
Position Paper: Using a “Codelet” Program Execution
Model for Exascale Machines∗

Stéphane Zuckerman
Joshua Suetterlein
University of Delaware

szuckerm@capsl.udel.edu
jodasue@capsl.udel.edu

Rob Knauerhase
Intel Labs

knauer@intel.com

Guang R. Gao
University of Delaware

ggao@capsl.udel.edu

ABSTRACT
As computing has moved relentlessly through giga-, tera-,
and peta-scale systems, exa-scale (a million trillion opera-
tions/sec.) computing is currently under active research.
DARPA has recently sponsored the “UHPC” [1] — ubiqui-
tous high-performance computing — program, encouraging
partnership with academia and industry to explore such sys-
tems. Among the requirements are the development of novel
techniques in “self-awareness”1in support of performance,
energy-efficiency, and resiliency.

Trends in processor and system architecture, driven by
power and complexity, point us toward very high-core-count
designs and extreme software parallelism to solve exascale-
class problems. Our research is exploring a fine-grain, event-
driven model in support of adaptive operation of these ma-
chines. We are developing a Codelet Program Execution
Model which breaks applications into codelets (small bits of
functionality) and dependencies (control and data) between
these objects. It then uses this decomposition to accom-
plish advanced scheduling, to accommodate code and data
motion within the system, and to permit flexible exploita-
tion of parallelism in support of goals for performance and
power.

Categories and Subject Descriptors
CR-number [subcategory]: third-level

∗This research was, in part, funded by the U.S. Government.
The views and conclusions contained in this document are
those of the authors and should not be interpreted as rep-
resenting the official policies, either expressed or implied, of
the U.S. Government.
1Fans of science fiction will note that Department of Defense
attempts to build self-aware systems have not always been
successful (cf. War Games, Terminator . . .).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
EXADAPT ’11 June 5, 2011, San Jose, California, USA.
Copyright 2011 ACM 978-1-4503-0708-6/11/06 ...$10.00.

Keywords
exascale, manycore, dataflow, program execution model

Acknowledgements

Government Purpose Rights
Purchase Order Number: N/A
Contractor Name: Intel Corporation
Contractor Address: 2111 NE 25th Ave M/S JF2-60, Hillsboro,
OR 97124
Expiration Date: None

The Government’s rights to use, modify, reproduce, release,

perform, display, or disclose this technical data are restricted

by paragraphs B (1),(3) and (6) of Article VIII as incorporated

within the above purchase order and Agreement. No restrictions

apply after the expiration date shown above. Any reproduc-

tion of the material or portions thereof marked with this legend

must also reproduce the markings. The following entities, their

respective successors and assigns, shall possess the right to ex-

ercise said property rights, as if they were the Government, on

behalf of the Government: Intel Corporation (www.intel.com);

ET International (www.etinternational.com); Reservoir Labs

(www.reservoir.com); University of California San Diego

(www.ucsd.edu); University of Delaware (www.udel.edu); Uni-

versity of Illinois at Urbana-Champaign (www.uiuc.edu).

1. INTRODUCTION

1.1 Motivation
Contemporary systems include multi- and many-core pro-

cessors. However, few current implementations include more
than a small number of cores per chip — IBM’s Cyclops-64,
or Intel’s Single-chip Cloud machines being (for now) the
exceptions rather than the rule. As the number of cores
inevitably increases in the coming years, traditional ways
of performing large scale computations will need to evolve
from legacy models such as OpenMP[17] and MPI[14]. In-
deed, such models are very much wedded to a control-flow
vision of parallel programs, thus making it more difficult
to express asynchrony in programs and requiring a rather
coarse-grain parallelism. This in turn reduces the ability for
the system to insert points at which adaption decisions can
be made, as well as requiring expensive whole-context copies
if adaptation requires moving code to another core, or repli-
cating a large context when reliability mandates redundant
calculation.

We believe that to efficiently exploit the computing power
of the future many-core exascale machines, we need to ex-
press programs in a finer-grained manner. Our work in-
dicates that by decomposing a program into snippets of
code (codelets), we can more efficiently gain beneficial at-
tributes for solving problems in this space. The natural
breaks between codelets provide a plethora of opportunities
to observe system state and adapt as needed. For example,
we can run as many (or as few) simultaneous codelets as
required or allowed by the machine’s environment, nimbly
changing the amount of parallel execution we exploit. Reli-
ability problems — e.g. from transient core failures — are
quickly detected, and cores can be put into a different fre-
quency/voltage state or taken “out of service” entirely with
minimal effect to the program as a whole.

Our Codelet Program Execution Environment (Codelet
PXE) provides a runtime and system software in which the
adaptability benefits of codelets can be realized. It relies
on existing work in dataflow theory [8] to provide strong
theoretical results to guarantee forward progress of a paral-
lel program. Although we do not address them (for lack of
space), languages such as Concurrent Collections [4], X10 [6]
or Chapel [5] can perfectly fit on top of our Codelet PXE2, as
long as there is a codelet-aware compiler which can decom-
pose a (say) Chapel program into a collection of codelets.

The remainder of this paper is organized as follows. Sec-
tion 2 describes our fine-grain codelet-based execution model;
section 3 tackles issues induced by exascale machines, such
as scalability, energy efficiency, and resiliency. Section 4
skims through related research; we conclude in Section 5
and sketch our future research.

2. THE CODELET PROGRAM EXECUTION
MODEL

2.1 Abstract Machine Model
As an established practice in the field, our proposed pro-

gram execution model is explained in the context of a cor-
responding abstract (parallel) machine architecture model.
In this section, we present an outline of an abstract machine
that can be viewed as an abstract model for the class of par-
allel computer hardware and software system that realize
the proposed codelet design goals.

The abstract machine consists of many nodes that are
connected together via an interconnection network as shown
as in Figure 1. Each node contains a many-core chip. The
chip may consist of up to 1-2 thousand processing cores being
organized into groups (clusters) linked together via a chip
interconnect. In the abstract machine presented, each group
contains a collection of computing units (CU) and at least
one scheduling unit (SU), all being linked together by their
own on-chip interconnect. A node may also contain other
resources, most notably additional memory which will likely
be DRAMs or other external storage.

2.2 The Codelet Model

2.2.1 Goals

2In fact, in the case of Concurrent Collections, many con-
cepts are very similar to those we expose in the remainder
of this paper.

ClusterCluster

Cluster Cluster

...

...

I/O

DRAM

Chip

Chip Chip...

interconnect

DRAM DRAM……….

I/O

Node

interconnect

CU CU

SU Cluster
Memory……….

……….

Cluster
Register
Window … Register

Window
Register
Window

Local Memory

Register
Window

CU

Interconnect

Node

NodeNode

Node

Register
Window … Register

Window
Register
Window

SU

Out-of-Cluster Communications

Local Memory

Register
Window

...

...

interconnect

Figure 1: Abstract machine

The codelet execution model is designed to leverage previ-
ous knowledge of parallelism, and to develop a methodology
for exploiting parallelism for a much larger scale machine.
In doing so, we must take into account the (application de-
pendent) sharing of both machine and data resources. As
the number of processing elements will continue to increase,
it is likely that future performance bottlenecks will emanate
from this sharing. The codelet model aims to effectively rep-
resent the sharing of both data and other vital machine re-
sources. To represent shared data while exploiting massive
parallelism, the codelet model imposes a hybrid dataflow
approach utilizing two levels of parallelism. In addition,
our model provides an event interface to address machine
constraints exacerbated by an application. Moreover, the
codelet model seeks to provide a means for running exascale
applications within certain power budget.

2.2.2 Definition
The finest granularity of parallelism in the codelet ex-

ecution model is the codelet. A codelet is a collection of
machine instructions that can be scheduled “atomically” as
a unit of computation. In other words, codelets are the
principal scheduling quantum found in our execution model.
Codelets are more fine grained than a traditional thread,
and can be seen as a small chunk of work to accomplish
a larger task or procedure. As such, when a codelet has
been allocated and scheduled to a computation unit, will be
kept usefully busy until its completion. Many traditional
systems utilize preemption to overlap long latency opera-
tions with another coarse grain thread incurring a context

switch. Since codelets are more fine grain, we believe the
overhead of context switching (saving and restoring regis-
ters) is too great. Therefore the underlined abstract ma-
chine model and system software (e.g. compiler, etc.) must
be optimized to ensure such non-preemption features can be
productively utilized. With a large amount of codelets and
a greater amount of processing power, our work is leading us
to believe that it may be more power efficient to clock-gate a
processing element while waiting for long latency operations
than to multitask. In efforts to reduce power consumption
and to decrease latency of memory operations, codelets pre-
suppose that all data and code be local to its execution. A
codelet’s primary means of communication with the remain-
ing procedure is through its inputs and outputs.

2.3 The Codelet Graph Model
The codelet graph (CDG) to be introduced below has its

origin in dataflow graphs.
A CDG is a directed graph G = (V,E) where V is a set of

nodes and E is a set of directed arcs and tokens. In a CDG
nodes in G may be connected by arcs from E. A node (also
called a codelet actor) denotes a codelet.

An arc (V1, V2) in the CDG is an abstraction of a prece-
dence relation between nodes V1 and V2. Such a relation
may be due to a data dependence between codelet V1 and
V2, but we allow other types of relations. For example, it
can simply specifies a precedence relation: the execution of
the codelet actor V2 must be following the execution of V1.

Arcs may contain event tokens. These tokens correspond
to an event, the most prominent being the presence of data
or a control signal. These arcs correspond to the inputs and
outputs of a codelet. Tokens travel from node to node, en-
abling codelets to execute. When the execution of a codelet
is completed, it places tokens (its resulting values) on its out-
put arcs, and the state of the abstract machine (represented
by the entire graph) is updated. The interested reader can
find examples of programs expressed as codelet graphs in a
previously released technical report [12].

Operational Semantics.
The execution model of a codelet graph is specified by its

operational semantics called firing rules. A codelet can be in
one of three states. A codelet begins as dormant. When all
its events are satisfied it becomes enabled. Once a processing
element becomes available, a codelet can be fired.

Codelet Firing Rule.
A codelet becomes enabled once tokens are present on

each of its input arcs. An enabled codelet actor can be fired
if it has acquired all required resources and is scheduled for
execution. A codelet actor fires by consuming tokens on
its input arcs, performing the operations within the codelet,
and producing a token on each of its output arcs upon com-
pletion.

While codelet actors are more coarse than traditional dataflow,
codelet actors still require glue to permit conditional execu-
tion (i.e. a loop containing multiple codelet actors). In order
to provide greater functionality, we include several actors
including a decider, conditional merge, and T and F-gates
which follow directly from the dataflow literature [7].

Threaded Procedures.
Viewing a CDG in conjunction with the firing rule paints

a picture of how a computation is expressed and executed.
Codelets are connected by dependencies through their in-
puts and outputs to form a CDG. The formation of these
CDGs gives rise to our second level of parallelism, threaded
procedures.

A threaded procedure (TP) is an asynchronous function
which acts as a codelet graph container. A TP serves two
purposes, first it provides a naming convention to invoke a
CDG, and secondly it acts as a scope of which codelets can
efficiently operate within.

Figure 2 shows three threaded procedure invocations.

Input

Output

Dependencies inside a TP

Dependency outside a TP

Codelet

Threaded Procedure (TP)

Figure 2: An examples of three threaded procedures

Codelets and TPs are the building block of an exascale ap-
plication. Codelets act as a more fine grain building block
exposing more parallelism. TPs conveniently group codelets
providing composability for the programmer (or compiler)
while increasing the locality of shared data. TP’s also act
as a convenient means for mapping computation to a hier-
archical machine.

2.4 Well-Behaved Codelet Graphs
A CDG is well-behaved if its operations terminate fol-

lowing each presentation of values on its input arcs, and
places a token on each of its output arcs. Furthermore, a
CDG must not have any circular dependencies and be self-
cleaning (i.e.the graph must return to its original state after
it is executed).

In well-behaved graphs, as tokens flow through the CDG,
forward progress in the application is guaranteed. This is
an important property for applications composed with fine
grain actors sharing resources. Furthermore, a well-behaved
graph ensures determinate results regardless of the asyn-
chronous execution of codelets and TPs. This property holds
when all the data dependencies between codelets are ex-
pressed.

CDGs adhere to the same construction rules as a dataflow
graph which is cited in [7]. In particular, well-behaved com-
ponents form a well-behaved graph. Control actors are not
well-behaved actors; however they may still be part of a well-
behaved CDG because they are considered a well-formed
schema [7].

A framework which provides the default of being well-
behaved and determinate aids in reducing development ef-

fort (by easing the debugging process) and enabling the“self-
aware” adaptability we desire.

3. SMART ADAPTATION IN AN EXASCALE
CXM

So far, we have described our codelet model of compu-
tation, without explaining how it fits into a live system,
e.g. how the runtime system (RTS) will deal with codelet
scheduling for scalability, energy-efficiency, or resiliency. This
section addresses these issues, and exposes various mech-
anisms which we believe will enable programs using the
codelet PXE to run efficiently.

3.1 Achieving Exascale Performance

Loop parallelism and Codelet Pipelining.
Loop parallelism is an important form of parallelism in

most useful parallel execution models. Since the codelet
graph model has evolved from dataflow graphs, naturally
we intend to exploit the progress made on loop parallelism
in the dataflow model. One of the most successful techniques
to exploit loop parallelism is at the instruction-level using
software pipelining (SWP) [16].

Based on the work of the past decade on loop code map-
ping, scheduling and optimization, various ideas of loop schedul-
ing have now converged to a novel loop nest SWP framework
for multi- and many-core systems. Among them, we count
Single-dimension Software Pipelining (SSP) [18], which is a
unique resource-constrained SWP framework that overlaps
the iterations of an n-dimensional loop. SSP has been im-
plemented with success on the IBM Cyclops-64 many-core
chip [10].

As previously stated, the goal of the codelet model is to
better utilize a larger machine with more fine grain com-
putation. Using SWP techniques to permit more codelets
aids in achieving this goal, however other mechanisms are
required to saturate the machine.

Split-Phase Continuations.
The “futures” concept and their continuation models have

been investigated or are under investigation in a number
of projects (e.g. Cilk, Java, C#, . . .). Under the codelet
model, each time a future-like asynchronous procedure in-
vocation is launched, it will be considered as a long (and
hard to predict) latency operation, and the invoking codelet
will not be blocked. In fact, the codelet should only con-
tain operations that will not depend on the results of the
launched procedure invocation. Therefore, once the codelet
has finished its remaining operations, it will quit (die) nat-
urally.

Conceptually, the remaining codelets of the calling pro-
cedure will continue, hence the term “continuation.” Also,
since the launching codelet(s) have already all quit, the con-
tinuation could be considered as starting as another “phase”
of the computation, hence the term split-phase continuation.
We anticipate that such split-phase actions will be very ef-
fective in tolerating long and predictable latencies.

Another important benefit from split-phase continuation
is that it provides the opportunity for the scheduler to clock-
gate (e.g. saving power while preserving state) a given com-
putation unit which issued one such continuation, and is
waiting for its results to continue its execution. It can then

simply wait for the scheduler to send a signal to wake up
once the data dependence is finally resolved.

Meeting Locality Requirements.
The codelet model presupposes that codelet have their in-

puts available locally. However, some inputs may very well
simply be a pointer referencing a remote memory location.
While the pointer itself is locally available, the data it ref-
erences may not be available locally when the codelet fires.
One way of dealing with this is to perform split-phase con-
tinuation (cf. paragraph 3.1). However, it may be more
efficient to simply make sure the data referenced is indeed
locally available to the running codelet.

In current systems, such a task is mostly performed through
the use of code or data prefetching. However, classical code
and data prefetching only concerns themselves with bringing
blocks of code or data into local memories (usually caches)
in an efficient way. While an efficient technique, prefetch-
ing is done in a systematic manner at the hardware and
software level, hence increasing the power demands on the
overall system. Moreover, relatively complex data structures
(say, linked lists or graphs) usually tend to defeat prefetch-
ers, as locality is not guaranteed. However, on a many-core
architecture, knowing how data will be allocated, in which
cluster, etc., will be extremely difficult. Furthermore It is
unlikely that classical hardware data-prefetching will be very
efficient for particular challenge problems like graph traver-
sals.

In addition, too aggressive prefetching can pollute the
local memory of a computation unit, by using too big a
prefetch distance and thus copying in useless data. This
is mainly due to the fact that prefetching is “just” a tech-
nique to load blocks of data, regardless of their meaning for
the current computation. To deal with more clever ways of
moving data, additional techniques have been devised.

3.2 Achieving Power and Energy Efficiency
Energy efficiency is one of the major challenges for exas-

cale supercomputers. Extrapolation of current (näıve) tech-
nologies into exascale domains quickly becomes unsupport-
able. Indeed, some UHPC approaches explicitly state that
running a whole system at full power will introduce quick
failure. To this end, future systems will have to build on
dynamic voltage/frequency scaling along with system-wide
metrics to adapt consumption according to available power,
user-defined system goals, and other factors.

Therefore, exascale systems will in all probability require
ways to quickly and efficiently shut down parts of one or
more computation nodes when they are not useful. There
are two approaches to this problem. One is to provide
mechanisms which will proactively aim at reducing energy-
consumption, which is partially achieved through the use of
percolation hint (see below). The other one is to react to
events as they happen in real time and decide what to do.
This is where our event-driven Codelet PXE is going to help.

Code and Data Percolation for Energy Efficiency.
The HTMT program execution model [13] introduced the

percolation mechanism [19, 2], to deal with memory hier-
archies with very different latencies (going from a few cy-
cles to several hundreds). It is different from classical data-
prefetching in that it fetches “intelligently” the next block
of data according to its type. For example, consider an ele-

ment in a linked list. There is usually a field, say next, which
points to the next element in the list. Here, next could be
marked (through a hint) as needing to be followed, hence
giving the compiler and runtime system enough information
to know how important it is to have data available locally.
In a näıve version of a graph node data structure, a given
node would have an array of such pointers to reference this
node’s neighbors.

Data percolation is a useful tool to hide latencies and in-
crease the overall performance of a system without incur-
ring the drawbacks of general prefetching. However, moving
data around can be extremely costly in terms of energy-
consumption. Our CXE and runtime percolator applies per-
colation to code itself. Depending on the relative sizes of
code (remember, codelets are small) and data, it will some-
times make more sense to move only the code, and let the
data stay where it was last modified. Users of many-core
architectures will need to think in a data-centric way rather
than a code-centric one; however, our system helps by adapt-
ing based on data-access patterns [15] from both hardware
performance monitoring units and compiler hints/instrumentation.

While some of these factors can be determined at compile-
time, others are strictly a function of dynamic runtime state.
Our hardware designs (outside the scope of this paper) in-
clude deliberate features to monitor memory access and to
ease the ability to relocate code and data as needed through-
out the system.

How deep percolation should go (e.g., how many links or
neighbouring nodes should be retrieved in our linked list and
graph examples) depends on the runtime knowledge of avail-
able local memory for a given codelet, what other memory
requests should be issued next to the ones currently be pro-
cessed, and so forth. This will remain an important area for
ongoing research.

Self-Aware Power Management.
The runtime system (RTS) used in our prototype Codelet

PXE is continuously fed system-monitoring events which re-
flect the “health” of the system. In particular, probes are
expected to warn the scheduling units when (parts of) the
computation node they are running on is going over a given
power threshold. Thresholds can be determined by the user
(power “goals” input directly to the system, or hints coded
into the application) or by the system itself (hard limits
based on heat, or availability/quality of power at a given
moment).

The scheduler decides what to do with threaded proce-
dures (and the CDG attached to them) that are currently
running on the parts programmed to be shut down. If the
hysteresis (or “heat history”) indicates a negative trend, it
can decide to enact energy-saving measures (clock-gating,
frequency-scaling, or — perversely — increasing performance
to finish the CDG after which it can shut down that area of
the chip for some period. If none of these measures is suffi-
cient, the scheduler may simply turn off that part of the chip
(or memory) and migrate or restart one or mode codelets
elsewhere. Resiliency checkpointing techniques (described
in a following section) will of course help this migration.

3.3 Achieving Resiliency
There are a number of factors that may cause an exas-

cale system to exhibit less than optimal reliability. For ex-
ample, even with a very high mean time between failures

(MTBF) of each core, a system with a million cores will
see transient failures. Likewise, as part of the manufactur-
ing process, different cores will have different tolerance of
voltages; the aggressive power-scaling that is required for
energy efficiency may cause some cores to fail under certain
threshholds. Lastly, environmental factors (heat generated
by use of certain “areas” of the system, or external cooling
availability) may also introduce intermittent problems. To
ensure correctness of ongoing computations, several adapta-
tion mechanisms must be provided.

At the most basic level, our CXE can provide resiliency
by duplicating computation in various parts of the machine.
For mission-critical applications, the value of this may be
worth the costs of increased energy usage or reduced capac-
ity in the system.

Our related research includes observation and introspec-
tion systems which will help detect failures. The runtime
system uses this information as part of its codelet schedul-
ing. It can, for example, change the voltage and/or fre-
quency settings of individual cores or blocks to ameliorate
errors, or it can shut down areas of the system and relocate
computation elsewhere to allow failing cores to return to a
less error-prone temperature.

Lastly, because our CXE includes dependency informa-
tion, and because codelets are small and make very localized
changes to their data, many opportunities for traditional re-
siliency — checkpointing and the like — can be quickly ac-
commodated. Indeed, the runtime can perform incremental
state versioning even for computation that isn’t necessar-
ily “transactional” in the original application. We expect
to prototype heuristics to determine when to speculatively
create versions of codelet state based on machine state and
predictions of localized failures.

4. RELATED WORK
Dataflow (DF) was first proposed in its static definition by

Jack Dennis[8, 9]. DF was later extended by Agerwala and
Arvind creating dynamic DF. Dynamic DF is considered to
exploit the finest granularity of parallelism, but suffers large
overheads due to token matching and lack of locality.

The EARTH system [20] was our second inspiration for
our current work. It is a hybrid dataflow model which runs
on off-the-shelf hardware. EARTH took an evolutionary ap-
proach to exploring multithreading, and its runtime is not
suited to scale to massive many-core machines.

The Cilk programming language [3] is an extension to the
C language which provides a way to simply express paral-
lelism in a divide-and-conquer manner.

Other programming models also provide asynchronous ex-
ecution, such as StarSs [11], which provide additional prag-
mas or directives to C/C++ and Fortran programs. StarSs
requires to explicitely state which are the inputs and out-
puts of a given computation, and is basically an extension
to OpenMP-like frameworks.

Chapel [5] and X10 [6] are part of the Partitioned Global
Address Space (PGAS) languages. Both have specific fea-
tures which differentiate them from each other, but provide
an abstration of the memory addressing scheme to the pro-
grammer. All the while, they give him/her the ability to ex-
press critical sections and parallel regions with ease through
adapted constructs.

Our work is clearly inspired by previous work on dataflow,
as well as the research done on the EARTH system. How-

ever, contrary to EARTH’s fibers, our codelet model is specif-
ically designed to run codelets on multiple cores. In addi-
tion, we address power and resiliency issues, which none of
the previously described programming models do. Cilk’s al-
gorithmic approach to scheduling can also be used in our
Codelet PXE, but we believe we can go a step further, while
still retaining some important theoretical properties offered
by Cilk.

Moreover, the work described in this section is in no way
in opposition with what we are proposing. Codelets should
be seen as the “assembly language” of parallel frameworks.
Programs written in the previous languages can be decom-
posed into codelets.

5. CONCLUSION AND FUTURE WORK
This paper presents a novel program execution model aimed

at future many-core systems. It emphasizes the use of finer
grain parallelism to better utilize the available hardware.
Our event-driven system can dynamically manage runtime
resource constraints beyond pure performance, including en-
ergy efficiency and resiliency.

Future work includes developing a codelet-aware software
stack (starting with a compiler and a runtime system) which
will implement our ideas related to scalability, energy effi-
ciency and resiliency. Further research will also be needed
to take security as another component of our model.

6. REFERENCES
[1] Ubiquitous high performance computing (uhpc).

[2] J. N. Amaral, G. R. Gao, P. Merkey, T. Sterling, Z. Ruiz,
and S. Ryan. An htmt performance prediction case study:
Implementing cannon’s dense matrix multiply algorithm.
Technical report, 1999.

[3] R. D. Blumofe, C. F. Joerg, B. C. Kuszmaul, C. E.
Leiserson, K. H. Randall, and Y. Zhou. Cilk: An efficient
multithreaded runtime system. pages 207–216.

[4] Z. Budimlic, M. Burke, V. Cavé, K. Knobe, G. Lowney,
R. Newton, J. Palsberg, D. M. Peixotto, V. Sarkar,
F. Schlimbach, and S. Tasirlar. Concurrent collections.
Scientific Programming, 18(3-4):203–217, 2010.

[5] B. L. Chamberlain, D. Callahan, and H. P. Zima. Parallel
programmability and the chapel language. IJHPCA,
21(3):291–312, 2007.

[6] P. Charles, C. Grothoff, V. A. Saraswat, C. Donawa,
A. Kielstra, K. Ebcioglu, C. von Praun, and V. Sarkar.
X10: an object-oriented approach to non-uniform cluster
computing. In R. E. Johnson and R. P. Gabriel, editors,
OOPSLA, pages 519–538. ACM, 2005.

[7] J. Dennis, J. Fosseen, and J. Linderman. Data flow
schemas. In A. Ershov and V. A. Nepomniaschy, editors,
International Symposium on Theoretical Programming,
volume 5 of Lecture Notes in Computer Science. Springer
Berlin / Heidelberg, 1974.

[8] J. B. Dennis. First version of a data-flow procedure
language. In Proceedings of the Colloque sur la
Programmation, number 19 in Lecture Notes in Computer
Science. Springer-Verlag, April 9–11, 1974.

[9] J. B. Dennis and J. B. Fossen. Introduction to data flow
schemas. Technical Report 81-1, September 1973.

[10] A. Douillet and G. R. Gao. Register pressure in
software-pipelined loop nests: Fast computation and impact
on architecture design. In LCPC, pages 17–31, 2005.

[11] A. Duran, J. Perez, E. Ayguadé, R. Badia, and J. Labarta.
Extending the openmp tasking model to allow dependent
tasks. In R. Eigenmann and B. de Supinski, editors,
OpenMP in a New Era of Parallelism, volume 5004 of
Lecture Notes in Computer Science, pages 111–122.

Springer Berlin / Heidelberg, 2008.
10.1007/978-3-540-79561-2 10.

[12] G. R. Gao, J. Suetterlein, and S. Zuckerman. Toward an
execution model for extreme-scale systems — runnemede
and beyond. CAPSL Technical Memo 104, Department of
Electrical and Computer Engineering, University of
Delaware, Newark, Delaware, May 2011.

[13] G. R. Gao, K. B. Theobald, A. Márquez, and T. Sterling.
The HTMT program execution model. Technical
Report 09, 1997.

[14] R. L. Graham. The mpi 2.2 standard and the emerging mpi
3 standard. In Proceedings of the 16th European
PVM/MPI Users’ Group Meeting on Recent Advances in
Parallel Virtual Machine and Message Passing Interface,
Berlin, Heidelberg, 2009. Springer-Verlag.

[15] R. Knauerhase, P. Brett, B. Hohlt, T. Li, and S. Hahn.
Using os observations to improve performance in multicore
systems. IEEE Micro, 28:54–66, May 2008.

[16] M. S. Lam. Software pipelining: an effective scheduling
technique for vliw machines (with retrospective). In Best of
PLDI, pages 244–256, 1988.

[17] L. Meadows. Openmp 3.0 — a preview of the upcoming
standard. In Proceedings of the 3rd international conference
on High Performance Computing and Communications,
pages 4–4, Berlin, Heidelberg, 2007. Springer-Verlag.

[18] H. Rong, A. Douillet, R. Govindarajan, and G. R. Gao.
Code generation for single-dimension software pipelining of
multi-dimensional loops. In Proc. of the 2004 Intl. Symp.
on Code Generation and Optimization (CGO), March 2004.

[19] G. Tan, V. Sreedhar, and G. Gao. Just-in-time locality and
percolation for optimizing irregular applications on a
manycore architecture. In J. Amaral, editor, Languages and
Compilers for Parallel Computing, Lecture Notes in
Computer Science. Springer Berlin / Heidelberg, 2008.

[20] K. B. Theobald. Earth: an efficient architecture for
running threads. PhD thesis, Montreal, Que., Canada,
Canada, 1999. AAINQ50269.

