Performance modelling and optimization of memory
access on cellular computer architecture Cyclops64

Yanwei Niu, Ziang Hu, Kenneth Barner and Guang R. Gao

Department of ECE, University of Delaware, Newark, DE, 19711AUS
{niu, hu, barner, ggg@ee.udel.edu

Abstract. This paper focuses on the Cyclops64 computer architecture anahfwese
an analytical model and performance simulation results for the prelpadid

loop unrolling approaches to optimize the performance of SVD (Singulare/
Decomposition) benchmark. A performance model for dissecting thkerecu-

tion cycles is presented. The data preloading using “memcpy” or hairdinpd
“inline” assembly code, and the loop unrolling approach are implementdd a
compared with each other in terms of the total number of memory acgelesc

The key idea is to preload data from offchip to onchip memory and stordsttse
back after the computation. These approaches can reduce the totaiyremess
cycles and can thus improve the benchmark performance significantly.

1 Introduction

The design concept of computer architecture over the lastieeades has been mainly
on the exploitation of the instruction level parallelisnuch as pipelining,VLIW or
superscalar architecture. For the next generation of cten@uchitecture, hardware
threading multiprocessor is becoming more and more paopOlee approach of hard-
ware multithreading is called CMP (Chip MultiProcessorprgach, which proposes a
single chip design that uses a collection of independertgasnrs with less resource
sharing. An example of CMP architecture design is Cyclof46%], a new architec-
ture for high performance parallel computers being de\edoge the IBM T. J. Watson
Research Center and University of Delaware. More detailSyafiops64 architecture
are described in Section 2.

This paper focuses on the Cyclops64 computer architechdeeesented perfor-
mance model and simulation results for the preloading aop lmrolling approach to
optimize the performance of SVD benchmark. The key idea igr&boad data from
offchip to onchip memory and store the data back after thepeation. The contri-
butions include: (1) a performance model for dissectingtti@ execution cycles; (2)
detailed analysis of the tradeoff of the data preloading@gghes using “memcpy” or
hand optimized “inline” assembly code, and the loop unmgliapproach.

The remainder of this paper is organized as follows. Theetgratform Cyclops64
will be introduced in Section 2. The SVD benchmark and theThamnas algorithm are
presented in Section 3. Different memory access approachéstroduced in Section 4
and detailed analysis of these approaches in Section 5l&ionresults and validation
of the analysis are shown in Section 6. The conclusions anersuized in Section 7.

2 Cyclops64 hardware and software

Cyclops64(C64) is a petaflop supercomputer project undegldement at IBM re-
search Laboratory. The Cyclops64 project is a renovatiea it explore the thread-
level parallelism. Figure.1 shows the hardware architectf a Cyclops64 chip, the
main component of a Cyclops64 node. Each Cyclops64 chip Bas@&essors, each
consisting of two thread units, a floating-point unit and t8RAM memory banks of
32KB each. A 32KB instruction cache, not shown in the figuseshared among five
processors. In a Cyclops64 chip architecture there is n@ chthe. Instead a half of
each SRAM bank can be configured as scratch-pad memory. Suemary provides a
fast temporary storage to exploit locality under softwaretool. The latency of onchip
scratch-pad memory is 2 cycles. Cyclops64 system also fasmmemory modules.
The default offchip latency is 36 cycles. It could becomgédarwhen there is heavy
load of memory accesses from many thread units. This paearoah be preset in the
Cyclops64 simulator. In this paper, we preset the offchipriay to be 36 or 80.

Board Chip

rrrrrrrrr

5%
[FP]

| | | L~ ~

—_— [g g

j Crossbar Network H E

e —— &[] #
)

g

Fig. 1. Cyclops64 Chip

On the software side, one important part of the Cyclops6fesysoftware is the
Cyclops64 thread virtual machine. CThread is implementexttly on top of the hard-
ware architecture as a micro-kernel/run-time system thift fakes advantage of the
Cyclops64 hardware features. Cyclops64 thread virtuahmadncludes a thread model,
a memory model and a synchronization model. The details adethmodels are ex-
plained in [6]. Suffice it to say that, the Cyclops64 chip heace supports a shared
address space model: all on chip SRAM and off-chip DRAM baailes addressable
from all thread units/processors on the same chip.

3 SVD for Complex Matrices

In our implementation, we will focus on the one sided JacdlibSnethod since it is
most suitable for parallel computing. The idea is to germeeat orthogonal matri¥x”
such that the transformed matti¥d” = W has orthogonal columns. Normalizing the
Euclidean length of each nonnull columnidf to unity, we will get the relation:

W=Ux, 1)

where the is a matrix whose nonnull columns form an orthonormal seecters and
X is a nonnegative diagonal matrix. Sing&’ V' = I, wherel is the identity matrix,
we have the SVD ofd given byA = UXV .

Hestenes [7] uses plane rotations to constludtie generates a sequence of matri-
ces{ A} using the rotation

Ap1 = ArQr 2)
where the initiald; = A andQy, is a plane rotation matrix. The post-multiplication by
Q. affects only two columns, denoted lwyandw, for real matrices, we have:

W) = o) (52). ®3)

—ScC

For complex matrices, we have

woy=wo (99) (50 (1) @

where the anges is fromw: w = |w|e’?, the formulas to get ands are:

y—x sign(«)
= s = —
2[wl la| + V1 + a2
1
6271_"_7_27 S = TC. (5)

We setc = 1 ands = 0 if jw| = 0. The peudocode of the one-sided Jacobi routine for
complex matrices is show in Listing.1.1, which we refer tdlzsic rotation routine”.

1 Rotationof_two_column(colu, colv)

2 {

3 /«colu and colv are two columns of complex numbers x/
4 w=inner_product(colu,colv);

5 if (Jlw| <= delta) {converged<— true; return;};

6 x=inner_product(colu, colu);

7 y=inner_product(colv, colv);

8

9

computer rotation parameter c,s from w, x, y according to BEton 5;
10 update colu, colv according to rotation Equation 4;

11

Listing 1.1. Rotation of two column of complex numbers

3.1 GaoThomas Algorithm

The plane rotations have to be applied to all column pairstéxance in any sequence
(a sweep) of:(n — 1)/2 rotations. Several sweeps are required so that the maimix co
verges. A simple sweep can be a cyclic-by-rows orderingirisiance, let us consider
a matrix with 4 columns, with the cyclic-by-rows order, tleggence of a sweep is:

(1,2),(1,3),(1,4),(2,3),(2,4), (3,4). (6)

Rotationof_two_column (colu, colv)

{

Allocate localcolu, local.colv
on the scratchpad;

memcpy (localcolu <—colu);
memcpy (localcolv <—colv);

1
2
3
4
5
6
7
8
9
10 conduct three inner productand

11 column rotation on localkolu, local-colv
12 as in Listing.1.1

13

14

15

16

memcpy (colu<—local_colu);
memcpy (colv<—local_colv);

}
Listing 1.2. Basic rotation routine with preloading using “memcpy”

It is easy to see some pairs are independent and may be exeoyparallel if we
change the order in the sequence. Another possible seqfmmassweep can group
independent pairs and executes them in parallel:

{(17 2)7 (374)}7 {(174)7 (2’ 3)}’ {(1’ 3)7 (274)}7 (7)

where the pairs in curly brackets are independent.We celi eiithese groups a step.

In this research, we implemented the GaoThomas algorithms. digorithm com-
putes the pairs of. elements om/2 processors when is a power of 2. A sweep is
composed ofr — 1 steps, each step consistingof2 pairs of rotations. Therefore,
one sweep consists afn — 1) /2 rotations. In our shared memory implementation, the
number of slave threagscan be set to be equal to the number of available processors.
All the column pairs in one step can be treated as a work peelworks in this work
pool are shared among theslave threads, where< p < 7.

GaoThomas algorithm can comput@:—1)/2 rotations of a matrix witlw columns
on n/2 processors. When the size of the matrix increases, groupl B@eThomas
algorithm can be adopted. For instance, when the matrixisinew 2n and we only
haven/2 processors, we can group two columns together and treatdlame single
unit. Generally speaking, for a matrix withcolumns, if we groug columns together
as a group, then we have/g groups and can use the basic GaoThomas algorithm for
n/g elements, except now each element is a group. For a matiixméblumns and
group sizey, one sweep contains/g — 1 steps, each step containg2g instances of
a rotation of two groups, which can run in parallel on maximuy2g processors. The
rotation of two groups includes the rotation of all possipérs of matrix columns in
these two groups.

4 Optimization of Memory Access

4.1 Naive Approach

The default memory allocation using “malloc()” in the Cyp&®4 simulator is from
the offchip memory, while the local variables are allocéien the stack located on

the onchip scratch-pad memory. Assuming that the matrix daginally reside on the

offchip memory, we implemented an SVD program where all tlegnory accesses are
from the offchip memory. This implementation is referredathe naive version in

the following discussions. Also, the loop within the inneoguct computation of the

rotation routine is implemented without any loop unrollinghe naive approach.

4.2 Preloading

In order to reduce the cycles spent on memory accesses, weelaad the data from
the offchip memory to the onchip scratch-pad memory. Thesdidita accesses in the
computation part of the rotation routine are directly frdre bnchip memory. The up-
dated data are then stored back to the offchip memory.

There are two ways to preload data. The simplest way is to husémemcpy”
function from the C library. The pseudo-code for the “menigmeloading in the two-
column rotation routine is shown in Listing 1.2. We refer ke tcode segment from
the line 10 to line 12 as the “computation core”, which cotssis the computation
of three inner products and a column rotation. Preloadinghfe group based rotation
routine is similar, except that two “groups” of columns arelpaded. The “memcpy”
function based preloading has the problem of paying extealemad of function calling.
Additionally, the assembly code of the “memcpy” functiomé fully optimized, which
is shown with analysis in the next section.

To overcome these two problems, we implement preloadingsbnguan optimized
inline assembly code instead of a function call. We refehim approach as the “inline”
approach. For this approach, each “memcpy” function cakt@aced with a segment
of inline assembly code. The assembly code segment for tleeritpy” and “inline”
preloading approaches (either group based rotation mwtirbasic rotation routine)
are shown in Listing 1.4 and Listing 1.5. From the listinge,@an see that memcpy and
inline approaches have different instruction schedulirfe effect of different ways of
instruction scheduling on the total memory access cyclasadyzed in Section 5.

4.3 Loop Unrolling of Inner Product Computation

There are three inner product function calls in the rotatmutine. We implemented
two versions of loop unrolling for the loop in the inner praticomputation: unrolling
the loop body 4 times or 8 times. The idea is that loop unrglimakes it possible
to schedule instructions from multiple iterations, thusilfating the exploitation of
instruction level parallelism.

5 Performance Model

5.1 Dissection of Execution Cycles

We begin with a simple execution trace example in Listing tb.3llustrate how to
dissect total execution cycles into several parts. In thtinty, the first column is the
current cycle number. We notice that at cycle 98472, theseniste “DLL = 1", which

means that there is a one-cycle latency related to memogsacthe reason is that at
cycle 98472, the instruction needs the operand R9, whicltiseady at cycle 98472
because the LDD instruction at cycle 98470 has two cyclestefty. Similarly, at cycle
98475, the FMULD instruction needs the input operand R8 gaead by the FDIVD
instruction at cycle 98469. R8 is not ready at cycle 98475 raaets an extra latency
of 25 cycles since the FDIVD instruction has 30 cycles ofratefrom the float point
unit. Counting the total number of cycles from cycle 984@icticle 98501, there are
33 cycles which include 7 instructions, 1 cycle of “DLL” an8l 2ycles of “DLF”". The
integer unit may also cause certain latency called “DLI”jathis similar to the “DLF”

in the trace example. Therefore, we have the following eqnat

Total cycles= INST (8)
+ DLL+ DLF+ DLI,

where the “ INST” part stands for the total number of instiats, “DLL" represents the
cycles spent on memory access, “DLF” represents the lateyalgs related to floating
point instructions, and “DLI” represents the latency cgcielated to integer instruc-
tions.

98469 FDIVD R8,R60,R8

98470 LDD R9,R3,96

98471 ORI R21,R0,0

98472 FDIVD R20,R9,R62 DLL = 1
98474 LDD R60,R3,104

98475 FMULD R6,R61,R8 DLF = 25
98501 STD R8,R3,160

Listing 1.3. Example of dissection of execution cycles

5.2 Analysis of Naive Approach

All memory accesses in the naive approach are from the gfici@mory and the com-
putation core part has a large number of “DLL" latency cyclle denote the size of the
matrix asn x n. Each element of this matrix is a double complex number. \Wadmn
one sweep that consists (ij) basic rotations for either the non-group based approach
or the group based approach. A basic rotation, as shown fimji¢.1 consists of two
different parts, the inner product part and the column imtgpart. We analyze the total
“DLL" latency cycles for both of them in this subsection.

First, there are three inner product function calls in theideotation routine. Each
one of them consists of iterations, each iteration producing a multiplication wbt
complex numbers and adding it to the sum. From the trace oitiermost iteration
(the offchip latency is set to be 80 cycles), we see that thermost iteration has a
“DLL = 76". In general, if we preset the offchip latency to liecycles, then the total
number of “DLL" cycles in each iteration i5 — 4. Therefore, in one sweep, the total

number of “DLL” cycles within the inner product part is:

n
DLLinnerproduct = (

2>><3><n><(L—4)7 9)

Second, for the column rotation part in the basic rotatioutine, we conduct a
similar analysis. The total number of “DLL" cycles of thisrp&s:

DLLcolumn,rotation - (Z) Xn X (L - 4) (10)

Therefore the total number of “DLL” cycles in the naive implentation of GaoThomas
algorithm (either group based or ngnoup based, just one sweep) including both inner
product and column rotation is:

DLLnai'ue = DLLinnerproduct + DLLcolumn:rotation

= (5) xn x (4L — 16).

(11)

5.3 Analysis of “Memcpy” Approach

Using either the “memcpy” or “inline” preloading approathe computation core ac-
cesses data from the onchip memory. The “DLL” part in the coration core is roughly
zero due to the overlap of the short onchip memory accesschai@ cycles) with the
float point unit latency. Therefore, from the program withpreloading to the program
with preloading, the decrease of the total number of “DLLEleg in the computation
core isDLL,.;ve, Which is the cycles we save by using preloading, and thugaire
we expect to get.

Moving data from the offchip memory to the onchip memory tessa an extra cost,
which consists of two parts: the first part is the total “DLLyotes in the code segment
that is responsible for moving data, and the second partisxtra instructions incurred.
The equation for the first part is derived as follows.

First, we derive the total number of “memcpy” function clshich are responsible
for loading data “in”). For the basic non-group-based Gawiias algorithm, there are
totally (g) basic rotations (shown in Listing 1.1) in one sweep. A basiation needs
to load in two columns, each of length Loading a double complex number needs two
“LDD” instructions. Therefore, the total number of “LDD”sff preloading data is:

n
LDDmemcpy,no,group = (2) X2Xnx?2

= () x4n, (2

where the first “2” stands for loading “two” columnsjs that the length of the column,
and the second “2” means that loading a double complex nunessts two LDDs.

For the group based algorithm, if the group sizg,ithere are totally"}¢) group
based rotations. At the beginning of each group based ootatie need to load in two
groups of columns (i.& x g columns) and each column needs 2 LDDs. Therefore,
the total number of LDDs for preloading data during one swisep

LDDemepy = ("9) x 29 x 1 x 2

= (”éq) X g X 4n.

(13)

If we treat the non-group-based GaoThomas algorithm asugpgoased algorithm with
group size one, then we can use (13) for either the group lzdgedthm or non-group-
based algorithm.

Second, we compute the latency incurred by the LDDs. Theutigctrace seg-
ment of the assembly code for the “memcpy” function is shawhisting 1.4, with the
offchip latency set to be 80. From the Listing 1.4, we obséhet each LDD instruc-
tion causes a long latency of 80 cycles, which is reflectedavtiee “STD” instructions
exist. If we preset the offchip latency to e then each “LDD” causes a latency bf
cycles. So the total number of “DLL” cycles for preloadingalasing “memcpy” is:

DLLpemepy = LDDpemepy X L

= ("ég) X g X 4n x L. (14)

In addition to the change in the total “DLL"s, we also obsetlve increase in the
total instruction count as:

Total INST increase = (ngg) X g X4n x 2 x 2, (15)

where the first par("ég) x g X 4n is the total number of “LDD”s for preloading data.
We need a same amount of “STD”, thus a multiplication by 2.0Alge need to use
“LDD” and “STD” to store data back, thus another multiplicet by 2.

5.4 Analysis of “Inline” Approach

The total amount of data preloaded for the “inline” preloagdapproach is the same as
the “memcpy” approach. Therefore the total number of “LDBfshe inline approach
is the same as the “memcpy” approach:

LDDintine = (") x 29 x n x 2 (16)

In the “inline” approach, 8 LDDs in a row are followed by 8 STibsa row, as
shown in Listing 1.5. From the trace we can see that we wiletawe “DLL=73" every
8 LDDs if we preset the offchip latency to be 80. If the offckapency isL cycles, there
isa“DLL=L — 7" every 8 “LDD" instructions. Therefore, the total number“@fLL"
cycles for preloading data using the “inline” approach is:

DLLinline = LDDinline/8 X (L - 7)

=1x ("9 x gxdnx (L—7).

17)

From (17), we can see very clearly that preloading data usiadinline” approach is
better than using the “memcpy” approach becallgd.;,,;;,.. iS approximatelyl /8 of
DLLemepy-

5.5 Analysis of the Loop Unrolling

The loop unrolling method only affects the inner productimel For unrolling 4 times,
each inner product routine now containg4 iterations, each iteration consisting of

105375 LDD R6,R9,0

105376 STD R6,R7,0 DLL = 80
105457 ADDI R9,R9,8
105458 ADDI R7,R7,8
105459 LDD R6,R9,0
105460 STD R6,R7,0 DLL = 80
105541 ADDI R9,R9,8
105542 ADDI R7,R7,8
105543 LDD R6,R9,0
105544 STD R6,R7,0 DLL = 80
105625 ADDI R9,R9,8
105626 ADDI R7,R7,8
105627 LDD R6,R9,0
105628 STD R6,R7,0 DLL = 80

Listing 1.4. Trace of the memcpy approach

112688 LDD R16,R9,0
112689 LDD R17,R9,8
112690 LDD R18,R9,16
112691 LDD R19,R9,24
112692 LDD R20,R9,32
112693 LDD R21,R9,40
112694 LDD R22,R9,48
112695 LDD R28,R9,56
112696 STD R16,R6,0 DLL = 73
112770 STD R17,R6,8
112771 STD R18,R6,16
112772 STD R19,R6,24
112773 STD R20,R6,32
112774 STD R21,R6,40
112775 STD R22,R6,48
112776 STD R28,R6,56

Listing 1.5. Trace of the “inline” approach

computation of the sum of 4 multiplications of complex numtgased on the trace
of the innermost iteration, the “DLL”" incurred inside thengr product part can be
summarized in (18):

DLLinnerproduct,unrolM = (;L) X 3 X g X (L - 8) (18)

Similar analysis of unrolling 8 times can give us:

n
DLLinner;m’oduct,unrollS = (

2>><3><Z><(L13). (19)

6 Simulation Result

6.1 Cyclops64 Simulation Environment

The software tool chain of Cyclops64 platform currentlyypdes a compiler, linker and
simulator for users. A number of optimization levels arepsrped by the compiler. A

multi-chip multi-threading functional accurate simula(BAST) is also provided. We
developed a Trace Analyzer that can take the output tracetfie simulator and gener-
ate the dissection of execution cycles and analysis of tHe somulated. The analyzer
can generate statistics about the total “DLL” related to dage instruction. For in-
stance, in the example shown in Listing 1.5, the “DLL" latexsccaused by the “LDD”
instruction are reflected in the STD instruction. we callrslatencies “related/associ-
ated” to the STD instruction.

6.2 Model Validation

Table 1 shows the change of total “DLL"s for different apmieas with the group size
set to be one. In the table, for the preloading based appesdohemcpy or inline), the
change of the “STD associated DLL latency” is the cost we papffeloading, as shown
in the third and fifth column of this table. The predicted \eabf this part is computed
using (14) for the memcpy approach, and (17) for the “inliapproach. The change
of the total “DLL"s in the computation core (inner productdacolumn rotation) is the
gain we achieved. Without preloading the equation for this is (11), with preloading,
the number of total “DLL" cycles in this part is approximatelero. Therefore, for two
preloading approaches, the equation for the cycles savuhad tomputation core is (11).
The difference percentage between the measured value frersirnulation trace
and the predicted value from the equations is computed tisefpllowing equation:

|Measurement — Prediction|
(Measurement + Prediction)/2’

Dif f.Percentage = (20)
From the table, we can see the predicted value is very clogetmeasured value and
the difference percentage is quite small. The predictiothfe “memcpy” approach has
a relatively bigger difference percentage since the exteateead of function calling is
not accounted for in our simplified model.

6.3 Comparison of different approaches

Figure. 2 shows the comparison of total execution cyclesthaddissection to four
parts as in (8). Each figure is composed of five clusters okethbars. Within each
cluster, the leftmost stacked bar is the microlevel breakdof the naive approach, the
second from the left shows the four times unrolling appro#uoh third one is the eight
times unrolling approach, the fourth one is the “memcpy”rapph, the fifth one is the
“inline” approach. The first cluster shows the five approaclvben group size equals
one, the second cluster has group size 2, so on so forth.WMéth stacked bar, the
brown bar (the top bar) shows the total “DLL” cycles, the dédpe bar (the bottom
bar) shows the total number of instructions, the light blae hows the total “DLI”
latency, the yellow bar (in the middle) shows the total “DLff§at point unit latency.
There are several observations from the figures. (1) All ttop@sed approaches
have performance improvement over the naive approach ettwefmemcpy” method
(for group size 1). (2) The figure also shows how the “DLL" @glchange with the
increase of the group size. For preloading based approgthemcpy” and “inline”),

Table 1.Model validation

Latency=36 Latency=80
STD relatedComputation corg STD relatedComputation core
DLL Latenc)j1 DLL Latency|DLL Latencﬁ DLL Latency|
naive Measured 52414 16646112 5241q 39354334
Measured 19664064 2016 42372288 2014
memcpy |Change from Naive 19611644 1664409¢ 42319872 3935433¢
Predicted change 1857945¢ 16515072 4128768 3922329¢
Diff percentage 5.41% 0.78% 2.47% 0.33%
Measured 1943424 2014 4781952 2014
inline Change from Naive 1891008 1664409¢ 4729536 3935433
Predicted change 1870848 1651507 4709376 3922329
Diff percentage 1.08% 0.78% 0.43% 0.33%
Measured 46369 6711264 46369 16646112
unroll 4 Change from Naive 6048 9934848 6048 22708224
Predicted change - 967680(- 22450174
Diff percentage - 2.63% - 1.14%
Measured 46369 5114592 46368 12920544
unroll 8 change from Naive 6048 1153158 6048 26433792
Predicted change - 11273477 - 26175744
Diff percentage - 2.26% - 0.98%

as the group size doubles, the “DLL" will reduce to one hatieToop unrolling based
approach does not change with the change of the group siae$ethe loop unrolling
based approach only change the inner product routine ofdhie lpotation routine of
two columns and the total number of basic rotations withia sweep is not changed
when the group size changes. (3) This figure also shows thkitstructions change
for different approaches. It can be seen that for preloadawsed approaches, the total
number of instructions increases from the naive approaehtathe extra instructions
for preloading. On the other hand, the loop unrolling apphoaan reduce the total
instruction count from the naive approach since the loomlling reduces the total
numbers that the loop control statement are executed. @)DhbF” part in the figure
roughly does not change no matter what approach we are uBg)is true because
the “DLF" is related to the floating point instructions in tbemputation core, which is
kept unchanged. (5) It can be seen the “inline” preloading@gch performs the best
out of all five approaches.

7 Conclusions

This paper focus on the Cyclops64 computer architecturepaesented an analyti-
cal model and performance simulation results for the prBimaand loop unrolling
approach to optimize the performance of SVD benchmark. Tajemeontributions in-
clude: (1), We developed a performance model and trace zsvaly dissect the total
execution cycles. This model allows us to study the apptiogierformance tradeoff for
different algorithm or architectural design ideas. (2), p¥esented a clear understand-
ing of SVD benchmark. (3), We used cycle accurate simulatoratidate the model
and compare the effect of four approaches on the “DLL" pad tre total execution
cycle. We find the hand optimized “inline” method can imprakre performance sig-
nificantly and performs best among several approaches. Wi&i&e to thank Juan

Toerecin cyoes

Tol etecioncyces

Fig. 2. comparison of different approaches (a)Problem size 64 by 640 (5BProblem size 64
by 64, L=36, (c) Problem size 32 by 32, L=80 (d) Problem size 32 hy.336

B. del Cuvillo, Fei Chen, Weirong Zhu, and other members ex@\PSL (Computer
Architecture and Parallel Systems Laboratory) group feirthelp.

References

1. C.Cascaval,J. G.C. nos, L. Ceze, M. Denneau, M. Gupta, DetL,i@bE. Moreira, K. Strauss,
and H. S. W. Jr., “Evaluation of a multithreaded architecture for celldeanmuting,” inHPCA,
2002, pp. 311-322.

2. G. Almdi, C. Cascaval, J. G. Castas, M. Denneau, D. Lieber, JO&. Moreira, and J. Henry
S. Warren, “Dissecting cyclops: a detailed analysis of a multithreadédecture,"SPECIAL
ISSUE: MEDEA workshop, vol. 31, pp. 26 — 38, 2003.

3. G. S. Almasi, C. Cascaval, J. E. Moreira, M. Denneau, W. DorMttEleftheriou, M. Gi-
ampapa, H. Ho, D. Lieber, D. Newns, M. Snir, and J. Henry S. Warf@emonstrating the
scalability of a molecular dynamics application on a petaflop computdiCHi101: Proceed-
ings of the 15th international conference on Supercomputing. New York, NY, USA: ACM
Press, 2001, pp. 393-406.

4. J. del Cuvillo, W. Zhu, Z. Hu, and G. R. Gao, “Fast: A functionallywete simulation toolset
for the cyclops-64 cellular architecture,” Wbrkshop on Modeling, Benchmarking and Smu-
lation (MoBS), held in conjunction with the 32nd Annual Interantional Symposium on Com-
puter Architecture (ISCA 05), Madison, Wisconsin, June 4 2005.

5. ——, “Tiny threads: a thread virtual machine for the cyclops64 celltahitecture,” inFifth
Workshop on Massively Parallel Processing (WMPP), held in conjunction with the 19th Inter-
national Parallel and Distributed Processing System, Denver, Colorado, April 3 - 8 2005.

6. J.B. del Cuvillo, Z. Hu, W. Zhu, F. Chen, and G. R. Gao, “Towastdfware infrastructure for
the cyclops64 cellular architecture,” 2004, CAPSL Memo 55, DepaitofdfCE, Universisty
of Delaware.

7. M. R. Hestenes, “Inversion of matrices by biorthogonalization atate@ results,”J. Soc.
Induct. Appl. Math., vol. 6, pp. 51-90, 1958.

