April 3 - 8 2005.

6. J. B. del Cuvillo, Z. Hu, W. Zhu, F. Chen, and G. R. Gao, “Toward asoftware infrastructure for
the cyclops64 cellular architecture,” 2004, CAPSL Memo 55, Department of ECE, Universisty
of Delaware.

7. M. R. Hestenes, “Inversion of matrices by biorthogonalization and related results,”J. Soc.
Induct. Appl. Math., vol. 6, pp. 51–90, 1958.

