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Advanced many-core CPU chips already have few hundreds of processing cores (e.g. 160 cores in an IBM
Cyclops-64 chip) and more and more processing cores become available as computer architecture progresses.
The underlying runtime systems of such architectures need to efficiently serve hundreds of processors at the
same time, requiring all basic data structures within the runtime to maintain unprecedented throughput.
In this paper, we analyze the throughput requirements that must be met by algorithms in runtime systems
to be able to handle hundreds of simultaneous operations in real time.

We reach a surprising conclusion: Many traditional algorithm techniques are poorly suited for highly
parallel computing environments because of their low throughput.

We reach the conclusion that the intrinsic throughput of a parallel program depends on both its algorithm
and the processor architecture where the program runs.

We provide theory to quantify the intrinsic throughput of algorithms, and we provide a few examples,
where we describe the intrinsic throughput of existing, common algorithms. Then, we go on to explain how
to follow a throughput-oriented approach to develop algorithms that have very high intrinsic throughput in
many core architectures.

We compare our throughput-oriented algorithms with other well known algorithms that provide the same
functionality and we show that a throughput-oriented design produces algorithms with equal or faster per-
formance in highly concurrent environments.

We provide both theoretical and experimental evidence showing that our algorithms are excellent choices
over other state of the art algorithms.

The following are the major contributions of this paper:

(1) Motivating examples that show the importance of throughput in concurrent algorithms.
(2) A mathematical framework that uses queueing theory to describe the intrinsic throughput of algorithms.
(3) Two highly concurrent algorithms with very high intrinsic throughput that are useful for task manage-

ment in runtime systems.
(4) Extensive experimental and theoretical results that show that for highly parallel systems, our proposed

algorithms allow greater or at least equal scalability and performance than other famous, similar, state
of the art algorithms.
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1. INTRODUCTION
The advent of many-core architectures poses new challenges to algorithm design, in-
cluding the necessity to support several hundreds of processors concurrently. Algo-
rithms that correctly allow access to queues by an arbitrary number of processors exist.
However, correct access does not necessitate efficient access, and as shown throughout
the paper, even popular non-blocking algorithms have a low amount of concurrency
when used in an environment with hundreds of simultaneous requests. The driving is-
sues in concurrent queue development have radically changed from execution in an en-
vironment dominated by virtual parallelism to an environment dominated by massive
hardware parallelism. We address these challenges using a surprisingly simple intu-
ition that allows development of faster, parallel, higher-throughput algorithms based
on queues.

The intuition behind our solution can be explained with an analogy between old-style
train stations and queue algorithms: The enqueue process is analogous to passengers
boarding a train. Traditional queue algorithms are in a way or another variants of
passengers trying to serially enter a train through a main entrance (typically the head
pointer). The algorithms presented here follow a different approach: passengers (pro-
cessors) can obtain a ticket (an integer) and then board (enqueue) a train (the queue)
directly to their seat (array location) in parallel. The throughput of the queue can be
viewed as the maximum passenger access rate. A good concurrent algorithm will allow
more passengers to board (enqueue) a train (the queue) per unit of time.

The development of fast concurrent queues is important because parallel appli-
cations frequently rely on concurrent queues to perform a variety of tasks such as
scheduling, work distribution, graph traversing, etc. Our experiments provide evidence
showing that locking algorithms are very slow when a large number of processors at-
tempt to use the queue at the same time. In addition, we show that many popular
non-blocking algorithms for concurrent queues are also slow, among other things, be-
cause they rely on the Compare and Swap operation, which may or may not succeed in
swapping its operands when it is executed, and may need to be executed many times.

Queueing theory is used to reason about the performance (e.g. the throughput) of
a queue algorithm. The advantage of using queueing theory is that it allows a for-
mal analysis of the interplay between factors such as latency of individual operations,
number of processors and algorithm structure. Section 2.3 discusses the importance
of queueing theory to analyze whether or not the number of requests in a system ap-
proaches the intrinsic threshold of an algorithm.

We present two algorithms characterized for their excellent throughput: The Circu-
lar Buffer Queue (CB-Queue) and the High Throughput Queue (HT-Queue). Both were
designed to achieve high throughput while providing First In First Out (FIFO) behav-
ior. The CB-Queue and the HT-Queue are able to scale to unprecedented levels because
they avoid the inquire-then-update approach of other implementations. The difference
is significant: Other algorithms using the inquire-then-update approach (such as the
MS-Queue algorithm or a spin lock implementation) require at least two full memory
roundtrips to commit a queue operation. We follow an alternative path: Every single
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memory operation should be guaranteed to succeed if possible. The core of our imple-
mentations relies heavily on the Fetch and Add operation which always succeeds to
change the state of the queues with one memory operation.

The CB-Queue is introduced first. The CB-Queue always completes queue operations
successfully, waiting for queue elements or enough memory as needed. The HT-Queue
expands the basic algorithm of the CB-Queue to allow all the functionality of tradi-
tional queues, including (1) inquiring about whether or not a queue is empty and (2)
allocating more memory if it is full.

The algorithms presented here are different to other algorithms using Fetch and
Add operations in that (1) the inquire-then-update is avoided when possible, and (2)
the algorithms were designed to allow the maximum possible throughput.

We compare our queue implementations against Mellor-Crummey’s algorithm (MC-
Queue), the algorithm with the highest throughput that we could find [Mellor-
Crummey 1987] (it also uses fetch and add), the industry de facto standard by Michael
and Scott (MS-Queue) [Michael and Scott 1996], and a simple implementation with
locks. Our theoretical results show that our algorithms have a very high throughput,
surpassing the MS-Queue and spinlock implementations and matching (in the case
of the HT-Queue) or surpassing (in the case of the CB-Queue) the throughput of the
MC-Queue implementation. Our experimental results (Section 5), that use carefully
written microbenchmarks, have closely reproduced our theoretical throughput predic-
tions (Section 4), and they show that the throughput of our queue operations is only
limited by the bandwidth of the memory controllers, providing a wider range of scal-
ability than other approaches such as the MS-Queue or traditional queues based on
locks. Our experiments also show that the throughput of queues is critical to support
the execution of programs that use more than 64 processors.

The rest of the paper is organized as follows: Section 2 provides relevant back-
ground, Section 3 introduces throughput as a design parameter of queues and Section
4 presents our high throughput queue algorithms. Experimental results showing the
advantages of our implementations are shown in Section 5. Finally, discussion on our
findings, conclusions and future work are presented in Sections 6 and 7.

2. BACKGROUND
This section presents relevant background on the architecture used for our analysis
and experiments, a brief overview of the issues faced by concurrent queue algorithms,
and a description of relevant queueing theory concepts.

2.1. Cyclops-64 and Many-Core Architectures
Cyclops-64 (C64) is a many core architecture produced by IBM and extensively de-
scribed by del Cuvillo et al. [del Cuvillo et al. 2006].

Each C64 chip has 80 cores, each containing 2 single-issue thread units. Each core
in C64 has 60KB of local SRAM memory with its own memory controller amounting to
5MB of on-chip memory. C64 also has 1GB of external off-chip DRAM memory accessed
through 4 DRAM banks, each with an independent memory controller.

All memory controllers in C64 support in-memory atomic operations: Each memory
controller has an ALU that allows it to execute atomic operations in 3 clock cycles
directly inside the memory controller (both SRAM and DRAM), without help from a
thread unit.

C64 was designed to operate as a non-preemptive system. There is no virtual mem-
ory, there is no automatic cache and all memory is visible and addressable by the user.
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2.2. Concurrent Queue Algorithms and Scalability
A considerable amount of attention has been paid to the nonblocking behavior of con-
current objects such as queues. However, no evidence has been shown to say that all
nonblocking implementations are necessarily effective for large number of processors.

Several papers have shown that the MS-Queue and non-blocking queue variants of it
[Moir et al. 2005; Tsigas and Zhang 2001] based on the “Compare and Swap” operation
provide a reasonably good performance in shared memory systems up to 64 processors.
The reasonably good performance of the MS-Queue is well accepted in the community,
and the algorithm is used, for example, to implement the Java Concurrent Class.

The MC-Queue seeks to increase parallelism by distributing queue requests over
multiple traditional queues. The MC-Queue has a high throughput because the load of
enqueues and dequeues is distributed over an array of queues. The count of available
elements in the queue remains centralized, making its update the bottleneck of the
implementation.

2.3. Relevant Queueing Theory
Queueing theory is a mature field used to analyze the performance of queues. An excel-
lent introductory work on queueing theory can be found in Kleinrock’s 1975 textbook
[Kleinrock 1975].

Queueing theory dictates that latency greatly increases when the available queue
throughput is comparable to the rate of incoming requests. In the past, the throughput
of a queue was not an issue, since it was very rare that enough requests could be
provided to saturate the intrinsic throughput of a queue. Current trends in computer
architecture suggest that more and more processors will be used for computations,
stressing the need for concurrent algorithms with throughputs that allow scaling to
unprecedented numbers of processors.

The following conventions are used throughout the rest of the paper:

— µ is the throughput of the queue: The maximum number of requests that can be
serviced per unit of time.

— P is the number of processors accessing the queue.
— r is the average amount of time taken between calls to queue operations.
— λ is the average request arrival rate to the queue. When the latency at the queue is

low, λ can be approximated as λ ≈ P/r
— ρ = λ/µ is the utilization factor of the queue.
—m is the average latency of a single memory operation.
— k is the amount of time (measured in cycles) that an atomic operation uses at the

memory controller. This parameter arises from the fact that C64 has the ability to
execute some operations at the memory controller without help from any thread unit.

— z is the number of cycles a memory read or write uses the memory controller. In
general z < k because the memory controller needs to do less work to complete a
normal write (or read) than to compute an atomic operation.

By definition, µ, the throughput of the queue, specifies the maximum number of
requests that can be serviced by the queue per unit of time. µ sets a bound on the
intrinsic parallelism of the queue: The queue will scale until the request rate λ reaches
the throughput µ because the queue can not service more than µ requests per unit of
time.

A queue is defined as stable if µ > λ, or ρ < 1. When ρ > 1, requests entering the
queue accumulate faster than they can be served and, in theory, latency increases to
infinity. In practice, the system saturates, limiting the request rate to be λ = µ, (or
ρ = 1) and stabilizes the queue with high latency.
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Analyzing with precision the latency at the queue requires specifying the probability
distribution function of the arrival rate to the queue and the service rate at the queue,
a topic outside the scope of this paper. Instead, we will settle by saying that in general,
as λ approaches µ (and ρ approaches 1) the waiting time at the queue increases.

3. THE PROBLEM WITH EXISTING CONCURRENT QUEUES ON MANY-CORE
ARCHITECTURES

This section uses queueing theory to further advance an interesting result: queue
throughput is the single most important aspect of a queue in a large parallel system.
This result is a natural consequence of an intuitive performance requirement: In a
parallel program, queue operations should have low latency.

The goal of the theoretical analysis is to find the maximum throughput (or intrin-
sic throughput) that a particular queueing algorithm can deliver in a particular ma-
chine. The maximum throughput of a particular queueing algorithm depends both on
the hardware used and the implementation of the algorithm. In general, the intrinsic
throughput of an algorithm can be found by analyzing the availability of resources,
both logical and physical. In practical situations for FIFO queues, either communi-
cation between processors is present, memory is shared, or logical resources such as
locks are shared, limiting the intrinsic throughput to a certain, finite value.

The intrinsic throughput of queueing algorithms (Section 2) is of utmost importance
because it sets a bound to the maximum rate of requests that still result in a utiliza-
tion factor ρ that is less than 1. The importance to the user becomes painfully obvi-
ous: When the queue operation request rate increases and approaches the intrinsic
throughput, the latency of individual operations will increase because the queue can
not serve more requests than its intrinsic throughput.

We analyze the intrinsic throughput of selected queueing algorithms starting with
an example in Section 3.1 and presenting several algorithms in Sections 3.2 to 3.4.
The limitations of those queues in many-core architectures are exposed in Section 3.5,
allowing a formal statement of the problem to be solved.

As it will be seen in the following sections, the throughput of an algorithm is intrin-
sically related to the features present in the architecture used to run it: Memory la-
tencies, the ability to perform memory operations in memory, the presence of a shared
bus or a crossbar, the number of memory banks and so on.

We use Cyclops-64 (C64) to explain our ideas about throughput and to show how
to do a throughput-oriented design of an algorithm. C64 was chosen because it has a
large number of thread units per chip, its architectural features are relatively easy to
control and predict, there is no virtualization or preemption that introduces noise, the
user can directly access the hardware, and it has features such as in-memory atomic
operations.

3.1. A Simple Example: Throughput of a Test and Set Lock
Consider a program δ composed of only two operations: (1) obtain a global lock using
the test-and-set algorithm, and (2) release the global lock.

The intrinsic throughput of program δ is the number of processors that can complete
program δ per unit of time. Note that the intrinsic throughput does not talk about
the time taken by individual processors to complete the program. It talks about the
number of completions per unit of time.

Possession of the lock is the bottleneck for the program. The number of programs
that can complete per unit time depends on the number of times that the lock can be
obtained and released per unit time.

Figure 1 shows that, from the point of view of the memory, acquiring the lock only
takes half a roundtrip, because the lock is free (or owned by another processor) during
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the first half roundtrip of the test and set operation. Likewise, releasing the lock only
costs half a roundtrip.

Thus the throughput of program δ is µδ = 1/m (m is defined as a memory roundtrip
in Section 2.3).

3.2. Single Lock Queue
The algorithm followed by processors in a single-lock queue implementation is: (1)
obtain a lock, (2) read the queue pointer, (3) update the queue structure, (4) release
the lock. Figure 2 shows the data structure commonly used to implement this queue.

Completion of a queue operation takes at least 2 complete roundtrips to memory,
even with optimal pipelining and scheduling (half a round trip to obtain the lock, 1
round trip to read the queue structure and half a round trip to update the queue and
release the lock). Accordingly, the throughput of the single lock queue is:

µ =
1

2m
(1)

The analysis of the Single Lock queue and other subsequent analysis assumes that
control flow instructions and other local instructions executed at the processor take
very little time when compared to the memory latency.

Practical implementations of the Single Lock queue usually have a much lower
throughput because optimal scheduling and pipelining are difficult due to library calls,
or because thread preemption can not be disabled.
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3.3. MS-Queue
The MS-Queue is a popular algorithm used in many commercial implementations,
including the Java Concurrent Class. Its algorithm is described in detail in Michael
and Scott’s 1996 work [Michael and Scott 1996].

The MS-Queue algorithm uses a data structure similar to that of Figure 2. Enqueues
and Dequeues in the MS-Queue algorithm are based on successful execution of a Com-
pare and Swap operation on the tail and the head pointers respectively. In general, a
successful Compare and Swap operation on the MS-Queue requires that the memory
location referred by the Compare and Swap remains constant for 2 memory roundtrips
(half a memory roundtrip to read the initial pointer, one memory roundtrip to deref-
erence the pointer, and half a memory roundtrip to complete the Compare and Swap
operation).

The best throughput scenario (highest throughput) happens when the tail and head
pointers are located in different memory banks, enjoying independent bandwidth and
allowing simultaneous execution of Compare and Swap operations on the head and tail
pointers. In that case, the total throughput is the throughput for enqueues plus the
throughput for dequeues, and it is given by Eq. 2. 2 queue operations can be executed
every 2 memory roundtrips.

µ =
2

2m
=

1

m
(2)

The throughput of this algorithm is better than the single-lock queue and it is not
affected by thread preemption due to its non-blocking nature.

3.4. MC-Queue
The MC-Queue increases throughput by distributing queue requests over multiple tra-
ditional queues. The bottleneck is either a sequence of operations on a shared variable
that keeps track of the element count or the aggregated throughput of all the tradi-
tional queues in the implementation. A enqueue-dequeue pair performs 2 atomic op-
erations and one read on the shared variable limiting the throughput to 2 operations
every 2k + z cycles. Enqueues and dequeues can complete in each individual queue
after 3 roundtrips to memory limiting the throughput to 2 operations every 3m cycles.
Eq. 3 presents the intrinsic throughput, the min is simplified under the assumption
that the number of queues (G) is large enough.

µ = min

(
2

2k + z
,

2

3m
G

)
=

2

2k + z
(3)

3.5. Limitations on existing queues in many-core architectures
Many-core architectures are particularly sensitive to low queue throughput. Any
queue, even when highly optimized, can perform, at most, an average of 1 queue op-
eration every µ−1 cycles, which in turn, limits the ability of individual processors to
issue requests to at most:

λ−1 = µ−1P (4)

Consider the case of C64 where 160 processor cores (P = 160) concurrently use an
MS-Queue, and where each memory access to shared memory takes 30 cycles in the
best case (m = 30). Under those conditions, each individual processor core is limited
to issue at most one queue request every 4800 cycles in the most optimistic scenario if
low latency at the queue is desired.
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Traditional queues severely limit the usability of queues as a basic parallel con-
struct, since for many applications that use queues, the workload associated with a
queue is already in the range of few thousand cycles: Our experiments show examples
of two applications where each processor uses the queue, in average, every 10000 cy-
cles. The limitation is given specifically by the product µ−1P . Eq. 4 provides another
insight in the importance of throughput for extreme scale algorithms.

3.6. Problem Formulation
The previous analysis is the foundation for the formulation of the following research
questions: Is it possible to implement a fast, high-throughput, highly concurrent FIFO
queue with enqueue and dequeue operations for many core architectures? If so, how
can we implement these kind of queue algorithms? What are the trade-offs of the al-
gorithms in terms of their properties?

4. SOLUTION METHOD
The “inquire-then-update” approach is one of the main throughput limitations in cur-
rent queue implementations: In order to succeed, the queue must be locked during at
least 2 memory roundtrips in the case of a locking implementation, or the queue must
remain unchanged during at least 2 memory roundtrips for implementations using
Compare and Swap (See Section 3.3).

A surprising result from Sections 3.2 and 3.3 is that nonblocking implementa-
tions and lock-based implementations of queues in non-preemptive environments have
throughputs that are in the same order of magnitude.

This paper seeks a significantly stronger stance: Queue operations (enqueue, de-
queue) should succeed immediately if they can succeed at all. The word immediately is
used in the context of not requiring multiple operations, instead, the queue structure
should be changed with only one memory operation. In this sense, processors trying
to access the queue will directly write to the queue, without first reading the state of
the queue. This important distinction allows a significantly greater queue throughput
than the throughput provided by an inquire-then-update approach, because changes to
the queue happen during the time the memory controller serves the memory operation
in memory as opposed to happening over the course of several memory roundtrips.

The inquire-then-update is avoided by constructing the queue as an array of queue
elements, in which a positive integer can be associated to a position in the array. Pro-
cessors performing enqueue or dequeue operations can claim positions in the array
using a single atomic increment without exclusive access to the queue during a certain
number of memory roundtrips.

Two versions of the algorithm are presented here. Section 4.1 shows the CB-Queue
algorithm: A simple queue algorithm used to demonstrate the main idea. The CB-
Queue algorithm allows dequeues on non-empty queues and enqueues on non-full
queues, waiting if necessary until the queue becomes nonempty or not full. Section
4.2 extends the CB-Queue to allow enqueue and dequeue operations regardless of the
previous state of the queue. Finally, Section 4.3 details additional considerations made
on the theoretical analysis that can affect the behavior of the implementations.

4.1. CB-Queue
The CB-Queue (Figures 3 and 4) allows fast, concurrent, queue operations.

The main idea behind the CB-Queue is that an atomic increment can be used to claim
a position in the queue. Enqueues can atomically increment a variable (WriterTicket)
to obtain a position in the array where the user data and acknowledgement flag re-
side. In the same way, dequeues can atomically increment a variable (ReaderTicket)
to obtain an array position where to read. A modulo operation is used to map the value
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/* Type Definitions */
typedef struct QueueItem_s
{
int64_t LastID, Value;

} QueueItem_t;

/* Global Variables */

// Array
QueueItem_t gQueue[QUEUESIZE];

// Writer Counter
int64_t WriterTicket;

// Reader Counter
int64_t ReaderTicket;

/* Macros */
#define upper_bits( x ) ( x / QUEUESIZE )
#define lower_bits( x ) ( x % QUEUESIZE )

void Enqueue( int value ) {
int ticket, position, turn;
QueueItem_t *pItem;
ticket = atomic_increment( WriterTicket );
turn = upper_bits( ticket ) * 2;
Position = lower_bits( ticket );
pItem = &gQueue[ position ];
while ( pItem->LastID != turn ) { ; } // Blocking
pItem->Value = value;
pItem->LastID = turn+1;

}

int Dequeue( void ) {
int ticket, position, turn, value;
QueueItem_t *pItem;
ticket = atomic_increment( ReaderTicket );
turn = upper_bits( ticket ) * 2 + 1;
position = lower_bits( ticket );
pItem = &gQueue[ position ];
while ( pItem->LastID != turn ) { ; } // Blocking
value = pItem->value;
pItem->LastID = turn+1;
return( value );

}

Fig. 3. A circular buffer implementation

obtained to an offset in the array. The modulo operation can be simplified to a simple
lower and upper bit extraction if the array length is a power of 2. A turn (Figure 4) is a
flag that indicates the status of the last operation at a particular location. The turn for
a particular array position is increased every time that an operation is completed at a
particular array position. The value of the turn represents the number of times that
the queue has been accessed, and it allows synchronization between processors that
attempt to use the same array location. A position claimed by an atomic increment (for
both enqueues and dequeues) can be easily matched to a required turn (See Figure 3)
to ensure correct result and ordering.

Figure 4 provides a visual example of a series of enqueues and dequeues on a CB-
Queue. User data is represented by Xi. The first frame of the figure shows the initial
state of the queue. The second frame shows the state of the queue after 5 enqueues.
Note that enqueues first claim a position in the queue by an atomic increment on
WriterTicket, and then compute the turn they must wait for. In the second frame of
Figure 4, each array element has been used 0 times in the past, so enqueues wait until
turn=0 (given by the initial state), write the user data, and finally set the turn to 1.
Dequeues proceed similarly, incrementing ReaderTicket, waiting for the correct turn
(turn=1 in the third frame of Fig. 4), reading the data, and incrementing the turn.

The throughput of the CB-Queue is only limited by the time required to execute an
atomic increment at the memory controller (this time is k) where the variables reside.
Then, one enqueue and one dequeue operation can be completed every k cycles, making
the throughput:

µ =
2

k
(5)

The throughput of the CB-Queue is considerably larger than the throughput of other
implementations where the throughput is on the order of 1/m queue operations per
cycle (e.g. in C64, k = 3 and m = 30. We don’t see a reason for the ratio between k and
m to change in the future). Note that atomic increments are executed at the memory
controller (Memory controllers can execute some operations. See Section 2.1).

The maximum number of elements in a CB-Queue is limited by its array size. How-
ever, in many applications this can be statically determined. e.g. In an operating sys-
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tem, the maximum number of active threads is limited by the available stack space
and it is typically less than 65536. In general, a CB-Queue of size Q can be used to
arbitrate concurrent access to Q units of a particular resource (like active threads).

One of the disadvantages of the CB-Queue queue is that it is not possible to reliably
inquire whether or not the queue is empty (or full) at a particular point. The HT-Queue
is an extension to the CB-Queue and it addresses this constraint.

4.2. The HT-Queue: An extension of the CB-Queue
The HT-Queue is a fast queue that overcomes the limitations of the CB-Queue. The
main algorithm of the HT-Queue (Figures 5 to 7) is based on the CB-Queue algorithm.

The limitations of the CB-Queue are overcome with the addition of new features (1)
to support an unbounded number of elements, (2) to allow inquiring the status of the
queue and (3) to avoid the presence of dangling pointers (i.e. pointers that are obsolete
because the memory has been freed by another processor).

An unbounded number of elements is supported by the HT-Queue because the HT-
Queue is constructed as a linked list of nodes. A node (Figure 5) is a data structure
composed of (1) several queue items, each with a reader/writer synchronization flag,
(2) pointers for the linked list and (3) an integer that counts how many reads to the
node have been made. Among other things, the node structure amortizes the overhead
of memory allocation because it holds several queue elements.

Inquiring about the status (e.g. empty) of the queue is supported by the HT-Queue
algorithm with the addition of an element counter and a free space counter. Addition-
ally, the turn variables associated with each queue element in the CB-Queue have been
replaced with flags in the HT-Queue.

Dangling pointers are avoided in the HT-Queue because pointers are only derefer-
enced when it is guaranteed that the processor will successfully complete the operation
for which the pointer is required. A simple idea is used to accomplish this: Obtaining
a pointer and knowing whether or not the pointer is valid should be a single, atomic
operation. For the HT-Queue, this is achieved by placing the (reader, writer) position
counter and the (head, tail) pointer in the same 64 bit word. This serves a double pur-
pose: It allows claiming a position in the array (with a 64 bit atomic increment) at the
same time that the array pointer is read and it allows the processor trying to claim the
element to discover whether or not the queue is empty or full. Note that this technique
also allows dereferencing the pointer only when it is guaranteed that there is available
space for an enqueue or available queue elements for a dequeue. This is an important
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Fig. 5. The HT-Queue

distinction that avoids the possibility of memory access exceptions, caused by a slow
processor reading a pointer to a queue node that is about to be deallocated. Our use of
a single 64 bit word to have a pointer and an integer should not be confused to other
techniques such as solutions to the ABA problem [Michael and Scott 1996]. Section 6
discusses the differences in detail.

The HT-Queue uses 64 bits to represent the head and the tail of the HT-Queue (Fig-
ure 5). Each 64 bit value contains a (head, tail) pointer in the lower 32 bits and a
(reader, writer) count in the upper 32 bits. The queue is initialized by allocating two
node structures and linking their Previous and Next pointers to each other as shown
in Figure 5. Each node structure contains an array of size Q (A sample queue with
Q = 8 is shown in Figure 5).

To enqueue an item, a processor needs to claim a position in one of the arrays in
one of the nodes. To claim a position in an array, a processor atomically adds 232 to the
64 bit value that contains the tail pointer, leaving the pointer unchanged and incre-
menting the count located in the upper 32 bits. The count returned (Local Counter)
uniquely identifies the node and the array location to use. The Tail->Previous node is
used when Local Counter is less than Q, and Tail is used when the count is between Q
and 2Q−1. In all cases, the count obtained (modulo Q) is used to index the array in the
node. The data (Xi) is written first and then the flag is set to 1. If the count obtained is
exactly Q− 1 the processor allocates and initializes a new node and atomically moves
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void Enqueue( value ) {
Enqueue1:
Space = Atomic_Addition( &FreeSpace, -1);
if ( Space < 0 ) {
Atomic_Addition( &FreeSpace, 1 );
while ( FreeSpace <= 0 ) {;}
goto Enqueue1;
}

LocalTail =
Atomic_Addition( &TailStruct, <1,0> );

LocalCounter = LocalTail.Count;
if( LocalCounter%QUEUESIZE == (QUEUESIZE-1))
{
Node = NewNode();
if ( LocalCounter == QUEUESIZE -1 )
{ EndNode = LocalTail.Pointer }
else {

Enqueue2:
EndNode = LocalTail.Pointer->Next;
if ( EndNode == NULL ) { goto Enqueue2; }
}
EndNode->Next = Node;
Node->Previous = EndNode;

Atomic_Addition(
&TailStruct, <-QUEUESIZE, Node-EndNode>);

Atomic_Addition(&FreeSpace, QUEUESIZE);
}

if ( LocalCounter < QUEUESIZE ) {
Tail_Pointer =

LocalTail.Pointer->Previous;
}
else {
Tail_Pointer = LocalTail.Pointer;
LocalCounter = LocalCounter - QUEUESIZE;
}

pItem = &Tail_Pointer->Array[ LocalCounter ];
pItem->Value = value;
pItem->Flag = 1;

Atomic_Addition( &Elements, 1 );
}

Fig. 6. Enqueue (HT-Queue)

int Dequeue( int *value )
{
if( Elements <= 0 )
{ return( QUEUE_IS_EMPTY ); }
LocalElements = Atomic_Addition( &Elements, -1 );
if ( LocalElements <= 0 )
{
Atomic_Addition( &Elements, 1 );
return( QUEUE_IS_EMPTY );
}

Dequeue1:
// Claim item in queue
while( LocalHead.Count > QUEUESIZE )
{ LocalHead=Atomic_Addition(&HeadStruct,<1,0>); }

// Move Head if necessary
if ( LocalHead.Count == QUEUESIZE ){
HeadStruct = < 0, LocalHead.Pointer->Next >;
Head_Pointer = LocalHead.Pointer;
pRD = &LocalHead.Pointer->Readers_Done;

// Free if necessary
Readers_Done = Atomic_Addition( pRD, 1 );
if ( Readers_Done == QUEUESIZE - 1 )
{ Free( Head_Pointer ); }
goto Dequeue1;
}

LocalCounter = LocalHead.Count;
Head_Pointer = LocalHead.Pointer;
pRD = &LocalHead.Pointer->Readers_Done;

// Make sure enqueue has completed
while(Head_Pointer->Array[LocalCounter.Flag]==0) {;}

// Read value
*value = Head_Pointer->Array[ LocalCounter ];

// Free if necessary
Readers_Done = Atomic_Addition( pRD, 1 );
if ( Readers_Done == QUEUESIZE - 1 )
{ Free( Head_Pointer ); }
return ( SUCCESS );
}

Fig. 7. Dequeue (HT-Queue)

the tail pointer to the newly allocated node. The atomic movement can be done with a
64 bit atomic addition that effectively adds −Q to the upper 32 bits and changes the
pointer on the lower 32 bits to the new pointer. At the end of the operation, the proces-
sor atomically increments the AvailableElements counter to publish the existence of
one more available element.

Dequeue operations are similar. Processors read the AvailableElements counter to
find whether or not elements may be available. Atomic additions are used to claim
one element, or to return if the queue is empty. If enough elements are available,
processors use a 64 bit atomic increment to atomically get a pointer to the head node
and a position in the array. The head node is advanced to the next node by the processor
who obtains Q as the local count. Processors that obtain a value greater or equal than
Q retry the atomic increment until the head variable has been advanced.

The design of the operations and the data structures in the HT-Queue aim to achieve
a high throughput in a concurrent environment. The high throughput of the HT-Queue
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is achieved by designing the algorithm, when possible, in terms of operations that can
be executed with single (atomic) memory operations.

An expression for the throughput of the HT-Queue algorithm is obtained by analyz-
ing the bottlenecks of the algorithm. The total throughput is the combination of the
enqueue and dequeue throughputs, with the restriction that the combined throughput
can not exceed the rate at which shared resources are used. The throughput analysis
assumes that in general, the values where atomic operations are required (Elements,
FreeSpace, HeadStruct, TailStruct, and Readers Done) are located in different mem-
ory banks that can execute the atomic operations independently.

Dequeues perform an atomic addition on the shared variable HeadStruct, and once
per node, it is changed. The atomic addition takes k cycles at the memory controller,
and every Q dequeues, the head has to be advanced, an operation that takes a full
roundtrip to memory (m cycles). On average, dequeues have a throughput limit of 1
dequeue operation every k +m/Q cycles.

Enqueues have a throughput limit of 1 enqueue operation every k + k/Q cycles in
average because one atomic addition per enqueue is required and one atomic addition
is executed on TailStruct once every Q accesses.

Enqueues and Dequeues share a memory bank when incrementing the Elements
variable to keep track of the total number of available elements. A Queue and Dequeue
pair executes two atomic additions on Elements as well as one read. For that reason,
the total throughput of the queue is limited to 2 queue operations in 2k + z cycles
(because in the best case, the pair of operations require 2 atomic operations plus one
read on Elements).

The total throughput of the queue, measured in queue operations per cycle is:

µ = min

(
2

2k + z
,

1

k +m/Q
+

1

k + k/Q

)
(6)

In many-core architectures, it is reasonable to expect that k and z are a small num-
ber of cycles, (For example in C64 k = 3 and z = 1). In addition, it is reasonable to
assume that k < m and that Q is made reasonable large (m << Q). Simplifying Eq. 6
we obtain Eq. 7.

µ =
2

2k + z
(7)

4.3. Additional considerations
This section presents a discussion of the assumptions used during the design of the
algorithms of Sections 4.1 and 4.2.

Memory model: By design, our HT-Queue interacts with shared variables through
atomic operations. The memory model of the system must ensure that atomic opera-
tions appear to complete in the same order from the point of view of each processor. In
particular, weak consistency [Dubois et al. 1998] guarantees that all accesses to syn-
chronization variables are seen by all processes in the same order, which is the con-
dition required. The CB-Queue, MC-Queue and MS-Queue rely on a combination of
atomic operations and particular sequences of memory operations, requiring sequen-
tial consistency. The Spinlock implementation uses locks, allowing implementations
that use significantly weaker memory models.

The work of Zhang et al [Zhang et al. 2005] has shown that C64 is sequentially
consistent, allowing C64 to correctly support all the queue algorithms presented here.
The HT-Queue and Spinlock queue can be implemented in C64 because the weaker
memory models that they require are a subset of Sequential Consistency.
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In architectures where weak consistency or sequential consistency is not available,
correct results for the queue algorithms discussed in this paper (CB-Queue, HT-Queue,
MS-Queue, MC-Queue and Spinlock) can be obtained by using memory barriers (1)
around atomic operations and (2) around memory operations to variables that partici-
pate in synchronization (such as the turn variable in the CB-Queue).

Memory allocation: The throughput analysis of the previous sections considers
the effects of the algorithms themselves. However, the throughput of an algorithm
can be affected by external factors. For example, the throughput of algorithms that
allocate memory can vary greatly depending on the implementation of the memory al-
locator. In situations where the memory allocation is done through a centralized lock,
the throughput of the algorithm may be significantly reduced. On the other hand, the
throughput of a processor will not be affected at all if each processor has its own mem-
ory pool where memory can be requested without interference from other processors.

To avoid the problems of memory allocation, the examples and experiments of this
paper use a distributed memory allocator where little or no contention between pro-
cessors exist.

Effects caused by the Operating System (OS): The OS can potentially limit
the throughput of an algorithm. Any call that is serialized by the OS can become a
bottleneck that limits the throughput of a parallel algorithm. For example, parallel
algorithms making system calls will see their throughput limited if those calls are
implemented so that they are serviced by a single, particular processor.

To isolate our examples and experimental data from the interference of particular
implementations of the OS, we have implemented our algorithms without system calls.

Use of other architectures: This section has presented a methodology that pro-
duces a high throughput algorithm given a particular architecture. The particular al-
gorithm that produces the highest throughput may change when the architecture is
changed due to the details in the way memory operations are served, atomic opera-
tions are executed, and the availability and quantity of shared resources of each type.

The usability and throughput of the algorithms presented here, if used in another ar-
chitecture, will depend on the characteristics of the architecture where they are used:
whether or not particular atomic operations are available, whether or not those oper-
ations can be executed in-memory, the number of memory banks and so on.

For example, the effect of the memory requirements of our algorithms will depend on
many factors, including how many bits are required for the flags associated with each
element, the number of pointers used by the algorithms, the size of the caches and the
size of individual cache lines. The methodology followed in our paper may be used to
determine whether or not the use of one flag per element causes negative effects for
architectures with caches.

Memory banks used by multiple variables: The throughput expressions ob-
tained assume that memory banks serve particular variables exclusively. Although
it is possible to place the critical variables in different memory banks, other variables,
including the queues themselves, may access all memory banks. The large number of
memory banks in C64 (96 total) make these accesses infrequent resulting in a slight
reduction of the actual throughput experienced.

5. EXPERIMENTS
This section evaluates the performance of our queue algorithms. First, we use small
benchmarks that show the latency of individual queue operations and the total
throughput of each queue implementation. Then, we show the effectiveness of each
queue implementation to support the execution of two applications.

We used the C64 architecture in our experiments due to its large number of hard-
ware threads. We have used the highly accurate ET International’s C64 simulator [del
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Fig. 8. Queue Throughput

Cuvillo et al. 2005] to gather all the data presented in this paper because (1) despite
the existence of real C64 chips, all of them are currently held by the U.S. Government
and they have not been released to the public and (2) some of the other queue tech-
niques used as comparison, such as the MS-Queue [Michael and Scott 1996] and the
MC-Queue [Mellor-Crummey 1987] require the use of Compare and Swap, which is not
available on the C64 chip produced. The C64 simulator was modified to include a CAS
native instruction in its ISA. To make our comparison fair, the CAS instruction has the
same implementation in the simulator as all other atomic operations: It has the same
latency, it uses the same resources, it has its own opcode in the ISA, it is also executed
in-memory and it generates the same contention at the memory controller. The com-
piler was modified accordingly to support the new opcode. The microbenchmarks were
written in assembly while the applications were written in C.

5.1. Microbenchmarks
Throughput (Figure 8) and latency (Figure 9) were measured using experiments where
each processor performs a sequence of 75000 enqueue-dequeue pairs. During the inter-
val measured, the processors do not execute anything other than the enqueue-dequeue
pairs, and there is no waiting. Indirect effects such as system calls to malloc or free
that may affect throughput were avoided. All memory is allocated before the experi-
ment is run and deallocated after the experiment completes.

The throughput is defined as the total (aggregated) number of operations completed
by all processors per unit of time. The latency reported is an average over all the
individual queue latencies.

Table I shows that our theoretical predictions on throughput are confirmed by the ex-
periments. The theoretical throughput for the MC-Queue, the CB-Queue and the HT-
Queue matches very well the throughput measured. The reason is that the expression
for the theoretical throughput is a function of the memory controller parameters (k and
z) which are constant for C64. The theoretical throughput for the MS-Queue and the
Single Lock queue does not match the throughput observed because the expressions
for the theoretical throughput depend on the latency of individual memory operations,
which is not a constant, and increases with the load of the system. This degradation
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Table I. Comparison of theoretical and experimental results.

Queue µ (Theoretical) µ (Experimental)
Single Lock 8.33 4.54
MS-Queue 16.7 12.7
MC-Queue 142.8 142.8
CB-Queue 333 326.0
HT-Queue 142.8 142.5

Units: Million Queue Operations per Second.
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Fig. 9. Latency for a single queue operation

Table II. Maximum request rate (Million Operations per Second) before queue latency increases 5%.

Queue Single Lock MS-Queue MC-Queue CB-Queue HT-Queue
Max. Request Rate 3.46 6.06 142.5 262.68 128.00

of throughput can be seen in Figure 8: When the system is heavily loaded, the latency
for individual memory operations increases, lowering the total system throughput.

The CB-Queue and the HT-Queue show significantly better intrinsic (maximum)
throughput than the MS-Queue and the Single Lock implementation, and equal (in
the case of the HT-Queue) or greater (CB-Queue) throughput than the MC-Queue.

The behavior of latency with respect to the utilization factor ρ of the queue is shown
in Figure 10. ρ has been calculated as the ratio of requests to theoretical throughput
(Section 2.3) for each queue. The latency of our implementations when the queue is
not saturated (ρ < 1) is better than the latency of all other implementations tested.
When the queue becomes saturated (ρ = 1) the latencies of all queue implementations
increase. Due to its high throughput, our CB-Queue can handle a large request rate
before the latency increases due to saturation. Our HT-Queue and the MC-Queue sat-
urate similarly. Experimental values for maximum request rates before the latency
increases 5% are shown in Table II.

5.2. Applications
The impact of our queueing algorithms in larger applications was explored by using
them in ET International’s parallel runtime system [ET International ] where queues
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are used as the central mechanism for scheduling in a way similar to that of the Cilk
runtime [Blumofe et al. 1995] and the EARTH runtime [Theobald 1999] systems.

Two applications were used to test the impact of each queue implementation:
A tiled version of a 3-Dimensional Reverse Time Migration (RTM) [Baysal et al.
1983] used for oil exploration (8000 C code lines) with input size of 276 × 276 × 276
and Blocked Matrix Multiply (MM) [Garcia et al. 2010] (3000 C code lines) of size
5760× 5760.

RTM consists of repeated point-wise multiplication and convolution of a set of
3-Dimensional input samples with a 3-Dimensional kernel. Good performance is
achieved though multiple code transformations [Nguyen et al. 2010] that improve the
locality during execution, resulting in moderate parallelism and abundant synchro-
nization between tasks. The input samples reside in DRAM and they are executed as
tiles that fit in on-chip memory. Overlapping of communication (between DRAM and
SRAM) and computation is done by having two tiles in on-chip memory. In the exper-
iments conducted, four arrays of 276 × 276 × 276 single precision numbers are used
(approx 370MB in DRAM) with a kernel of size 13 × 13 × 13. Tasks either compute a
convolution between a data set of size 6 × 1 × 1 and the kernel of size 13 × 13 × 13 or
they do memory movement between DRAM and SRAM.

For MM, the three Double Precision matrices are in off-chip DRAM memory (ap-
prox. 800MB), the nature of the software-managed memory hierarchy of C64 requires
a double buffering strategy where some threads move blocks of 192× 192 between off-
chip DRAM memory and on-chip SRAM memory while the other threads make com-
putations of 6 × 6 tiles allocated in registers from the blocks in SRAM. The optimum
ratio between data movement threads and computation threads, the optimum sizes of
blocks and register tiles and other optimizations applied to this benchmark have been
detailed in previous publications for C64 [Garcia et al. 2010]

The impact of the queue choice in the overall application is shown in Figures 11
and 12. As seen in the figures, the choice of queue implementation does not play a
critical role when few processors compete for access to the queue. When the number
of processors is increased, however, the throughput available at the queue becomes a
dominant factor in performance.
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The MC-Queue and the HT-Queue have a high throughput in themselves, but they
require calls to malloc and free, which could become the bottleneck. To avoid this, a
high performance, distributed memory allocator (described in Section 4.3) was used
instead of the standard C64 memory allocator.

Results of MM show that the proposed HT-Queue and the MC-Queue reach a similar
maximum speed up: 55.9 for HT-Queue and 56.3 for MC-Queue given their similar the-
oretical throughput. CB-Queue performance is always slightly better than HT-Queue
and MC-Queue, and its maximum speed up is 56.6. RTM shows similar results where
the maximum speedup obtained is related to the throughput of the queue used.

6. DISCUSSION
The CB-Queue and the HT-Queue algorithms are fast, they have a very high through-
put, they have a very low latency and in general, they are excellent choices to imple-
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ment algorithms using queues: They have a much greater throughput than the MS-
Queue and the Spin Lock queue and they have a lower latency than the MC-Queue.

The theory developed in this paper ultimately leads to the conclusion that both the
MC-Queue and the HT-Queue algorithm have the same intrinsic throughput. Exper-
iments with the microbenchmarks and the applications also confirm this conclusion.
However, the HT-Queue algorithm has advantages over the MC-Queue algorithm other
than its intrinsic throughput. For example, Figures 9 and 10 show that the HT-Queue
has lower latency than the MC-Queue. Other reasons may also be influential: The HT-
Queue does not require a Compare and Swap operation while the MC-Queue does.
The availability of particular atomic operations such as CAS or atomic addition may
restrict the ability to use the MC-Queue or the HT-Queue. Finally, it is a convenience
for developers that the HT-Queue performs less frequent calls to memory allocation
than the MC-Queue, resulting in better throughput when naive memory allocators are
used. Of course, if a good memory allocator is available, the throughput of both will be
the same.

The main idea driving the design of high-throughput algorithms was the use of a sin-
gle atomic operation to make changes as opposed to an inquire-then-update approach.
In the particular case of C64, it was straightforward to put a counter and a pointer into
a 64 bit word because C64 uses a 32-bit address space. However, the ideas presented
here are not limited to a 32-bit address space or to the availability of 64-bit atomic op-
erations because, in general, a pointer can be represented by an integer that uses less
bits than the address space requires. Pointers of 64-bits can be represented as integers
of 32 bits or less in a variety of ways: as offsets in a large pool of allocated memory,
as indexes in a table of pointers, or as indexes in a structure of preallocated elements.
Such techniques enable implementations of the queues proposed here in architectures
with a 64-bit address space.

The throughput and performance behavior of the algorithms presented are a re-
sult of both the algorithms themselves and the architecture where they run. In
C64, throughput was supported by in-memory atomic operations. It is possible that
algorithm-specific architectural support (such as in-memory enqueue/dequeue opera-
tions) can increase the throughput of particular algorithms. However, providing such
algorithm-specific hardware is infeasible on general-purpose many-core architectures
such as C64 due to their limited usability in general-purpose situations and the in-
creased design complexity and die area required to implement them.

Our use of the same word for a pointer and an integer is different (and it is not
related) to solutions to the ABA problem [Michael and Scott 1996]. Solutions to the
ABA problem typically place a pointer and an integer timestamp in the same 64 bit
word. Our technique is not related to the ABA problem solution because (1) the ABA
problem is endemic to algorithms with inquire-then-update approaches which we do
not use, and (2) the integer in our technique is used as an offset to the pointer, it is not
a timestamp and it is not compared to any other timestamps.

7. CONCLUSIONS AND FUTURE WORK
This paper developed the concept of intrinsic throughput of algorithms, which we use
to develop the CB-Queue and the HT-Queue. Both algorithms have a large through-
put and low latency. Dataflow runtime systems and operating systems can benefit
from the CB-Queue implementation. The HT-Queue serves as a viable replacement
for traditional queues because it matches their functionality and it exhibits excellent
throughput and low latency.

The CB-Queue and the HT-Queue have been shown to have exceptional performance
due to their very high throughput and very low latency. High throughput is a result
of executing the critical parts of the queue operations in memory through the use of
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atomic instructions as opposed to attempting inquire-then-update operations that are
common to other implementations. The difference is important: An in-memory opera-
tion can complete in very few cycles, allowing more requests to be completed per unit
of time than a read-modify-write approach, where at the very least, a roundtrip to
memory plus some processor involvement is required for every access to the queue.

Space constraints have forced us to limit the number of implementations that we
could compare. Nevertheless, we were able to present a theoretical analysis and ex-
periments for 5 different implementations including our own, the one with the high-
est throughput that we could find (MC-Queue), the nonblocking implementation most
used in the industry (MS-Queue) and the traditional Single Lock Queue.

Future work will focus on correctly classifying our algorithms in terms of their prop-
erties and in expanding our analysis of intrinsic throughput to a broader range of
algorithms.

8. ACKNOWLEDGMENTS
The authors thank Robert Pavel for his valuable suggestions and for his help through-
out the production of this paper.

This research was made possible by the generous support of the NSF through grants
CCF-0833122, CCF-0925863, CCF-0937907, CNS-0720531, and OCI-0904534.

REFERENCES
BAYSAL, E., KOSLOFF, D. D., AND SHERWOOD, J. W. C. 1983. Reverse time migration. Geophysics 48.
BLUMOFE, R. D., JOERG, C. F., KUSZMAUL, B. C., LEISERSON, C. E., RANDALL, K. H., AND ZHOU, Y. 1995.

Cilk: an efficient multithreaded runtime system. In Proceedings of the fifth ACM SIGPLAN symposium
on Principles and practice of parallel programming. PPOPP ’95. ACM, New York, NY, USA, 207–216.

DEL CUVILLO, J., ZHU, W., HU, Z., AND GAO, G. 2005. Fast: A functionally accurate simulation toolset for
the cyclops-64 cellular architecture. CAPSL Technical Memo 062.

DEL CUVILLO, J., ZHU, W., HU, Z., AND GAO, G. R. 2006. Toward a software infrastructure for the cyclops-
64 cellular architecture. In High-Performance Computing in an Advanced Collaborative Environment,
2006. 9.

DUBOIS, M., SCHEURICH, C., AND BRIGGS, F. 1998. Memory access buffering in multiprocessors. In 25
years of the international symposia on Computer architecture (selected papers). ISCA ’98. ACM, New
York, NY, USA, 320–328.

ET International. http://www.etinternational.com.
GARCIA, E., KHAN, R., LIVINGSTON, K., VENETIS, I., AND GAO, G. 2010. Dynamic percolation - mapping

dense matrix multiplication on a many-core architecture. CAPSL Technical Memo 098.
GARCIA, E., VENETIS, I. E., KHAN, R., AND GAO, G. 2010. Optimized Dense Matrix Multiplication on a

Many-Core Architecture. In Proceedings of the Sixteenth International Conference on Parallel Comput-
ing (Euro-Par 2010), Part II. Lecture Notes in Computer Science Series, vol. 6272. Springer, Ischia, Italy,
316–327.

KLEINROCK, L. 1975. Queueing Systems. Volume 1: Theory.
MELLOR-CRUMMEY, J. 1987. Concurrent queues: Practical fetch and phi algorithms. Tech. Rep. 229, Dep. of

CS, University of Rochester.
MICHAEL, M. M. AND SCOTT, M. L. 1996. Simple, fast, and practical non-blocking and blocking concurrent

queue algorithms. In Proc. of the 15th ACM symposium on Principles of distributed computing. PODC
’96. ACM, New York, NY, USA, 267–275.

MOIR, M., NUSSBAUM, D., SHALEV, O., AND SHAVIT, N. 2005. Using elimination to implement scalable
and lock-free fifo queues. In Proc. of 17th ACM Symp. on Parallelism in Algorithms and Architectures.
SPAA ’05. ACM, New York, NY, USA, 253–262.

NGUYEN, A., SATISH, N., CHHUGANI, J., KIM, C., AND DUBEY, P. 2010. 3.5-d blocking optimization for
stencil computations on modern cpus and gpus. In Proceedings of the 2010 ACM/IEEE International
Conference for High Performance Computing, Networking, Storage and Analysis. SC ’10. IEEE Computer
Society, Washington, DC, USA, 1–13.

THEOBALD, K. 1999. Earth: An efficient architecture for running threads. Ph.D. thesis.

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 4, Article 49, Publication date: January 2012.



Toward High Throughput Algorithms on Many Core Architectures 49:21

TSIGAS, P. AND ZHANG, Y. 2001. A simple, fast and scalable non-blocking concurrent fifo queue for shared
memory multiprocessor systems. In Proc. of the 13th ACM Symp. on Parallel Algorithms and Architec-
tures. SPAA ’01. ACM, New York, NY, USA, 134–143.

ZHANG, Y., ZHU, W., CHEN, F., HU, Z., AND GAO, G. R. 2005. Sequential Consistency Revisit: The Sufficient
Condition and Method to Reason the Consistency Model of a Multiprocessor-on-a-Chip Architecture. In
Parallel and Distributed Computing and Networks. 13–19.

ACM Transactions on Architecture and Code Optimization, Vol. 8, No. 4, Article 49, Publication date: January 2012.


