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Abstract—The recent evolution of many-core architectures
has resulted in chips where the number of processor elements
(PEs) are in the hundreds and continue to increase every day. In
addition, many-core processors are more and more frequently
characterized by the diversity of their resources and the way
the sharing of those resources is arbitrated.

On such machines, task scheduling is of paramount impor-
tance to orchestrate a satisfactory distribution of tasks with
an efficient utilization of resources, especially when fine-grain
parallelism is desired or required. In the past, the primary
focus of scheduling techniques has been on achieving load
balancing and reducing overhead with the aim to increase
total performance. This focus has resulted in a scheduling
paradigm where Static Scheduling (SS) is preferred to Dynamic
Scheduling (DS) for highly regular and embarrassingly parallel
applications running on homogeneous architectures.

We have revisited the task scheduling problem for these
types of applications under the scenario imposed by many-
core architectures to investigate whether or not there exists
scenarios where DS is better than SS.

Our main contribution is the idea that, for highly regular
and embarrassingly parallel applications, DS is preferable to
SS in some situations commonly found in many-core architec-
tures. We present experimental evidence that shows how the
performance of SS is degraded by the new environment on
many-core chips.

We analyze three reasons that contribute to the superiority
of DS over SS on many-core architectures under the situations
described:

1) A uniform mapping of work to processors without
considering the granularity of tasks is not necessarily
scalable under limited amounts of work.

2) The presence of shared resources (i.e. the crossbar
switch) produces unexpected and stochastic variations
on the duration of tasks that SS is unable to manage
properly.

3) Hardware features, such as in-memory atomic opera-
tions, greatly contribute to decrease the overhead of DS.

I. INTRODUCTION

Recent trends in computer architecture, where many-
core processors are routinely composed of hundreds of
processing cores, have unleashed challenges in many aspects
of computing technology. Task scheduling, in particular,
is difficult in many-core architectures due to the quantity,

availability, and diversity of resources: Static Scheduling
(SS) was usually preferred over Dynamic Scheduling (DS)
for regular, embarrassingly parallel applications on general
purpose architectures. However, SS is not necessarily the
best choice for many-core architectures, even for regular,
embarrassingly parallel applications.

The two main factors that usually hurt the expected
advantages of SS over DS in many-cores are: 1) The large
number of processing elements in a many-core chip results
in fewer tasks assigned to each processing element, and
2) the behavior and interaction of shared resources are not
necessarily uniform during execution. These two new factors
blunt the effectiveness of SS while greatly favoring DS, even
under scenarios where SS has traditionally been the logical
solution.

Keeping the abundant number of Processing Elements
(PEs) inside of a chip busy, when resources are limited,
results in few tasks per PE, often with comparatively small
durations. Thus, a totally balanced distribution of tasks
becomes a daunting challenge as problem sizes and ap-
plication features make individual situations very different.
Even within the design space of fixed problem sizes, not
all tasks will be identical, because the problem size may or
may not be a multiple of the expected task size, resulting in
varying task sizes. These small variations in the sizes can
contribute to the imbalance of the system, in particular when
the granularity of the task is fine and the number of tasks
per PE is decreased.

Shared resources are an important source of task imbal-
ance because the arbitration of shared resources may produce
unexpected stalls that could change the completion time of
similar tasks. The most common shared resources on many-
cores are the memory, the communication infrastructure (e.g.
crossbar, access ports), and the functional units (e.g. Floating
Point Units and other special purpose units).

All of these sources of imbalance make it difficult for SS
to provide a strategy that fully utilizes the hardware. This
produces results below those expected, even for classical
regular applications like Matrix Multiply [1].

The nature of DS can manage and compensate for the
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unpredictable effects of resource sharing and imbalance
introduced by the granularity of tasks. However, it remains
a challenge to execute a low-overhead implementation of
DS in architectures without adequate hardware support. In
contrast, when hardware support is available, it is possible
to deliver high throughput and low latency using a DS
implementation with overall results superior to those of an
SS approach. This superiority can be observed in situations
that were traditionally favorable to SS (regular applications
in homogeneous architectures) and in situations with fine-
grained tasks with some degree of heterogeneity.

The paper is organized as follows: Section II presents
a motivating example using Matrix Multiplication as well
as providing some required background. Section III defines
the problem addressed in this paper. Section IV shows the
impact of work partitioning and shared resources in SS and
DS. This section also analyzes the overhead of the proposed
DS implementation. Section V presents our results on micro-
benchmarks and real applications and a discussion of the
effectiveness of our approach. Section VI presents other
related work in the field. Finally, Section VII presents our
conclusions and possible directions for our future work.

II. BACKGROUND AND MOTIVATION

Several efforts have been made to study the optimization
of applications [1], [2], [3], [4] for the IBM Cyclops-
64 (C64) [5]. Those studies, however, show results that
are still far from the theoretical maximum performance.
To understand the problem, we have analyzed one of the
simplest examples of Static Scheduling to find the issues
that have prevented better results.

Cyclops-64 (C64) is a many-core architecture designed for
High Performance Computing (HPC). A C64 chip contains
160 independent single-issue thread units (TUs), up to
4.8MB of shared on-chip memory (SRAM) and 1GB of
external memory (DRAM). Each pair of TUs shares one
64-bit floating point unit (FPU), one memory bank and a
memory controller. The FPUs can fire 1 double precision
floating point Multiply and Add instruction per cycle for a
total performance of 80 GFLOPS per chip when running
at 500MHz. A 96-port crossbar network with a bandwidth
of 4GB/s per port connects all TUs and SRAM banks.
Execution on a C64 chip is non-preemptive and there is
no hardware virtual memory manager.

Cyclops-64 provides excellent hardware support for con-
current algorithms because each one of its memory con-
trollers is equipped with an Arithmetic and Logical Unit
that can execute atomic operations in memory, without help
from any thread unit or any other processor element.

Two recent studies in the implementation of Matrix Mul-
tiplication on C64 [6], [1] have shown the effectiveness
of several optimization techniques (Table I). The initial
implementations studied targeted SRAM and DRAM and
they achieved a performance of 13.9 GFLOPS [6]. Further

Operand Optimization Performance
Placement (GFLOPS)

SRAM Static Partition 3.16
SRAM +Register Tiling 30.42
SRAM +Instruction Scheduling 44.20

Percolation
DRAM +Synch. Optimization 13.90

+Opt. Data Movement

Table I
SUMMARY OF PREVIOUS RESULTS OF MM ON C64

optimization of on-chip SRAM memory usage resulted in a
performance of 44.12 GFLOPS [1].

As can be observed from Table I, the maximum per-
formance reported after several static optimizations barely
surpassed one half of the peak performance with all operands
in SRAM.

The implementation in our study (Matrix Multiply) was
improved to 58.95 GFLOPS when Optimum Register Tiling
[1] with Data-Prefetching was used. Surprisingly, this imple-
mentation is still far from the expected peak performance,
even after months of optimizing carefully-written assembly
code and after significant theoretical and experimental effort
to find an optimal register-tiling strategy [1].

The comparatively low performance achieved – even
after the carefully optimized assembly code implementation–
prompted an investigation into the factors that prevented us
from reaching a higher performance. To do so, we conducted
an extensive and careful profiling of the application.

Two cases, both using SS, were studied in particular: A
multiplication of the largest matrices that can fit in SRAM
(Figure 1(a)) and a multiplication of smaller matrices also
in SRAM (Figure 1(b)). Smaller matrices are required for
implementation of matrix multiplication in DRAM doing
overlapping of computation and data movement with SRAM.

The following observations can be made:
• The amount of time computing tiles whose size was

optimized for maximum performance does not surpass
70% of the execution time in any thread.

• The problem size is not always a multiple of the
optimum tile size, so smaller tiles have to be included
in the computation, adding to the imbalance of the
system. This causes problems because either (1) the
computation is partitioned into tiles, which may result
in different number of tiles per thread or (2) the
computation is partitioned evenly among threads, which
may not be as efficient as partitioning the computation
in carefully chosen tiles.

• In general, when the size of a problem decreases,
the fraction of tiles that are not of the optimum size
increases. This hurts the performance because smaller
tasks may not fully take advantage of the available
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(a) Workload Distribution for a MM of size 488× 488
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(b) Workload Distribution for a MM of size 192× 192

Figure 1. Workload Distributions for MMs of varying sizes

resources, even if they are optimized.
• The idle (wasted) time includes the time spent in syn-

chronization, flow control, and scheduling. It is more
than 10% in the best case and increases dramatically
when the matrix size decreases.

We see that SS is not necessarily a good strategy in many-
core processors, even for the case of highly regular parallel
benchmarks.

III. PROBLEM STATEMENT

The following question summarizes our research goals:
How is it possible to efficiently schedule fine grain

tasks scenarios with hundreds of threads sharing multiple
resources under different conditions, such as varying degrees
of utilization of available resources?

This leads to the following questions:
• Is it possible to reach near peak performance on many-

cores in situations where there is a high demand for

available resources?
• What architectural features are necessary to implement

an efficient fine-grain scheduler?
• Is it possible to implement an efficient Dynamic Sched-

uler that surpasses the results of a Static Scheduler, even
under scenarios traditionally favorable to SS?

• How can the overhead of DS be overcome during the
scheduling of fine-grained tasks?

IV. DYNAMIC SCHEDULING FOR FINE GRAINED
PARALLELISM

Finer task granularity is one of the ways in which suffi-
cient parallelism is provided for many-core processors. We
strive to address these challenges by making observations
that motivate a deeper understanding of the trade-offs that
are normally left unconsidered by SS, even in the face
of new many-core architectures. We will show how DS
is a better alternative due to the disadvantages of SS,
even in the presence of fine-grained tasks. First, we will
discuss the impact of a fine-grained task partition on overall
performance. Second, we will show the implications on load
balancing and performance in a scenario where resources
are shared between PEs. Finally, we will study the required
characteristics for a low overhead DS and how to implement
it efficiently for a set of similar tasks.

A. Fine-grained task partitioning

In this section, we will explain that, under certain condi-
tions, DS can result in faster execution of programs because
it can partition the work into better tasks. At this point
we consider ideal conditions of no scheduling overhead,
no shared resources, and tasks with very similar execution
times. We will expand this reasoning to include more
realistic scenarios in the following sections.

The problem faced by SS is the trade-off between load
balance and the efficient processing of tasks given by the
partitioning of data into blocks for threads, and the further
partitioning of blocks into tasks for optimal execution. On
one hand, an SS that maximizes load balancing will dis-
tribute equally sized blocks among all processors. Unfortu-
nately, the partitioning of blocks may result in non-optimum
tiles at the boundaries of blocks, decreasing performance.
This is even worse for situations where the ratio between
the block size and task size decreases due to a limited
amount of on-chip memory or an increasing number of
processing units results in smaller tasks. These two cases
are particularly evident on modern many-core architectures.
Figure 2 illustrates different scenarios for the amount of data
in border tiles (highlighted). The worst scenario is when the
number of processing elements (PEs) is increased and the
best one is when blocks are not used. On the other hand,
an SS that uses just tasks will decrease the penalty due to
border tiles but will decrease load balancing in cases where
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Figure 2. Partition Schemes for a matrix C of 15× 15 with tiles of 3× 3

the number of tasks is not a multiple of the number of
processing elements.

In contrast, DS has the ability to deal with these unbal-
anced scenarios that decrease the size of border tiles. The
partitioning of data into blocks is not required and each
processing element request a new task as soon as it finishes
the previous one. Assuming a similar overhead, DS will be
able to produce equal or better scheduling than SS given the
fact that the assignation of task is given at run time. Further
analysis of how to deal with shared resources and how to
reach a competitive overhead on DS will be discussed in the
following sections.

B. Load Balancing in Scenarios with Shared Resources

We have analyzed an ideal scenario where tasks of the
same size would take the same amount of time to complete.
Unfortunately, this does not take into account the indirect in-
teraction between tasks given by shared resources involving
arbitration of third parties and starvation.

Some functional units are shared in order to diminish the
required chip area and power consumption, saving room to
include, for example, more PEs that can increase the overall
performance. Examples of these functional units are Floating
Point Units and special purpose units, such as specialized
DSP blocks. Sharing these resources impose limitations,
especially in SIMD programs. While one PE is using the
shared resource, others are stalled waiting for that resource.
A context switch or task migration can alleviate the impact,
but this behavior introduces unexpected variations in the cost
of tasks (e.g. time for completion).

Memory, the most commonly shared resource, acts as an
efficient method of communication between PEs. Several
techniques have been employed to improve the way memory
resources are shared, such as multiple memory banks to
allow simultaneous access to variables in different banks
and caches to reduce the number of memory requests. It is
common that both memory banks and caches are shared by
several PEs to reduce the complexity of the architecture at
the price of slightly reducing the benefit.

Interconnects provide the mechanism for accessing some
of these resources. According to their type and size, inter-
connects have complex arbitration rules that control the use
of these resources. Shared memory and its interconnections
with the PEs are normally the biggest source of uncertainty
with respect to a task’s cost. The growing number of PEs
has made these structures very complex and their modeling
involves stochastic processes [7], [8], making the cost of a
task a random variable that is also a function, among other
things, of other parameters in the architecture.

Statistics about the average costs and variances of tasks
can be found to adjust the parameters of the SS. However,
there are several aspects that limit the effectiveness of this
approach: 1) The number of tasks is limited, so the dispar-
ities made by the variations in cost may not be overcome.
These limitations may be due to the nature of the problem
itself. 2) The load on each port of the crossbar or memory
bank may vary, particularly when the size of a block of
memory is not a multiple of the memory line size. A critical
case would be where one memory bank is accessed by all
processors. 3) The scenario becomes even more complex
when we model the process as non-stationary, taking into
account that memory transaction patterns can change in the
same application over time.

In the end, the simple model for SS is just an ap-
proximation that works very well for scenarios where the
demand for shared resources is low because the stochastic
component is negligible. For high performance scenarios,
where these resources are required to be used at full capacity,
congestion and arbitration require a more accurate model.
However, a highly accurate model that considers a significant
number of the variables that describe the behavior of the
architecture, including the interactions of shared resources
and their arbitration, is impractical for SS given the difficulty
of producing such a model, the overhead of using the model
to compute an optimal partition and the intrinsic limitations
of the model.

Alternatively, DS performs the distribution of tasks at
runtime allowing it to deal with all possible variations. With
a competitive overhead, DS will be able to deliver better
performance than SS, even for highly regular applications
running under the previously described conditions.



// Globals
int TotalNumTasks;
int TaskIndex;
// Scheduling Function
int GetNewTask(int* Index){
return (atomic_add(&Index, 1));

}
...
// Scheduler algorithm on each PE
int i;
i = GetNewTask(&TaskIndex);
while ( i<TotalNumTasks ){
Execute_Task(i);
i = GetNewTask(&TaskIndex);

}
...

Figure 3. Code Fragment for a DS implementation

C. Low Overhead Fine grained Dynamic Scheduling

Dynamic Scheduling has been explored extensively for
Instruction Level Parallelism and its advantages are well
known [9], [10]. However, its implementation has tradition-
ally required special hardware support.

For Task Level Parallelism, software implementations are
preferred. When all tasks to be executed are similar and
the parallel architecture is homogeneous, SS has been the
preferred choice because the overhead for scheduling is only
paid once and is largely independent of the data size whereas
the overhead of dynamic scheduling grows linearly with the
data size.

The overhead of DS can negate any advantages over SS
if the implementation is not well designed. Unfortunately,
special hardware support at the functional unit level is also
impractical for general purpose many-core architectures.

Dynamically scheduling multiple, similar, tasks can be
achieved with a single integer variable that is sufficient to
uniquely identify a task in its set. A piece of code that
implements Dynamic Scheduling in this manner is showed
in Figure 3.

The bottleneck of this algorithm is the function
GetNewTask(.). Specifically, it is the serialized access
over the variable TaskIndex. We will use the throughput
µ (maximum number of requests that can be serviced per
unit of time) over the variable TaskIndex to determine
the tradeoffs between task granularity and number of PEs.
The lower bound for the size of a task can be obtained by
considering that during the execution of a task, on average,
all other (P − 1) processors will request one task. Since the
duration of the execution of a task T is given by f(T ), the
lower bound for the average size of a task is

f (T ) ≥ P − 1

µ
(1)

Equation 1 shows that, as the number of PEs increases,
a matching increase in throughput is required to guarantee
scalability. Also, fine granularity of optimized tasks on
a many-core environment requires the highest maximum
throughput for the variable TaskIndex in order to avoid

contention and lost performance under DS.
Unfortunately, implementations of the function

GetNewTask that use locks or “inquire-then-update”
approaches have very low throughput [11], [12]. The main
reason is that, for a lock implementation, the algorithm
will 1) obtain a lock, 2) read and update the variable
TaskIndex and 3) release the lock. A lock-based
implementation of GetNewTask needs at least two
complete roundtrips to memory, limiting its throughput to
µ = 1

2q where q is the minimum latency for a memory
operation. Similarly, an “inquire-then-update” approach,
such as Compare and Swap (CAS), requires TaskIndex
to remain unchanged for at least 2 memory roundtrips,
resulting in the same throughput as in the previous case.

We propose taking advantage of the support provided by
in-memory atomic operations. In this case, each memory
controller has an ALU that allows it to execute atomic
operations directly inside the memory controller, without
help from a thread unit, avoiding unnecessary roundtrip
delays. In this case, the use of the in-memory atomic addition
allows the throughput to be limited only by the time k taken
by the memory controller to execute the operation, resulting
in a throughput of

µ =
1

k
(2)

Cyclops-64 (C64) is an example of a many-core architec-
ture that provides adequate hardware support for Dynamic
Scheduling. In C64, implementations that use in-memory
atomic additions enjoy a significant throughput increase
because atomic operations in C64’s memory controller take
k = 3 cycles, whereas a roundtrip to on chip shared memory
requires q = 30 cycles. It is a theoretical improvement of
20X over the throughput obtained using simple software
implementations. In practice, the throughput will be lower
because the memory controller is shared with the actual
computation of the tasks. Nevertheless, this high throughput
allows the overhead of DS to remain competitive with the
traditional SS approach.

V. EXPERIMENTAL EVALUATION

In this section, we analyze the advantages of DS over
SS for very regular workloads under the presence of shared
resources and hundreds of PEs. We have illustrated different
scenarios with fine grain tasks in order to compare the
traditional SS and a low overhead DS. Our results show
that applications with many similar tasks scale better, and
can take advantage of a low overhead DS, when the PEs are
sharing resources and the amount of tasks is limited.

A. Experimental Testbed

We have chosen C64, a many-core processor architecture,
as the testbed architecture because it has a large number of
processors sharing many diverse resources including, but not
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Figure 4. Speed Up and Scalability of Memory Copy

limited to, an on-chip memory, a crossbar switch and shared
FPUs. In addition, it supports in-memory atomic addition, an
essential component for a low overhead DS implementation
as described in section IV-C.

Our experiments were compiled with ET International’s
C64 C compiler, version 4.3.2, with compilation flag -O3.
C64 processor chips are, as of the writing of this paper,
available only to the US Government. For that reason, we ran
our experiments with FAST [13], a very accurate simulator
that has been shown to produce results that are within
10% of those produced by the real hardware. The simulator
includes all the behaviors related to the arbitration of shared
resources, as described in section II.

We ran three different tests. The first is a microbenchmark
that performs a memory copy of a vector in shared memory
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and computes a checksum on the elements of the vector. The
second is a highly optimized Dense Matrix Multiplication
using both on-chip and off-chip memory. The third test is
a Sparse Vector Matrix Multiplication with variable param-
eters such as sparsity and variance of number of elements
between columns. All benchmarks were implemented with
an SS strategy that distributes work uniformly and a low-
overhead DS that uses in-memory atomic addition.

B. Memory Copy microbenchmark

The tasks in this microbechmark process 256 bytes of
data from on-chip memory as follows: First, the PE copies
a chunk of data from on-chip memory to local memory.
Then, it computes the checksum of the bytes and the chunk
is stored back to another location in on-chip memory. Note
that all tasks perform the same amount of work but the
arbitration of shared resources, like the crossbar switch, can
result in varying performance as described in Section IV-B.
We report the relative speed up of the DS approach with
respect to its SS counterpart using the same number of PEs
(Thread Units). We use different numbers of tasks to study
and compare the behavior of SS and DS.

Figure 4(a) clearly shows the trade offs between DS and
SS with respect to the number of PEs. As expected, when
the number of PEs is small, DS cannot compete with SS
and demonstrates a slowdown, with the worst case being
27% for 32 PEs. After 24 PEs, a smaller number of tasks
start to give better performance with DS and after 48 PEs
all the datasets favor DS. The maximum relative speed up
is 137%, which is reached with the smallest problem size
and the maximum number of PEs.

We further studied the scalability of SS and DS with the
maximum number of PEs allowed. Figure 4(b) shows the
number of tasks per microsecond using different numbers



of tasks. We note how DS scales better for cases with a
limited number of tasks, quickly reaching the limit imposed
by crossbar congestion. At the same time, SS shows poor
performance when compared to DS for every case.

C. Dense Matrix Multiplication

Dense Matrix Multiplication (DMM) exemplifies the type
of highly regular and embarrassingly parallel application
where SS seems to be the better choice over DS. We use, for
our baseline, the Highly Optimized DMM for C64 using on-
chip memory as described in Section II and detailed in [1].
We further increased the performance to 58.95 GFLOPS by
using other static techniques, such as Data and Instruction
Prefetching. Based on the observations made in Section IV,
we implemented a DS for DMM using the same optimized
register tiling described in [1]. With the implementation of
DS, the maximum performance and scalability with respect
to the number of PEs (Thread Units) increased significantly,
as detailed in Figure 5.

The maximum performance reached is 70.87 GFLOPS,
which is 88.86% of the theoretical peak performance. It
is important to note the highly linear scalability with the
number of PEs whereas the SS implementations start to
show problems after only a hundred PEs. We further studied
the scalability with respect to the matrix sizes. Figure 6(a)
shows that the performance of DS increases significantly for
smaller sized problems, with near maximum performance
being reached using matrices of sizes 200× 200. Note that
the optimized SS version would be able to reach a slightly
better performance than the DS version, given a suitably
large problem size because of the constant overhead of SS.
However, on-chip memory places an upper bound on the
problem size making DS preferable for all implementations
that use on-chip memory only.

We also studied the impact of the scheduling with larger
matrices using off-chip memory. Because C64 has a software
managed memory hierarchy, the programmer is in charge of
the data movement between off-chip and on-chip memory. In
order to sustain the performance reached in on-chip memory,
overlapping of computation and data movement was used by
implementing a double buffering schema. We determined,
experimentally, that 8 PEs dedicated to data movement was
enough to keep the remaining PEs working on computation.

Two versions of the DMM were implemented. In the static
version, all tasks (computation and data movement) were
determined and assigned statically from the beginning of
execution. The necessary synchronization between tasks was
performed using the low latency hardware barriers available
on C64. In the dynamically scheduled version, tasks are
available after satisfying their dependencies in a dataflow
inspired manner [14] with a Dynamic Scheduler that takes
advantage of the in-memory atomic operations available in
C64.
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The results in figure 6(b) show the high scalability and
excellent performance reached by the Dynamic Scheduling
implementation, whereas the Static version is not able to
surpass half the theoretical peak performance of C64. Fur-
thermore, the scalability of the SS implementation decreases
after 120 PEs.

D. Sparse Vector Matrix Multiplication

Sparse linear algebra applications present additional chal-
lenges to their dense counterparts, including variable mem-
ory access patterns and other difficulties related to the
particular structure of the sparse matrices. We use the Sparse
Vector Matrix Multiplication (SpVMM) defined by equation
3 where A is a sparse matrix of size m × n, and v and w
are vectors of lengths m and n respectively.
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wj =
∑

Ai,j 6=0

viAi,j (3)

The sparse matrix A is stored using the Compressed Spare
Column format (CSC). A task is defined as the computation
of one element of w. Two parameters were varied to explore
different behaviors of the SpVMM: The sparsity s varies
in the range [0 − 1] and defines the number of non-zero
elements. The non-zero elements are distributed uniformly
across columns with a normalized variance u in the range
[0 − 1]. The matrix is generated randomly without any
particular spatial locality

Figure 7 shows the relative speed up of DS with respect
to its SS counterpart with the same characteristics. All
the matrices have n = 400. The results are reported for
different sizes of the tasks m and sparsity of the matrix s.
In addition, the experiments were made using 3 possible
values of the normalized variance u = {0.1, 0.5, 0.9}. The
results illustrate how, with a high variance of task sizes, DS
overcomes SS even with few PEs. If the variance between
tasks is decreased, SS has better performance than DS when
the number of PEs is small but SS cannot scale properly
when the number of PEs increases. Even in the case of very
similar tasks (u = 0.1), DS has higher performance than SS
for 128 PEs.

VI. RELATED WORK

The Intel Larabee many-core architecture implements task
scheduling entirely with software, allowing for a lightweight
DS [15]. In conjuction with two other research projects at
Intel (The The 80-core Tera-scale research chip program
[16], [17] and the Single-Chip Cloud Computer initiative
[18], [19]), Larabee has evolved into the Many Integrated
Core (MIC). At the time of this publication, there are few
details about the performance of the scheduler. However,

this work provides evidence indicating the importance and
complexity of task scheduling on many-cores, even under
homogeneous workloads, and how hardware support can
be leveraged to drastically reduce the overhead of more
complex scheduling policies under finer grain scenarios.

In general, runtime implementations are focused on
scheduling loads that are frequently heterogeneous, based
on queues, and focused on locality. One of the most popular
examples is Cilk [20]. Other approaches include EARTH
[21] and Habanero [22]. Our contribution is more focused
on explaining the challenges of scheduling fine-grained
homogeneous tasks on many-core architectures and, in the
process, showing some limitations of SS with regard to
scalability and shared resources, and how those limitations
are overcome by DS.

Several approaches consider the task scheduling problem
as a Bin-Packing problem. Different scheduling techniques
have been proposed according to the desired optimization
function. Good summaries can be found in [23], [24].
Most are not architecture aware and do not consider the
overhead and arbitration of shared resources, which is espe-
cially important for finer granularity. They have been useful
for coarse grained tasks and distributed systems providing
boundaries for optimum scheduling strategies under these
scenarios.

VII. CONCLUSIONS AND FUTURE WORK

We have shown that, for highly regular and embarrass-
ingly parallel applications, DS is preferred over SS in sce-
narios commonly found in many-core architectures. These
scenarios involve the presence of shared resources under
different arbitration policies, hundreds of processing units,
and a limited amount of work.

We explained how these factors degrade the expected
performance of SS and how DS behaves better under these
conditions. The presence of shared resources, such as a



crossbar switch, produces unexpected and stochastic varia-
tions on the duration of tasks that SS is unable to manage. In
addition, a uniform mapping of work to processors without
considering the granularity of the tasks is not necessarily
scalable under limited amounts of work.

We also explained how the advantages of DS are fur-
ther improved by a low-overhead implementation using
mechanisms provided by the architecture, particularly in-
memory atomic operations, diminishing the overall overhead
of DS. As a result, DS can remain efficient for finer task
granularities.

These factors allow DS to scale better than SS as the num-
ber of processors increase. We demonstrated how Dynamic
Scheduling can overcome Static Scheduling with regard to
performance. We did this with a synthetic microbenchmark
and two applications. Particularly, DMM was able to reach
70.87 GFLOPS out of 80 GFLOPS.

Our future work will be focused on the development
of an accurate performance model for SS on many-core
architectures involving some of the problems of shared
resources. We also plan to develop a performance model for
DS taking into account certain parameters of the architecture
and the characteristics of tasks. This will require a better
understanding of the nature of resource conflicts and specific
strategies to diminish their effects on performance. Further
plans will expand the analysis and implementations made
for homogeneous tasks to a more general case and the
inclusion of hybrid solutions for scheduling, such as guided
self-scheduling [25], [26].

We are also interested in expanding our platform set to
include other many-core architectures and to evaluate the
specific gain in performance of in-memory operations for
DS. We plan to study the trade-offs between the granularity
of tasks, the number of PEs and the throughput of the
DS implementation in greater detail. Special cases of study
are the use of in-memory atomic operations for the design
of high throughput queues and the impact of in-memory
operations and DS in energy consumption using models such
as those described by Garcia et al. [27].

Finally, we plan to take advantage of the techniques and
observations made in this paper to improve the performance
of other benchmarks of interest including highly regular
applications such as Linpack and Molecular Dynamics,
among other applications.
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