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ABSTRACT

During the last ten years, multicore processors have nafuoen academic re-
search projects to real products in industry. They are nod us across almost the
entire spectrum of computer systems, ranging from huge fraanes to small handheld
devices. People consider that multicore processor remiesige future of computer ar-
chitecture design [1]. Currently, we may group multicoregassor chip into two types:
Type-1 and Type-2 [2]. Type-1 multicore processor has s¢vaditional heavy weight
processing coregluedon a single chip, like the Intel Core 2 Duo processor [3] and the
AMD Quad-Core Opteron processor [4]. Basically, the desigiypie-1 multicore pro-
cessor is just a natural and conservative extension of élaitittnal single core processor
architecture. Type-2 multicore processor, instead, ssprs people’s effort to explore the
parallel architecture design space and to search for thésunitable multicore processor
design model. The IBM Cyclops-64 is a many-core processa ifathis category.

A Cyclops-64 chip has 160 homogeneous on-chip processiregcofhey are
connected by a 96-port, 7-stage, non-blocking on-chipstrasswitch. The Cyclops-
64 chip does not have data cache. Instead, itdi2gB on-chip SRAM. In addition,
2GB off-chip DRAM can be connected to the on-chip crossbardwiia four DDR2
controllers. All these memories are located in the sameesddspace and thus are shared
by all on-chip cores. However, different memory segment® luifferent access latencies
and different bandwidth. Itis the programmer’s respotigiiio orchestra data movement

among different memory segments, especially between gnaetd off-chip memory.
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As we all know, it is very difficult to program a chip with manygeessing cores,
especially if the chip has user-managed memory hierarchiles the IBM Cyclops-
64 many-core processor. Without considering the heteriggenf the memory space,
Cyclops-64 is similar to the traditional shared memory SMRma. For this kind par-
allel machine, OpenMP [5] is the dominate programming laggu Although OpenMP
provides abundant directives that programmers can use thetacompose loops in a
sequential program and make it a parallel program, it pewidtle support to help pro-
grammers to deal with the segmented memory space. Thersigngicant problems will
arise if an OpenMP programmer wants to develop OpenMP pnegyca the Cyclops-64
processor. For example, the problem of manually recodiegtlginal program to add in
data movement code; the problem of overlapping the exeatuatialata movement code
and computation code may arise. This motivates us to dewedepies ofile aware paral-
lelizationtechniques to attack these problems. The basic idea is tmertthe OpenMP
API with the concept of data tile so programmers can use ttended OpenMP API to
annotate their programs and tell a compiler what is the slofplee data tile and how
it would be used in the program, or where the data tiles aratéotcetc. The purpose is
to expose more information about program data and theireusaga compiler can have
more opportunities to perform some aggressive optiminattbat would not be possible
(or inefficient, or inaccurate) if without such hints fronetprogrammers.

The major contributions of this thesis are:

¢ In this thesis, we introduce the concepttitd aware parallelization an extension
to the current OpenMP. We analyze and discuss some proben®penMP pro-
grammers would come across on the Cyclops-64 processor., Weense some
motivating examples to demonstrate why tile aware para#igbn techniques are
necessary and also possible to solve these problems. As fdreaauthors are
aware, we are the first that propdde aware parallelizatiorfor the OpenMP pro-

gramming language.
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e The thesis proposes and develdjps percolation an OpenMP tile aware paral-
lelization technique that can be used to generate datalpgococode for OpenMP
programs running on the Cyclops-64 processor. The thesisd@®an exploration
of the necessity and possibility of developing pragma dives for semi-automatic
data movement code generation in OpenMP. The thesis alsmlirttes the tech-
niques used to implement tile percolation, which includes new programming
API, code generation, and the required runtime support.luatian results show
that tile percolation can make the OpenMP programs run orCtlabops-64 chip

much more efficiently.

e To improve the tile percolation technique, we have desigaed developed the
Thread-Level Decoupled Access/Execu(ibia-DAE for short) model for OpenMP
programs running on the Cyclops-64 chip. We have designedthRBAE pro-
gramming interfaces that can be used to help OpenMP conmpite@nerate decou-
pled code. We have also developed the runtime support thaesed to support the
TL-DAE execution model. The experimental results dematstthe effectiveness

of the TL-DAE execution model.

e We have proposed and developed an OpenMP tile aware peatii@h technique
calledtile reduction It can apply parallel reduction on multi-dimensional g&a
We discuss the methods used to implement tile reductiotydimgy the required
OpenMP API extension and the associated code generatibnigee. We evalu-
ate the tile reduction technique with a set of benchmarks. éXperimental results
show that using tile reduction can make the code paralteizanore natural and
flexible. It not only can expose more parallelism in the pamgrout also can im-

prove its data locality.
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Chapter 1

INTRODUCTION

Programmers have long enjoyed the programming and perfarenefficiency of
the hardware-managed memory hierarchy (i.e. the cachedbraemory hierarchy) that
most general computer systems have been using. Howevetodtse scalability and
power issue [6], the hardware-managed memory hierarchytisvery suitable to be
adopted in multicore, especially manycore processor @ctire. It is incredibly dif-
ficult to design a hardware-managed memory hierarchy fol08-b@re processor, which
is anticipated by many computer scientists, e.g. DavidePadh [7] and Fran Allen [8].
The recent cancellation of Intel's Larrabee project islgattie to the difficulty to design
an efficient cache-based memory hierarchy for its 80 on-cbips.

Because of these difficulties, people have to resort to anaghygroach, i.e. the
user-managed memory hierarchy approach. Typical exanopldss kind are the IBM
CELL processor [9, 10] and the IBM Cyclops-64 processor [11]skind of manycore
processor usually has one or multiple pieces of user-mahaigiehip memory , which
is much faster and bandwidth-wider than off-chip memory.otder for programmers
to manage the on-chip memory in an easier and more effeciyg ivis necessary to
provide a certain amount of help from the programming moidiel. However, the current
mainstream programming languages (FORTRAN, C/C++, Javg, etere developed

based on the assumption of aniform memory accegt)MA) model. Thus, under this

I Different segments of memory may be in the same address,dijadtie Cyclops-64
processor, or in different address space, like in the CELkgssor



context, the designers of these programming languages oeuated programming the
user-managed memory hierarchy as a program design chabennever tried to propose
any language-level solution to it.

In this thesis, we will mainly use the Cyclops-64 processal the OpenMP pro-
gramming model as the basis to discuss the possible satutiime approach we devel-
oped in this thesis is termede aware parallelization Tiling is widely used by compil-
ers and programmer to optimize scientific and engineerimig ¢or better performance.
Many parallel programming languages support tile/tilimgectly through first-class lan-
guage constructs or library routines. However, the cur@mnMP programming lan-
guage idile oblivious although it is thede factostandard for writing parallel programs
on shared memory systems. In this thesis, we introdileeware parallelizationinto
OpenMP. Its purpose is to enhance the OpenMP API with theeginaf tile/tiling, so
more program information can be exposed to the OpenMP cempllherefore, more
aggressive code transformation can be implemented andhbus parallelism (data &
task) can be achieved by the OpenMP compiler.

Threetile aware parallelization(TAP for short) techniques will be developed in
this thesis. The first TAP technique is calli#lé percolation This technology is used to
help OpenMP compiler to automatically generate data patiool code for OpenMP pro-
grams running on the Cyclops-64 manycore processor. Thed&d&P technique is the
thread-level decoupled access/executioodel. It is a continue improvement of tkike
percolationtechnique. It is supposed to be used to generate decoupiiedsoopercola-
tion code and computation code can be executed in parall€lyolops-64. The last TAP
technique we proposed is calléteé reduction which allows reduction to be performed
on multi-dimensional arrays. The rest of this chapter wilkga brief introduction to the
Cyclops-64 manycore processor architecture, the OpenMitgroning model, and the

three TAP technologies we will discuss in this thesis.



1.1 Featuresof Manycore Processor Architecture - a Cyclops-64 Example

In this section, we will introduce the IBM Cyclops-64 manycprecessor archi-
tecture. Figure 1.1 is a diagram of the Cyclops-64 chip an&nadd Cyclops-64 chip
has 80 homogeneous on-chip processors that are connecée@ltport, 7-stage, non-
blocking on-chip crossbar switch [12]. Each processor istssf two thread units, one
floating point unit, and twvo SRAM memory banks (32KB each). etd unit is a 64-bit,
single issue, in-order RISC core operating at clock rate OM#8z. Therefore, a Cyclops-
64 chip contains 160 processing cores. Not like the trawhli&®ISC processor, the thread
running on a Cyclops-64 processing core is not preemptabhkedd, the thread seizes
the processing core until@xi t sorr et ur nsfrom the thread execution.

The chip has 512KB instruction cache. Every 10 processingscf.e. five pro-
cessors) share a 32KB instruction cache bank. See FigureThé& chip has no data
cache. Instead, each core contains a small amount of orS&t4M. For the current gen-
eration, the amount of SRAM associated with each processirgyis 32KB. Therefore,
the whole chip has 5.2MB on-chip memory in total. The SRAM a&ded with each
core can be configured into either Scratchpad Memory (SFglalbal Memory (GM),
or both in combinatiorf. The configuration is decided by the value stored in a system
configuration register that can be specified by programmenebler, the same config-
uration is applied across all processing cores. Theretdr@rocessing cores have the
same amount of scratchpad memory. In the current configuratialf (16KB) of the
SRAM is configured to scratchpad memory; another half (16KEBpisfigured to global
memory. The current system software design (compilerimeitlibrary) dedicates the
whole scratchpad memory to thread stack storage.

In addition to on-chip SRAM memory, off-chip DRAM are attachedto the
crossbar switch through 4 on-chip DRAM controllers. The amtaaf DRAM that can

2 Scratchpad memory (SP) is a fast temporary storage thateasdi to exploit lo-
cality under software control.



be attached to a Cyclops-64 chip is 2GB in. The Cyclops-64 obgs thot support virtual
memory. Therefore, all threads on the same Cyclops-64 cleipuaming in the same
address space. It is the programmer’s job to make sure trestidb do not destroy each
others text or data segments.

All memory modules are in the same address space and can éssaddirectly
by all processing cores [13]. However, different segmenthefmemory address space
has different access latency and bandwidth. To a Cyclopsaéehip core, the fastest
memory segment is its local scratchpad memory. For all atherhip memory segments
(i.e. all remote scratchpad memory and global memory), bty longer access latency
than local scratchpad memory. However, they are much fasteroff-chip DRAM. See
Figure 1.2 for the detailed memory performance paramefettseoCyclops-64 memory
hierarchies.

The A-switch interface of the chip connects the Cyclops-6dento its six neigh-
bors in the 3D-mesh network. In every CPU cycle, A-switch cangfer one double-word
(8 bytes) in one direction. The 3D-mesh may scale up to skterahousands of nodes,
which becomes a powerful parallel computing engine thatpramide computing power
at Petaflops level.

Cyclops-64 is targeted at applications that are highly peizdble and require
enormous amount of computation power. The philosophiesbets architecture design

are.

e Explorethread level parallelisnjl4, 15, 16, 17, 18] in the program insteadiof

struction level parallelisni19] in the program.
e Let user manage the memory hierarchies, not hardware.

These design philosophies greatly affects how programmansprogram the

Cyclops-64 processor efficiently and effectively. Roughlgapng, the Cyclops-64 chip
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is a single-chip shared memory multiprocessor system. dithonsidering the hetero-
geneity of its memory hierarchies, the most suitable prognang model for Cyclops-64
is OpenMP [5].

1.2 A Brief Introduction to OpenM P

OpenMP is thale factostandard for writing parallel programs on shared memory
multiprocessor systems. It is an application programmirtgrface that supports multi-
platform shared memory multiprocessing programming in C, ,Ganedl FORTRAN on
many architectures, including Unix and Microsoft Windowatforms. It consists of a
set of compiler directives, library routines, and envir@mtwvariables that affect run-time
execution behavior.

OpenMP is based upon the existence of multiple threads isltheed memory
programming paradigm. It is an explicit parallel programgimodel, offering the pro-
grammer full control over parallelization. It is not an am@tic parallel programming
model. OpenMP uses tHerk-join model of parallel execution. An OpenMP program
begins as a single process - timasterthread. The master thread executes sequentially
until the first parallel region construct is encounterede Tiaster thread then creates a
team of parallel threads The statements in the program tbatreclosed by the parallel
region construct are then executed in parallel among tleatisin the same team. When
the team threads complete the statements in the parall@ntetdpey synchronize and
terminate, leaving only the master thread. See Figure 1.3

OpenMP is compiler directive based. Most OpenMP paraitelis specified
through the use of compiler directives which are embedde@/@++ or FORTRAN
source code. OpenMP supports nested parallelism. Thishisvaad by placing a par-
allel construct inside another parallel construct. OpemMAP provides for dynamically
altering the number of threads which may be used to exectitzetit parallel regions.
OpenMP specifies nothing about parallel I/O. It is entirgdjtaithe programmer to insure

that 1/0O conducted correctly within the context of a mutlghaded program. OpenMP

6



RERE

provides a "relaxed-consistency” and "temporary” view lofelad memory. Threads can
cache their data in their local storage and are not requiredatintain exact consistency
with read memory all of the time. When it is critical that alt¢hds view a shared variable

identically, the programmer is responsible for insuringttthe variable is flushed by all

{Parallel Region}

>

Z~— 0«

{Parallel Region}

—) master thread
— S|ave thread

Figure 1.3: OpenMP Fork-Join Execution Model

threads as needed.

Figure 1.4 shows the major five different categories of Operikhguage con-

structs and some of the examples. Following is a little biaided introduction.

Overview of OpenMP Language Extensions

parallel control
structures

work sharing

data
environment

synchronization

runtime funcs
env. variables

governs flow of
control in the
program

directive:

parallel

distributes work
among threads

directive:
for, single

section, task ...

scopes variable

clause:

shared, private
firstprivate
lastprivate ...

scoordinates threq
execution

directive:
critical
atomic
barrier ...

d

runtime environment

omp_set_num_threads()
omp_get_thread_num()
OMP_NUM_THREADS

OMP_SCHEDULE ...

Figure 1.4: Overview of OpenMP Language Extensions




e Parallel Control Construct: This governs the control flow of the program. The
only construct that fall in this category is tipar al | el directive. It specifies a
parallel region. Upon encounteringparallel directive, the master thread will fork
a team of slave threads to execute the parallel region tapkrallel. See Figure
1.3.

e Work Sharing: The work sharing constructs control how works in the paralle
region are distributed among the threads. They includeetltg®ctives: f or,
si ngl e,section,t ask. f or defines how loop iterations are distributed among
the threadssi ngl e requires that the guarded region can only be executed once;
sect i on decides how different bodies of the program code are exédhyelif-
ferent threadst ask specifies an explicit task that can be scheduled for exatutio

by one of the threads in the team.

e Data Environment: These clauses specify the "visibility” of the variables dise
in the OpenMP parallel program. By default, all variables sinaredvariable,
which means that all threads access the same piece of daenom if using the
same symbolic variable name. Therefagnchronizatiorprimitives are required
to guarantee mutual exclusion if a shared variable is aeddsg multiple threads
and at least one is writing it. By predicating the variablewitepr i vat e clause,
the variable becomes private variable. Each thread wouwd ha own local copy

of the variable. Thus, no synchronization is required whaeasing the variable.

e Synchronization: As was just mentioned, the OpenMP API need to provide syn-
chronization primitives to coordinate the execution bétvaamong threads. The
critical directive specifies a region of code that must be executedlyyome
thread at a time. That om ¢ directive specifies that a specific memory location

must be updated atomically, rather than letting multipledlads attempt to write to



it. In essence, this directive provides a marii t i cal section. Théarri er di-
rective synchronizes all threads in the team. Whbaier i er directive is reached,
a thread will wait at that point until all other threads hagached that barrier. All

threads then resume executing in parallel the code thatfslthe barrier.

e Runtime Functions & Environment Variables. OpenMP provides a set of run-
time functions and environment variables so programmaersisa them directly in
their OpenMP program. Examples are like thread number anangber of threads
in the team. Synchronization directives also have theresponding runtime func-

tions defined in the OpenMP runtime library.

The OpenMP designers have drawn a very clear line betweeagrgmmmer and
compiler regarding the task of parallelizing a sequenttapam written in C/C++ and
FORTRAN. Programmer’s job is to use a set of simple and limitechber of directives
to annotates his/her source code to tell the compifeereandhow 2 to parallelize the
sequential program. It is the compiler’s responsibilitypesform the required code trans-
formation to convert the sequential program into a mulkititled program on the host
machine. This is usually achieved by wrapping certain segsnef the control-flow of
the sequential program into the native thread library fimmst, so they can be executed
in parallel by different native threads at runtime. In thegle transformation procedure,
synchroni zat i on directives are mapped to native thread synchronizationtioms

to ensure correct concurrent execution semantics.

1.3 Problemswith OpenMP
Roughly, OpenMP APIs are control-flow oriented. OpenMP progners’ job is

to use these APIs to identify & annotate potentially patiaidle control-flow segments

3 1t is very difficult for the compiler to knowvhereandhowto parallelize a sequen-
tial program. If we leave this for compiler, the techniqueubbecomeautomatic
parallelization[20, 21, 22, 23].



in the code and expose them to OpenMP compiler, so OpenMPilssrogn generate cor-
rect multithreaded program. Apparently, the OpenMP desigfocus only on designing
utilities for manipulating control-flow segments in the geqtial program. The existing
OpenMP APIs do not have constructs that can be used to trangfemation about data
(memory location, shape, size etc.) to compiler if the paagis running on segmented
memory address space. Just like what we have found on IBM Cy«@dprocessor. The

reasons are.

e Originally, OpenMP was developed to parallelize sequéptiagrams running on
shared-memory parallel machines. Most of these machingsdrauniform mem-

ory address space.

e The base languages on which OpenMP was grown are all cdtdvoleriented
programming languages. They all assume an uniform mematyeasd space in

their memory model.

Therefore, the OpenMP designers did not have the motiv&tioivent directives that can

be used to deal with problems that would occur when the gdudbgram is running on

a machine with non-uniform memory address space. An exaimgigen in Figure 1.5.
Figure 1.5 shows a piece of very typical OpenMP code. We asshi® piece of

code is part of a program that will run on Cyclops-64.

e Line 1-5: An array of record pointer is defined. Due to its size, thigyand the
record objects pointed to by the pointers stored in the arayplaced in off-chip

DRAM (which is larger) when the program starts running.

e Line6: Theprocess_record functions process a single record pointed to by
r p without touching other global variables. Therefore, itéswsuitable to be par-
allelized. Besides, we assume that data fields i #heor d_t would be accessed

multiple times in this function.

10



typedef struct {
} record_t;

0
1
2
3
4
5 record_t =rcd[ 10000];

6 void process record(record t =*rp);

7

8 #pragma onp parallel for shared(rcd) private(i)
9 for (i=0; i<10000; ++i)

10 {

11 process_record(rcd[i]);

12 }

13

Figure1.5: A piece of code that can not be parallelized very well on naehivith user-
managed memory hierarchies (i.e. non-uniform memory adpace)

e Line8-12: A for loop traverses the pointer array to process each records. Th

loop is parallelized by using a typical OpenNg@r al | el f or directive.

As we have mentioned, if we ignore the heterogeneity of iteorg hierarchies,
Cyclops-64 becomes an SMP parallel processing machine. Gtdedn line 8 and 12 is
a very standard OpenMP optimization for such a kind of SMPhimeec However, due to
the poor performance of off-chip memory (both latency anddvadth, see Figure 1.2),
it is desired to move each record into on-chip memory (wh&much faster and has
much wider bandwidth) and then call functipnocess_r ecor d to work on the copies
located in on-chip memory. In this way, the program executio Cyclops-64 would have
shorter memory access latency and would also save a grean&wiooff-chip memory
bandwidth. But the existing OpenMP API does not provide amgdtiive or clause that
can help to achieve this goal. Programmers must add theregjdata movement code
into the OpenMP program manually. Otherwise, the para#elisequential would not
achieve the expected high performance on this platform. iRagyprogrammers to deal

with the heterogeneity among different memory segmentsldvadd another level of
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complexity for programming a multicore processor.

In addition, even programmers (or compiler) have succégsfserted correct
data movement code at the right place in the program, it doesnsure the good perfor-
mance that the program is supposed to achieve. The probldratithe data movement
code inserted is embedded in computation code and thus thpdrts may not be able
to run in parallel. Usually, people want to hide memory asdatency by overlapping
the execution of computation code and data movement cods.r&tuires that the two
parts, i.e. data movement code and computation code, cagrtaenically decoupled
and executed in parallel. Sometimes, this can be solvedihg tise asynchronous DMA
supported in hardware [26]. However, due to its hardwarégdesomplexity and run-
time overhead [27], DMA may not be supported on every marg/poocessor, especially
for those that do not use bus as their on-chip interconnec#s an example, Cyclops-
64 is such a kind of processor that does not support asynochsoDMA in hardware.
Therefore, it is the programmers job to recode the OpenMBrpro to make sure that
data movements and computations are overlapped in exeartithe Cyclops-64 proces-
sor. Unfortunately, the current OpenMP programming moddlexecution model do not
provide any support for people to approach this goal.

In one word, the pragma directives and clauses existed inutrent OpenMP is
not enough to handle the issues that parallel programs vemddunter on Cyclops-64. It
is desired to extend the OpenMP APIs to solve these new prEbl&V/e would propose

our solutions in the next section.

1.4 Solution Methodologies
From what have been discussed in the last section, we mayteaonclusion

that significant challenges would pop up if programmers heeekisting OpenMP APIs

4 Like the instruction pipeline and out-of-order executieatniques used in modern
Superscalar processors [24, 25] for exploring instrucigee| parallelism.
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to parallelize their sequential programs for the Cyclopsv@hycore processor. The dif-
ficulties come from the fact that, as a programming model,n®ff® does not have lan-
guage constructs that can be used to deal with user-manag@dnmy hierarchies on the
Cyclops-64 processor. To overcome these difficulties, ieaired to extend OpenMP
API to handle issues that would arise on manycore processtirsiser-managed mem-
ory hierarchies. This motivates me to develop titeeaware parallelizationtechniques
for the OpenMP programming language. The basic idea is tareghthe OpenMP API
with the concept of data tile so programmers can use the @éste@penMP API to an-
notate their programs and tell the compiler how the data #le look like and how they
are used in the program, or where the data tiles are located’le¢ purpose is to expose
more information about program data so compiler can have mgportunities to perform
some aggressive optimizations that would be impossibléngdficient, or inaccurate) if
without the hints input from programmer.

In the thesis, the first tile aware parallelization techeiqgue developed for
OpenMP programming language is call@lé percolation The purpose of tile perco-
lation is to enable OpenMP programmers not only the capglbdidirect the compiler to
perform computation decomposition, but also the powerreatithe compiler to perform
data movement related optimizations. Programmers willrbgiged with a set of simple
OpenMP pragma directives. They can use these directivesniotate their program to
instruct the compiler where and how data movement will bégoered. Compiler will
generate the correct computation and data movement coeé basthese annotations.
At runtime, a set of routines will be provided to perform themdmic data movement
operations. This not only makes the programming on the Cget#pchip easier, but also
makes sure that the data movement code inserted into theapndtas good performance
qguality. Tile percolation is targeted to array intensivglagations. So the major data
objects being manipulated are sub-blocks in the multi-disrenal array. That's why this

method is termed as tile percolation.
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In the tile percolation technique, the data movement codergged by compiler is
embedded in computation code. Under the current OpenMRig@aenodel, data move-
ment code can not be executed in parallel with the computatamle. Asynchronous
DMA can solve this problem. However, as we said, Cyclops-&&sdwt support DMA.
To overcome this disadvantage, we propose the second tdeegmarallelization tech-
nigue for OpenMP. The technique is call&dread-Level Decoupled Access/Execution
or TL-DAE for short. Its purpose is to let OpenMP compiler geate the decoupled pro-
gram so computation code and data movement code can be ranaitep It is inspired
by the original hardware based DAE [28, 29], in which memayess (operands fetch
and results store) and computation execution are archrtiyt decoupled and thus can be
maximally overlapped. Not like the hardware based DAE, TAHDs developed as a soft-
ware execution model for OpenMP programs running on the @geat processor. In our
design, data movement code and computation code are dedauglicitly by OpenMP
compiler at compile time. At runtime, two different groupistioreads are spawned: the
computation threads and the percolation threads. Compntttread runs computation
code while percolation thread runs data movement code. Xdwugon of computation
thread and percolation thread can slip with respect to et 0 percolation thread can
run further ahead than computation thread and fetch dat& féhus, computation code
and data movement code of different stages can be execupedahel. To help OpenMP
compiler decouple the program, we propose the TL-DAE prognang interface for the
the programmers. The TL-DAE programming interface is a $€&menMP tile aware
parallelization pragma directives. Programmers can ussetkirectives to annotate their
programs to specify where and how data movement would benpeetd. OpenMP com-
piler, accordingly, will interpret these directives anchgeate the correct decoupled data
movement code.

The third tile aware parallelization technique we devetbfoe OpenMP is called

tile reduction Reduction is a very common recursive operation that pes@ggyregation
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on a set of data of the same type. Due to the associativity andnutativity of the
mathematical operator used in the calculation, reductemm lwe performed in parallel
on better performance. The current OpenMP supports paratlection. However, it
only supports reduction on scalar variables. We call thmslkof reduction ascalar
reduction In this thesis, we introduce a new technique called tilecéidn, which evolves
the current reduction parallelization from scalar vaggblo multi-dimensional arrays.
We have extended the traditional reduction clause to all@vprogrammers to annotate
their code where tile reduction can be applied. We have atseldped the required
code generation technique to interpret the new reducteunsel and generate the required

parallel code accordingly.

1.5 Publications

This thesis is based on several published papers. The wotkeopercolation
[30] was included in the proceedings of Euro-Par 2009. Thkwa TL-DAE [31] was
published in the 22nd International Workshop on Languages@ompilers for Paral-
lel Computing (LCPC 2009). The work on tile reduction [32] wasgented in the 5th
International Workshop on OpenMP (IWOMP 2009).

1.6 ThesisOrganization

The remainder of this thesis is organized as follows. Chaptgives a back-
ground introduction of the multicore era and surveys thgrmmming models developed
for multicore processors with user-managed memory hibyai€haptel introduces the
tile percolation technique, which includes the design ef APl and the implementation
of code generation and runtime routines. Chapgtpresents the thread-level decoupled
access/execution model for OpenMP programs running on @gdd. Chapteb intro-
duces the tile reduction technique, which extends the Ofpeodhcurrent scalar reduction
operation to multi-dimensional arrays. Chagdaroncludes this thesis and also proposes

several directions that we can make improvements.
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Chapter 2

BACKGROUND

2.1 A Multicore/Manycore Era

With the silicon VLSI technology advancing towards 65nmp@band 32nm [33],
computer architecture design is leaping into the multigoreananycore) era. There are
a number of factors that drive this great change. They aeptiwer and thermal issue,
the limits of instruction level parallelism, and the gapvibe¢n CPU and memory speeds.

Usually, people call thempower wall ILP wall, andmemory wall

e Power Wall: After four decades of development under Moore’s Law, the loemm
of transistors that can be integrated on a chip has reachi€dulllion-level [34].
Meanwhile, the clock frequency has scaled to several gitalaad is heading to
ten gigahertz. Because of these changes, the power consangbtine chip has
increased dramatically [35]. And the power dissipation basome a very high
priority issue in all kind computer systems, from handhedglides to high perfor-
mance computers [36, 37, 38]. Without special cooling systae chip will burn
out quickly under current clock frequency. Therefore, in@v not possible to

improve processor performance by clock frequency scaling.

e ILP Wall: In 1991, in his famous paper [19], David W. Wall investigathe
amount of instruction level parallelism that exists in tgdiprograms. Through
simulation, he analyzed a set of programs on whistpossibly good techniques”
have been applied. These include register renaming, ale@gss, branch predic-

tion, and speculative execution, etc. After analyzing theeeimental results, he
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found that’the average parallelism rarely exceeds 7, with 5 more comhd®].
This means that there is little performance potential lefinistruction level par-
allelism regarding the current dynamic or static instretscheduling techniques.
Instead of increasing issue width, deepening the pipeding building complicated
speculative execution units, it is time for people to explperformance at a higher

level of parallelism, i.e. théhread level parallelisnj14, 15, 16, 17, 18].

e Memory Wall: With the widening gap between CPU and memory speeds (CPU
speeds double every eighteen months while memory speetiéedmniy every ten
years) [39, 40], the CPU performance suffers a lot from lomyemory access la-
tency. Currently, in a typical modern processor, loadingfiaif-chip memory will
cost several hundred or a thousand cycles [41]. And this euamststill increasing.
Apparently, it is not possible to hide such a long latencyhia traditional single

thread execution model.

Power wall, ILP wall, and memory wall together form the briekll that stop
people from improving CPU performance through old methodwyTmake some of the
old wisdom used in designing the traditional superscalarisgcture no longer applicable
[7]. For example, clock frequency scaling is limited by poussue; the potential of ad-
vanced branch prediction and dynamic scheduling hardwaits i$ constrained by ILP
limits; and the speculative execution units can not tokesatch a long memory access
latency in a single thread context, no matter how clever autessive they are. Com-
puter architects need new wisdom to design computer proreesthe next generation.
The new wisdom must be able to use the billion-level traosistidge in a more power
efficient way and must provide enough headroom for perfooaamprovement.

Under these settings, multicore processor (or chip maltgssor (CMP)) are
emerging as a very promising alternative to the conventisnperscalar architecture.
Multicore processor usually consists of several, or a gneatber of processing cores

on a single chip. The processing cores are arranged in atdalassd microarchitecture
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which simplifies wiring and interconnection logic [42], atitus achieves higher scala-
bility and power efficiency [43]. Meanwhile, it provides éat and efficient support in

hardware for the compiler and runtime system to exploitatrievel parallelism in the

program, in which it was believed to have much more potefaigberformance improve-

ment [44]. Furthermore, the multithreaded execution mpdalides an easy way to hide
the ever increasing memory access latency [45] and thusirapithe program execution
efficiency. In short, multicore processor is a very prongstomputer architecture that
can effectively translate the billion number of transiston the chip to program perfor-
mance without violating power consumption limits.

Because of the advantages and promising future of multicaeegsor, all major
chip makers have announced their multicore plans or havestaeted shipping multicore
products to the market. For example, the IBM CELL processoi(9, IBM POWERS5
[46], Sun Niagara [47], Intel Dual-core Montecito [48], &éhfTera-scale 80-core processor
[49], ClearSpeed [50], nVidia [51], ATI [52], Tilera [53], dnPAMD Dual-core Opteron.
In addition to the works in industry, people in academia halge initiated many mul-
ticore research projects. For example, the Hydra projett #d the Smart Memory
project [55] in Standford, VIRAM [56] in Berkeley, the Cycloget project [11] between
Univ. of Delaware and IBM, the RAW [57] and SCALE [58] projectshiiT, the TRIPS
project [59] in UT Austin, and the Synchroscalar project][B0UC Davis. In these re-
search projects, a number of multicore architecture dedigive been explored. They
come across many major subjects of computer architectwsigrdewhich include the
high speed on-chip interconnect techniques, the efficigmtigonization mechanisms,
the scalable and low-latency cache organization, the dg@@eous core vs. homoge-
neous core choices, and different parallel programmingeisoeétc.

Roughly, all these multicore processors, either from ingust from academia,
fall into two categories. For convenience’s sake, we calfritlype-1 and type-2 multicore

processors [2].
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e Type-1 Multicore Processor: The major characteristic of the type-1 multicore
processor is that it always glues several heavy weight gsiicg cores on a single
chip. Usually, these processing cores are the traditionpkef&calar processors.
Most of the current multicore processor products in the mizake type-1, e.g. Intel

Dual Core Montecito and AMD Dual Core Opteron.

e Type-2 Multicore Processor: All multicore processors that are not type-1 fall into
this category. Type-2 multicore processors representlpsagffort to explore the
parallel architecture design space and to search for thesuiable multicore pro-
cessor design model [61, 62]. Usually, a variety of desigriags can be observed
in different type-2 multicore processors. For exampleetmieneous core vs. ho-
mogeneous core, etc. The typical type-2 multicore procesa@ the IBM CELL

processor and the Cyclops-64 processor.

Given fixed die area and power budget, type-1 multicore msmedoes not scale
very well. The reason is that the on-chip processing cored aa type-1 multicore chip
are still the traditional Superscalar processors. Theyhebvily on complicated out-of-
order execution logic and thus consume a significant amduwm-ghip silicon resources
(which is disproportionally higher than its performancéngaMeanwhile, such a com-
plicated circuit design makes it very power inefficient. Bogse reasons, the number of
on-chip cores integrated on type-1 multicore processoedyraxceedso.

An alternative is to integrate many simple processing corethe multicore chip.
These processing cores usually adopt in-order RISC execatigine with instruction
issue width of one or two. Each processing core exploits aamatd amount of parallelism
within a single thread, but the whole chip can leverage thesiwa thread level parallelism
in the application. Because each processing core is venjeiigonsumes much less

transistors and is very power efficient. Therefore, thigllah multicore processors have
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the potential to scale up to several hundred or thousand éor@hey are also given
the namemanycoreprocessor. The IBM Cyclops-64 processor is this kind of type-2
manycore processor. Other multicore/manycore proceskatslso fall into the type-

2 group include the IBM CELL processor [9, 10], ClearSpeed [&®dia [51], Tilera
Tile64 [53], and Intel Larrabee [63], etc.

These type-2 manycore processors can be further dividedlifierent subgroups
based on other design features, like the homogeneity ofrtkehigp cores (homogeneous
vs. heterogeneous); the type of on-chip interconnectioresf), crossbar, or NoC); and
the flavor of the processor's memory hierarchy (hardwareagead or user-managed).
The interest of this thesis is not on the architecture desfgmanycore processors. In
stead, our discussion will be focused on the problem of hgwagram the user-managed
memory hierarchy that is widely used in many type-2 manypooeessor. In the next sec-
tion, we will give a brief survey of the programming modelsposed for user-managed

memory hierarchy.

2.2 Programming Modelsfor User-Managed Memory Hierarchy

The most well known programming model for computer systenith wser-
managed memory hierarchy is OpenCL [64], i.e. @@enComputingL anguage, which
is is managed by the non-profit technology consortium Khso@ooup. OpenCL is not
designed for any specific computer platform. It is a langutrgeework for writing
programs that run across heterogeneous platforms cangsftiCPUs, GPUs, and other
processors. These CPUs, GPUs, and other processors mayadamm docal/private
memory that has different access latency & bandwidth andoeamanipulated directly
by programmers. OpenCL includes a language (which is based9@nstandard) for

writing kernel functions (code that would execute on desjcén addition, OpenCL also

! For type-2 multicore processor, the Moore’s Law now beconiédse number of
processing cores on a single chip doubles every generation.
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include a set of APIs that are used to define and then contrelliole platforms. OpenCL
provides parallel computing using task-based and dateehaarallelism.

OpenCL gives any general application the right to access thpltcal Processing
Unit for non-graphical computing purpose. The GPU had jpresly been available for
graphical applications only. The GPU memory would be abéei#o the operating system
and or applications essentially as faster system memoryttl@main system memory.
Therefore, OpenCL extends the power of the Graphical Prowessit beyond graphics,
i.e. the general-purpose computing on graphics processiitg. In other words, in
OpenCL, the low level memory details (main memory, device omgnetc.) are exposed
to users via standardized programming interfaces. It iptbgrammers’ responsibility
to use these APIs efficiently and effectively. Other prograng models that also adopt
similar policy are nVidia CUDA [51] and Microsoft DirectComiai[65].

CUDA is short forComputeUnified DeviceArchitecture. It is a parallel comput-
ing architecture developed by nVidia. CUDA is the computingiae in nVidia graphics
processing units or GPUs that is accessible to softwarda@es through industry stan-
dard programming languages. CUDA assumes a memory modeliah\@®U and GPU
have separate memory spaces. Data is moved across PCI isetieissary to use spe-
cial functions to allocate, copy, and deallocate memory ®JGAn addition, pointers in
CUDA are just addresses. Programmers can not tell from th@gyoralue whether the
address is on CPU or GPU. Dereferencing CPU pointer on GPU rahcthe program.
So it is necessary to exercise care before dereferencing.the same for vice versa.
Microsoft DirectCompute is an application programming ifgee (API) that supports
General-purpose computing on graphics processing uniicmsoft Windows Vista or
Windows 7. DirectCompute is part of the Microsoft DirectX leation of APIs. Similar
memory model and memory access APIs can also be found intDimetoute.

UPC [66] (Unified Parallel C) is another parallel programmemgguage that deals

with user-managed memory hierarchy at language level. #niextension of the C
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programming language designed for high-performance ctingpon large-scale paral-
lel machines, including those with a common global addresse (SMP and NUMA)
and those with distributed memory (e.g. clusters). The gnogner is presented with a
single shared, partitioned address space, where varialalgbe directly read and written
by any processor, but each variable is physically assatiaii a single processor. UPC
uses a Single Program Multiple Data (SPMD) model of computan which the amount
of parallelism is fixed at program start-up time, typicallgiwa single thread of execution
per processor. In UPC memory model, there are two kinds of emgnshared memory
and private memory. These two kinds of memory are logicadiyespond to the main
memory and device memory in OpenCL and CUDA. Static and dynameimory alloca-
tion are supported for both shared and private memory. Masacan be declared to be
shared using the keywosthar ed. Shared objects are placed in memory based on affin-
ity. Affinity can also be defined based on the ability of a tlrearefer to an object by a
private pointer. All non-array shared qualified objectséhaffinity to thread 0. All array
shared qualified objects are distributed across the privat®mory (associated with each
thread) via the predefined distribution policy. Threadsaecess shared and private data.
UPC provides standard library functions to move data taifethvared memory. They can
be used to move chunks in the shared space or between sharpd\ate spaces. This
part is exactly the same as we can see in OpenCL and CUDA.

The IBM CELL Broadband Engine (BE) processor [67] is a heterogesenany-
core processor that provides both flexibility and high perance. The first generation
CELL BE processor includes a 64-bit multithreaded PowerPCeqssor element (PPE)
and eight synergistic processor element (SPE). Each SPESBasB local memory (also
called local storage) to accommodate both program instmgtand data. These local
memories and main memory are each in a separate address §faEs transfer data
between local memory and main memory through the DMA engutgch is controlled

by programmers though DMA instructions. It is very clearttihds a great challenge to
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the programmers to manage the transfers of code and datadretwain memory and
local memory. To attack this problemsiangle shared memory abstractiassumed in
the programming model proposed by IBM [68]. This is achievedising the compiler-
controlled software cache in SPE. Like its hardware copatey a software directory is
maintained in each SPE local storage. The compiler, after-procedural analysis, re-
places some load and store instructions with instructibasexplicitly look up the effec-
tive address of the datum in the software cache directotiielfine containing the datum
is found in the directory, the address of the requested biaria computed and the load
or store continues using this local store location. Otheewa subroutine, the cache miss
handler, is invoked and the requested data is transferosa $iystem memory. Just like
the hardware caches, the directory is updated, and typiaalbther line is selected for
eviction in order to make room for the new element. Therefbyeusing this approach,
the compiler can undertake the task of orchestrating darester between local memory
and main memory. Moreover, there are many optimizationgtigecompiler can perform
to optimize these data transfers, especially when memdeyeteces are regular.

The current implementation supports two variants of saféwache. One variant
supports only single-threaded code. In this version, asatse suggests, the cache line
can be written out to main memory as a whole without worryibgud overwriting data
that are not supposed to be modified. Therefore, there isewd to keep track which
words have been modified. This greatly simplifies the codeemce of cache miss han-
dler and also greatly reduces the runtime overhead of casheViction. However, this
requires that a multithreaded program must not have shamable, which makes it not
practical for most real parallel applications. The secoadant supports multi-threaded
shared memory programs. In order to do this, it is necessakgép track in the cache
directory (on each SPE) that which bytes have been writtereghe line was brought in
from system memory. Then, when a line is to be evicted, eithsupport of a miss or

to implement explicit flushes required for conformance witmory consistency rules,
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only the modified bytes are written by the DMA engine. Keepiragk of dirty bytes
requires inserting additional code inline for each storerapon in addition to the lookup
code discussed above. To accomplish this, the directory enextended by additional
bits for each bytes in the cache line. This is an non-trivilce overhead in addition to
the runtime overhead. If the data access pattern is regldaprogram can use static data
buffer and thus eliminating all the storage and runtime logad.

Another programming model developed for the CELL BE architexts termed
CellSs, i.e. the Cell Superscalar framework (CellSs), whitlagsed on a source to source
compiler and a runtime library. The supported programmirogieh allows the program-
mers to write sequential applications and the frameworkble o exploit the existing
concurrency and to use the different components of the CelFBEE(and SPES) by means
of a automatic parallelization at execution time. The oelguirement is that annotations
(somehow similar to the OpenMP ones) are written before dudadation of some of the
functions used in the application. The annotation, on omelhendicates a parallel task
region, on the other hand, specifies the data that need togdiedcimto or copied out of
the SPE local storage at runtime. The compiler generatedradl@l program with data
movement code inside.

HTA [?], i.e. theHierarchicallyTiled Arrays, introduces the concept of "data
tile” as the first class data object into the programming leagge. Such a "tile oriented”
programming model can be used to program the array intemggaithms. In these
algorithms, multi-dimensional arrays are the core datactires. HTA partitions these
multi-dimensional arrays into multiple hierarchies ofaltites. Programmers can manip-

ulate these data tiles directly in their programs. The athges are:

1. The tile hierarchy directly models the memory hierarchyhe computer system.
Therefore, HTA facilitates the exploration of differentéds of data locality existed

in the program.
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2. The hierarchical data tiles can be distributed in phylsiceparated memory seg-
ments, so communications in the parallel program can be leodes distributed
tile assignment, which is much simpler and less error prba@ explicit thread

communication routines, e.g. MPI.

3. Data parallelism of the program can be harnessed via taditeoperations, there-
fore, parallelism is highly structured, which greatly iropes the readability over

the SPMD paradigm.

All the above methods either rely solely on programmers toaga data move-
ment explicitly in the program or need programmers’ hintglir@ct compiler to gener-
ate the required code. Kandemir propose a pure compileradeth[69] to deal with
the data movement problem. His work targets single core dddzk processors with
user-managed scratch-pad memory. His approach is bgsacaditural extension and ap-
plication of Monica Lam and Michael Wolfe’s loop nest optration work to embedded
processors. The method includes an optimization suiteidest loop and data transforma-
tions, an on-chip memory partitioning step, and a codeitmgrphase that collectively
transform an input code automatically to take advantageebn-chip SPM. Compared
with previous work, the proposed scheme is dynamic, an@valtbe contents of the SPM
to change during the course of execution, depending on taergds in the data access
pattern.

The method proposed in this thesis is not a pure compileroagpr. It relies on
programmer’s intervention to direct compiler to generagerequired optimized code. It
not only simplifies the development of compiler but also graore flexibility for pro-

grammer to develop port parallel program.
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Chapter 3

TILE PERCOLATION

Programming a multicore processor is difficult. It is everrendifficult if the pro-
cessor has user-managed memory hierarchy, e.g. the IBM Gy6ibifC64). A widely
accepted parallel programming solution for multicore pssor is OpenMP. Currently,
all OpenMP directives are only used to decompose computatide (such as loop iter-
ations, tasks, code sections, etc.). None of them can betasmhtrol data movement,
which is crucial for the C64 performance. In this chapter, wappse a technique called
tile percolation This method provides the programmer with a set of OpenMiBmeaa
directives. The programmer can use these directives totatentheir program to specify
whereandhowto perform data movement. The compiler will then generagerétguired
code accordingly. Our method is a semi-automatic code génarapproach intended
to simplify a programmer’s work. In this chapter, we prowda) an exploration of the
possibility of developing pragma directives for semi-amétic data movement code gen-
eration in OpenMP(b) an introduction of techniques used to implement tile pextooh
including the programming API, the code generation in céenpand the required run-

time support routinegr) and an evaluation of tile percolation with a set of benchmmark

3.1 Introduction

OpenMP [5] is thede factostandard for writing parallel programs on shared
memory multiprocessor system. For the IBM Cyclops-64 (C64ygseor [70, 71, 11],
OpenMP is one of the top selected programming model. As shoWwigure 1.1, the C64

chip has 160 homogeneous processing cores. It has instnziche but no data cache.
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Instead, each core contains a small amount of SRAM, 512KB.e&ohthere are total
5.2MB on-chip SRAM. Part of them can be configured into ScraachMemory (SPM).
The rest are called Global Memory (GM). Off-chip DRAM are attad onto the crossbar
switch through 4 on-chip DDR2 memory controllers. All memonpdules are in the
same address space and can be accessed directly by allgingossres [13]. Therefore,
data can be moved from any segment of the address space tthengegment of the ad-
dress space through the nornhaad/st or e instructions. However, different segment
of the memory address space has different access latendyaadavidth. See Figure 1.2
for the detailed parameters of the C64 memory hierarchy. Rgwgpeaking, the C64
chip is a single-chip shared memory multiprocessor sysidmrefore, it is easy to land
OpenMP on the C64 chip [72]. However, due to utser-manageanemory hierarchy,
making an OpenMP program run efficiently on the C64 chip is rtaveal task.

Given a processor like C64, it is important for the OpenMP paots to fully
utilize the on-chip memory resources. This requires thggammmer to insert code in the
program to move data back and forth between the on-chip dnchigf memory. Thus,
the program can benefit from the short latencies of the op-ofemory and the huge
on-chip bandwidth. Unfortunately, this would make the C64timore processor more
difficult to program. From the OpenMP methodology, we hawered that it would be
very helpful if we could annotate the program with a set of @YE pragma directives
to specify where data movement is beneficial and possibteledrthe compiler generate
the required code accordingly. This is just like using plae al | el f or directive to
annotate a loop and let the OpenMP compiler generate thatinneéided code. This
would free the programmer from writing tedious data movetncede.

To solve this problem, we developétk percolation a tile aware parallelization
technique [32] for the OpenMP programming model. The pnognar will be provided
with a set of simple OpenMP pragma directives. They can wssetHirectives to annotate

their program to instruct the compilethereandhowdata movement will be performed.
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The compiler will generate the correct computation and dadaement code based on
these annotations. At runtime, a set of routines will be led to perform the dynamic
data movement operations. This not only makes the programari the C64 chip easier,
but also makes sure that the data movement code insertethenfwmogram is optimized.
Since the major data objects being moved are "sub-block#igmmulti-dimensional ar-
ray, this approach is termede percolation The major contributions of this research
are as follows: (a) As far as the author is aware, this is tls¢ f@search that explores
the possibility of using pragma for semi-automatic data emognt code generation in
OpenMP; (b) The research has developed the techniquesasaglement tile percola-
tion, including the programming API, the code generatiocampiler, and the required
runtime support. (c) We have evaluated tile percolatiomaitset of benchmarks. Our
experimental results show that tile percolation can makeQpenMP programs run on
the Cyclops-64 chip more efficiently.

The rest of the chapter is organized as follows. In Sectidm@ use a motivating
example to show why tile percolation is necessary. SectiB8l discuss how to im-
plement tile percolation in the OpenMP compiler. We presemtexperimental results in

3.4 and draw our conclusions in Section 3.5.

3.2 A Motivating Example

In this section, we use the tiled matrix multiplication coale a motivating ex-
ample to demonstrate why writing efficient OpenMP progranttie user-managed C64
memory hierarchy is not trivial and why a semi-automaticeegéneration approach is
necessary.

Figure 3.1 shows the tiled matrix multiplication cotland the data access pattern

! Because of the advantages of theface-to-volumeffect [73], thealgorithm-by-tile
approach [74, 75, 76] is used intensively in developingrgdie and engineering
code. For instance, the LAPACT programs [77] use many lev@l-BS code [78]
to leverage the computer’s memory hierarchy, no mattereifrttemory hierarchy is
managed by hardware or software, or if it is managed impfioit explicitly.
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'1 for (iIZO, ii<n: ii+:b) controllingloops:
2 for (jj=0; jj<n; jj+=b) :
3 _for (kk=0; kk<n; kk+=b) . :
4 for (i=ii; i<min(ii+b,n); i++) {iling,
o for (j=jj; j<mn(jj+b, n); |j++) 1
6 for (k=kk; k<m n(kk+b, n); k++) |
7 Aillil+=ALT][KI*B[K][]] |

(b) Data Access Pattern in the Tiling Loops

Figure 3.1: Tiled Matrix Multiplication: C=Ax B

of the kernel loops. On the C64 chip, to make sure that thisraradully utilizes the
on-chip memory resources, the programmers need to inkemovement code manually
in the source code to move data tiles back and forth betwezwrkchip and off-chip
memory. Figure 3.3 shows the examples of the manually imdexdde. In both examples,
no matter how the computations in tb@ntrolling loopsare decomposed among the cores,
for the tiling loops, small data tiles are moved into the GWPCSRAM memory and the
associated computations are performed there. Figure)3Bavs the naive version, in
which the array elements are copied into the on-chip memuoeyby one. A better version
is shown in Figure 3.3(b), which utilizes the off-chip membandwidth more efficiently.
In both versions, the programmers need to study the origioafce code carefully to
figure out how to write correct and efficient data movemenecddhey are forced to deal
with the convoluted array index calculation, which makesrtiwvork more complicated.

A simpler approach is to let the compiler to generate theirequata movement
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O /+~ allocate on-chip nmenory =/

1 AA=(float *)sramnmalloc(...);

2 BB=(float *)srammalloc(...);

3 CC=(float *)srammalloc(...);

4 -

5/ itemby-item nenory copy */

6 for (i=ii;i<mn(ii+b,n);i++)

7 for (j=jj;j<mn(jj+b,n);j++)

8 for (k=kk; k<m n(kk+b, n); k++){
9 AALT-Ti][k-kk] = A[T][K];
10 BBl k-kk][j-jj] = B[Kk][j];
11 cqi-iilli-iil =dillil;
12 }

13

14 /+ MKM performed on-chip */
15 for (i=0;i<min(b,n-ii);i++)

16 for (j=0;j<min(b,n-jj);j++)

17 for (k=0; k<m n(b, n-kk) ; k++)

13 CAil[j]+=AALT][K]*BB[K][j];
1

20 /+ copy out the results =/

21 for (i=ii;i<mn(ii+b,n);i++)

22 for (j=jj;j<mn(jj+b, n);j++)

23 for (k=kk;k<m n(kk+b, n); k++)

24 ailljl=Ccqi-iillj-jil;

25 C.

Figure 3.2. Examples of Manually Inserted Data Movement Code (Pseudo)Cadde

naive version

code automatically. In [79, 80], the authors present theplémentation of this idea on

the IBM CELL processor. However, in [81] it is revealed that grexformance of the

automatically generated code is not as good as the perfaeradithe manually reformed

code?. The reason is not because the compiler can not generatetineabcode, but

because the static analysis performed by the compiler ipowerful enough to capture

all the beneficial cases (which is a well-told story). Thistivaies us to develop a novel

semi-automatic approach: the programmer specifies theplactheir program where

efficient data movement is needed, while the compiler geegthe required high quality

2 Readers are referred to Figurzin [81]
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O /+~ allocate on-chip nmenory =/

1 AA=(float *)sramnmalloc(...);

2 BB=(float *)srammalloc(...);

3 CC=(float *)srammalloc(...);

4 Ca

5 /* ncpy: optimzed nenory copy routine */

6 for (i=ii; i<min(ii+b,n); i++)

7 nepy(&CCi-ii][0], &i][jj], mn(b,n-jj))
8 for (k=kk; k<m n(kk+b,n); k++)

9 nepy(&BB[ k- kk][0], & Kk][jj], mn(b,n-jj))
10 for (i=ii; i<mn(ii+b,n); i++)

11 ncpy(&AA[I-i1][0], &A[i][kK], mn(b,n-kk))
12 .

13 /* on-chip calculation */

14 for (i=0; i<min(b,n-ii); i++)

15 for (j=0; j<min(b,n-jj); j++)

16 for (k=0; k<m n(b,n-kk); k++)

1; CAil[j]1+=AALT][K]*BB[K][j];

1 e

19 /* copy out the results */

20 for (i=ii; i<min(ii+b,n); i++)

g; mepy(&i][jj], &i-ii][0], mn(b,n-jj))

Figure 3.3: Examples of Manually Inserted Data Movement Code (Pseudo)Cdae
optimized version

code accordingly.

3.3 TilePercolation
In this section, we will use a simple example to demonstrate to implement
tile percolation. It includes three parts: the programmiij, the data movement code

generation in the compiler, and the required runtime suppor

3.3.1 Programming API
In the design of the programming API for tile percolationg flollowing criteria
should be considered. First, it must be very simple and easgé¢. Second, it must be

general enough to capture most of the common cases that cefitthem tile percolation.
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#pragma onp percolate [tile ...]

#pragma onp tile ro (Aljdim(a)s @dim(A), Ldim(a)l--[J2; a2, L2][j1, a1, L1], ..)
WO ( Blkdim(B)s baim(B)» Mdim(B)]--[k2, ba, Ma][k1, b1, M1], ...)
r'w ( Cllagim(c), Cdim(c)> Naim(o))--[l2, €2, Na][l1, e1, N1], ...)

(a) The definition of the tile percolation API

per col at e: Directive name. It specifies a percolation region

tile: Directive name. It specifies a tile region and the tile descriptors

ro: Clause name. It specifies the tiles that are read-only in the current percola
tion region.

WO: Clause name. It specifies the tiles that are write-only in the current perco-
lation region.

rw Clause name. It specifies the tiles that are read and written in the current
percolation region.

A B, C Name of the host multi-dimensional data array

Jirki i The index variable of the for loop that defines thedimension of the tile

a;,bici Blocking size of the,;, dimension of the host multi-dimensional array (i.le.
A, B, and().

L;,M;,N;: Size of theiy, dimension of the host multi-dimensional array

dim(..): The dimension of the multi-dimensional array

(b) The explanation of the tile percolation API

Figure 3.4: The OpenMP API for tile percolation (C/C++)

Third, it should not bring much complexity to code genematimd should also not cause
too much runtime overhead. According to these criteriatita@ercolation programming
APl is designed as OpenMP pragma directives, shown in Figdi@).

The tile percolation API has two new pragma directives:fgbecol at e direc-
tive and the i | e directive. The percolate directive specifiggaacolation regionwhich
is a block of code. At the beginning of the percolation region-chip storage will be
reserved for all data tiles that will be percolated into timechip memory. Then, all or
some of the data tiles accessed in the percolation regidrb&inoved into the on-chip
memory and the corresponding computations will be perfdrthere. At the end of the
percolation region, data tiles that contain the resulthefdomputations are written back
to the off-chip memory (if necessary) and the reserved op-tiemory are freed.

The tile directive, on the other hand, provides the detaifgdrmation (type,
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shape, size, etc.) of the data tiles that will be percolatéal the on-chip memory. It
is always contained in a percolation region. The tile divecspecifies dile region in
which there is a set dfor loops delimiting the bounds of the data tiles. In the tile di-
rective, following the key word i | e is a list oftile descriptors The tile descriptors
are divided into three groups by the key words, wo, andr w, which are theclause
names that identifyead-only write-only, andread-writedata tiles. At the beginning of
the percolation region, data tiles specified in tiveclause will be copied from the off-
chip memory into the on-chip memory (after the on-chip mgnadlocation). At the end
of the percolation region, data tiles specified in thveandwo clauses are copied back
to their home locations in the off-chip memory. For datastépecified in the o clause,
they will be copied into the on-chip memory at the place whikeg o clause is specified.
They will not be copied back to the off-chip memory at the ehthe percolation region.
The associated code in the percolation region are adjusteccess the on-chip data tiles
in the computations.

The format of the tile descriptor is similar to the declavatof a multi-dimensional
array variable, except that each of the tile descrigiorension specifies a 3-tuple, not
a singleton. The tile descriptor tells the compiler how tlagadtile is carved out from
the multi-dimensional data array that hosts it. To make liesis easy to follow, we call
the multi-dimensional data array that hosts the currerd tlat as itshost array The tile
descriptor contains the complete information of the hostyarTherefore, the number of
dimension specifiers in the tile descriptor is the same aslithension of the host array.
It is not necessarily the same as the dimension of the data til

For a dimension specifigy;, a;, L;] (see Figure 3.4(a)),;” is the size of they,
dimension of the host array (not the data tile},””is the blocking/tiling size of the,,
dimension of the host array. This parameter is used to camvé¢he data tile from its
host array. Normally, if the dimension of the data tile is #sme as the dimension of

the host array, f;” is the index variable of & or loop in the tile region that traverse the
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14, dimension of the data tile. If the dimension of the data @esmaller than its host
array, the element; in some dimension specifiers becomes trivial. Currently, oved

the programmers to put &” there as a place holder to let the compiler know that the
current dimension of the host array has been squashed avihg oimension space of
the data tile. An intuitive example of this case is the exgi@sA[ O] [i ] [j ] guarded

by loopi and loopj . It actually represents a 2-D plane, although the expredsis 3
dimension specifiers.

The tile descriptor functions like a template and the asgedf or loops instan-
tiate this template. To make the code generation easy,rtlyra writable tile descriptor
(specified in the wor thewo clause) can only has one instantiation. The read-only tiles
(specified in the o clause) can have multiple instantiations. Example is gindfigure
3.5. To put it in a simple way, roughly, the percolate dinsztand the tile directive tell
the compilerwherethe data tiles will be percolated and the tile descriptaigtie com-
piler howthe data tiles are percolated. The code example that shewsstyge of the tile
percolation API is in Figure 3.5. The detailed explanatidh ke presented in the next

sub-section.

3.3.2 Code Generation

The code in Figure 3.5 shows how to use the tile percolatioh ARe pragma
at line 1 is the canonicagdar al | el f or directive that specifies how the computation
iterations are distributed among the parallel threads. griagma at line 5 is a perco-
late directive and line 8 is a tile directive. The percolatective specifies a perco-
lation region, from line 6 to 16. The tile directive specifiadile region, from line
10 to 15, in which there are there data tiles, representedApy ,’b, n] [ k, b, n]”,
"Bl k,b,n][j,b,n]",and”C[ i, b, n][], b, n]”. The first two tiles are read-only
and the last one is both readable and writable in the currertotation region. They

direct the compiler to generate the correct data percolaim computation code.
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0

1 #pragma onp parallel for collapse(2)

2 for (ii=0; ii<n; ii+=bh)

3 for (jj=0; jj<n; jj+=h)

4 A

5 #pragma onp percol ate

6 {

7 for (kk=0; kk<n; kk+=b)

8 #pragma onp tile ro (Ali,b,n][k,b,n],B[k,b,n][j,b,n]) \
9 rw (C[i,b,n][j,b,n])
10 {

11 for (i=ii; i<mn(ii+b,n); i++)

12 for (j=jj; j<mn(jj+b,n); j++)
13 for (k=kk; k<m n(kk+b,n); k++)
14 illjT+=ALTT[KI*B[K][]];

15 }

16 }

17}

18

Figure 3.5: Pseudo Code of the Tile Percolation Example

The tile descriptorC[ i, b, n] [ ], b, n] ” specifies a data tile contained in the
host arrayC, a 2Dn x n matrix. In this tile descriptor, C’ provides the name of the
host array, which also tells the compiler the type of the @ément of the tile. i” in
the dimension specifier tells the size of the each dimendidimechost array. B” reveals
how the matrix is tiled. '” and " ” are two index variables that inform the compiler
that thef or loops at line 11 and 12 are used to construct the data tileceShre lower

and upper bounds of ” and ”j " are fixed in the current percolation region, there is only
one instantiation for this tile template (i.e. descriptofhe clause name W’ indicates
that this data tile will be read and written in the currentgodaition region. So, it will be
copied into the on-chip memory at line 6, where the peromtategion starts. It will also
be copied out to off-chip memory at line 16, where the petcmtaegion ends.

Similarly, datatile’Al i , b, n] [ k, b, n] "and "B[ k, b, n] [ , b, n] " are con-
tained in host arrayA” and "B”, which are also 2Dn x n matrix. Since both of them

are read-only data tiles, they are copied into the on-chiparg at line 8, where they
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are specified in theo clause. They do not need to be copied back to the off-chip mem-
ory at the end of the percolation region. Because the loweuapdr bounds ofK” are
changing (line 7), as we may notice, there are multiple mtgtons for these two tile
descriptors. All instantiations of the same data tile wallse the same memory block
allocated to it. The example is shown in Figure 3.6.

Figure 3.6 presents the code generated for the tile pel@olptogram in Figure
3.5. First, it allocates on-chip memory for all three ddtst(line 5 to 7). This is achieved
by calling the runtime routine sr am _mal | oc, which is inserted in by the compiler.
The size of the data tile is calculated by multiplying eacht®fdimension size, which
is obtained from its blocking size. This guarantees thatntieenory block allocated is
big enough to hold the corresponding data tile. If the menadigcations succeed, the
read-write data tiles will be copied into the on-chip memioyycalling the runtime library
routine_copy2Don (line 16). Otherwise, no data movement happens and theamrogr
execution jumps to the original code (line 12), where corapohs are performed on
off-chip data tiles (line 36).

The other two read-only data tiles are percolated into thelop memory between
thef or loops at line 18 and 25. This location corresponds to thegptathe original code
where they are specified in tme clause. Thd or loops between line 25 and 28 per-
form matrix multiplicationon” AA[ ][] 7,7 _BB[][] ", and”_CC[ ][] ", which are all
located in the on-chip memory. After one kernel computaglore 25 to 28) is finished,
the new instantiation of "AA[ ][] "and ”_BB[ ] [ ] ” are copied from the off-chip mem-
ory into the on-chip memory and are stored in the same memockbThen it begins
the next iteration. Before exiting the percolation regidre tw data tile ” CC ][]~
is copied back to its home location in the off-chip memorp€li32). Meanwhile, the
on-chip memory storage allocated to all the percolatedtilataare freed.

To generate the code like in Figure 3.6, the compiler neetiaalle three tasks:

(1) generate code for managing on-chip mem¢2ygenerate code for managing memory
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1
2 [+ Enter the percol ation region.

3 Al'l ocate on-chip nenory for all data tiles =/
5 _CCe(float *) srammall oc(sizeof (float)+*bxb);

6 _AA=(float *)_srammalloc(sizeof (float)+bxb);

7 _BB=(float *)_srammalloc(sizeof (float)+bxb);

8

9 if (_CC==NULL || _AA==NULL || _BB==NULL)

10 {

11 _sramfree(_AA); _sramfree(_BB); _sramfree(_CO;
12 goto orig;

13}

14

15 [+ Copy "rw' data tiles fromoff-chip nenory
to on-chip nmenory =/
16 _copy2Don(sizeof(float), _CC, &C, n, n, ii, jj, \
mn(b,n-ii),mn(b,n-jj));

17

18 for (kk=0; kk<n; kk+=b)

19  {

20 [+ Copy "ro" data tiles fromoff-chip nmenory

to on-chip menmory =/

21 _copy2Don(si zeof (float), _AA &A n, n, ii, kk, \
mn(b,n-ii),mn(b,n-kk));

22 _copy2Don(si zeof (float), BB, &B, n, n, kk, jj, \
m n(b, n-kk),min(b,n-jj));

23

24 /* on-chip cal culation =/

25 for (i=0; i<mn(b,n-ii); i++)

26 for (j=0; j<min(b,n-jj); j++)

27 for (k=0; k<m n(b, n-kk); k++)

28 _CAil[jI+=_AALT][K]=_BB[K][]];

29 }

30

31 [+ copy out the results back to off-chip menory */

32 _copy2Doff(sizeof (float), CC, &, n, n, ii, jj, \

mn(b,n-ii),mn(b,n-jj));
33 _sram free(_AA); _sramfree(_BB); _sramfree(_CO;
34 goto out;
35
36 orig:
37 /+ Original code with out percolation */
38
39 out:
40 }

Figure 3.6: Code generation example for tile percolation (Pseudo Code)
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copy; (3) adjust the computation code to access on-chip data tilede&ve the discus-
sion of the first two items to the next sub-section, becausg déne mostly related to the
runtime. Here, we focus on the third problem.

Adjusting the computation code to access on-chip data itlelsides two sub-
tasks: (i) calibrate the lower and upper bounds for eddr loop that is involved in
traversing the elements of the data t{lie) update the tile access expressions accordingly.
These tasks are easy because the data tile is copied as onag2@m its home location
(in which, the elements are physically scattered in memuony) a piece of physically
contiguous memory block (in which, the elements are coriseju We only need to
know the base address of the memory block and the size of éa&msion of the data
tile. The value of the tile’s dimension size can be easilyaot#d from its tile descriptor.
The base address of the memory block that assigned to thentdata tile can be obtained
from the corresponding runtime function callsr am ral | oc). With this information,
it is easy for the compiler to generate the correct code. Mbsime, we just perform
a kind of simple 1-to-1 replacement. For example, the newetdwound of & or loop
is always set to zero and the new upper bound is calculatediityeting the old lower

bound from the old upper bound.

3.3.3 Runtime Support

As we have mentioned in the last section, the tile percofatimtime needs to
handle the on-chip memory allocation and the memory copyh®percolated data tiles.
We provide a set of routines (with clear interface) in thetirag library for the compiler.
The compiler, accordingly, would insert the required mm&ifunction calls in the program
during code generation.

The runtime routinessr am mal | oc and_sr am f r ee are responsible for al-
locating on-chip memory for the percolated data tiles. Tocalte the correct memory
storage for the tile, we need to know three values: (i) the bemof dimensions of the

tile; (ii) the size of each dimension; and (iii) the type otkalata element. The number
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of dimensions of the tile is the number of non-trivial dimemsspecifiers in its tile de-
scriptor. The dimension size is always set to the blockiag.sThis guarantees that the
allocated memory block is big enough to hold any instamratf the tile descriptor. The
type of the data element is obtained from the name of the ¢isediptor.

For each percolation region, the "all-or-none” policy i®pted in memory alloca-
tion. The program either continues execution a#teof its memory allocation requests
were satisfied, or, iany of its memory allocation request failed, it jumps to the orig
nal code to perform the computations on the off-chip da&stilBecause the compiler
guarantees that all memory allocations occur at the beginoi the percolation region
and all memory frees occur at the end of the percolation reglee memory allocation
failure would not cause dead lock among the concurrent Ofetiiveads. This greatly
simplifies design of the runtime support and also simplif@$ecgeneration in compiler.

For the memory copy task, we provide the set of runtime regtpresented in Fig-
ure 3.7. Currently, we support tile percolation for 1D-, 28ad 3D-array. They can cover
most of the practical cases. Each kind of multi-dimensi@medy has its own memory-
copy routines (see Figure 3.7(a)). The routines with théxsubn” are used to copy data
tiles from off-chip memory to on-chip memory, while the rmas with the suffix dff’
are used to copy data tiles from on-chip memory to off-chipnoly. The parameters that
are required in the address calculation in these memory-empines are supplied in the
argument list. We use the "long argument list” instead of ffeecked argument structure”
because we try to avoid inserting unnecessary dynamic myeaflocation function calls
in code generation. We feel that generating dynamic memiwgadion code is tricky
and error-prone.

According to our design, there are some assumptions on tlohiprand the off-
chip data tiles. For the on-chip data tile, it must reside@om@tiguous memory block. For
the off-chip data tile, it must be a sub-block of a multi-dms®nal array and the multi-

dimensional array must also reside in a contiguous memogkbBecause the percolated
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_copylDon(sz, _on, off,D1, x, bl)

_copylDoff(sz, _on,

_of f, D1, x, bl)

_copy2bon(sz, _on, off,D1, D2, x,Vy, bl, b2)

_copy2Dof f (sz, _on,

_off, D1, D2, x,y, bl, b2)

_copy3Don(sz, _on, off,D1, D2, D3, x,V, z, bl, b2, b3)

_copy3Doff(sz, _on,

_off, D1, D2, D3, x,VY, z, bl, b2, b3)

(a) The runtime routines for memory copy

_copy[ 1D 20| 3D)] on:

_copy[ 1D 20| 3D) of f:

sz:
_on:

_of f:

D1, D2, D3:
X,Y, Z:
b1, b2, b3:

Runtime routines that copy the off-chip data tile into the
on-chip memory;

Runtime routines that copy the on-chip data tile back to
the off-chip memory;

Size of the element of the data tile;

The address of the on-chip memory block used to hold
the percolated data tile;

The address of the home location of the percolated data
tile in the off-chip memory;

The size of each dimension of the percolated data tile,
from the lowest dimension to the highest dimension;
Position of the percolated data tile in the host array. It
is represented by the coordinate of its first element in
the host array, from the lowest dimension to the highest
dimension;

Blocking size of each dimension of the host array, from
the lowest dimension to the highest dimension;

(b) The explanation of the runtime routines

Figure 3.7: The runtime routines for on-chip and off-chip memory copy
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data tile is only a sub-block in its host array, its memoryolatyis not contiguous. Phys-
ically, it consists of many data strips (or rows) that areasafed by an equal distance.
Hence, the parameters provided in the argument list shauéble to be used to calculate
the start address and the size of each data strip in the tiith tthe above assumptions,
it is easy to interpret the argument list of the memory-camytines. For example, the
routine _copy2Don copies a 2D data tile from off-chip memory to on-chip memory.
The argument "of f ” gives the start address of its host array, (i.e. the adarkide first
element). D1” and "D2” tell the dimension size of the arrayx™ and "y” specify the
coordinates of the data tile in its host arrayp1™ and "b2” reveal the blocking size of
each dimension of the host arraya1” and "b2” are the default size (of each dimension)
of the percolated data tile. To handle the corner casesottige will calculate the effec-
tive size at runtime. The size of the data tile element is show'sz”. With the above
information, it is easy for the runtime routine to calcul#tte address and size of each
data strip and copy it around with the optimized library coddl these arguments are
provided in the tile percolation directives and can be gasitracted out by the compiler.
In essence, the arguments listed above characterize thi®@pand the size of a
data tile and its host array accurately. It doesn’t mattegtivdr this data tile and its host
array are real multi-dimensional array (in the languagessgor not. As long as all the ar-
ray access expression are affine functions of the loop isdibey can be declared (physi-
cally) as an 1D array but accessed by the programmers (lbgiaa a multi-dimensional

array. The compiler will take care of the convoluted indicakulation.

3.4 Experiments

We have evaluated tile percolation with four scientific ldsn(SAXPY, SASUM,
SGEMV, and SGEMM) [82] and two NAS benchmarks (EP and MG)e Piércolation
was implemented through source-to-source program tremstmn and was prototyped

in the Omni compiler [83]. The experiments were conductetherFAST simulator [70],
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Table 3.1: FAST Simulation Parameters (Courtesy to Juan del Cuvillo!)

Component # of units | Params./unit

Threads 160 single in-order issue, 500MHz

FPUs 80 floating point/MAC, divide/square roat
I-cache 16 32KB

SRAM (on-chip) 160 30KB

DRAM (off-chip) 4 256MB

Crossbar 1 96 ports, 4GB/s port
A-switch 1 6 ports, 4GB/s port

an execution-driven and binary-compatible C64 simulatdh&ccurate instruction tim-
ing. FAST accurately simulates the functional behavior atietr hardware components
such as thread units, on-chip and off-chip memory, and 3Bhmeetwork, which are
shown in Table 3.1 [84].

Table 3.2°% gives the detailed timing of each operation simulated inFAST
simulator [84]. exe is the execution time in the function unit addlay represents the
latency before the result of the instruction becomes aviail® the depending instruction.

The preliminary experiment results are shown in FigureBdre 3.9, and Figure
3.10. After applying tile percolation, the speedup of atttases get significant improve-
ment. The greatestimprovement happens on SGEMMis testcase hag(n?) floating-
point operations but only acce€§n?) data. However, without reusing the data that have
been brought into on-chip memory by the previous computatithe program has very
poor scalability. Because it would haé&n?) number of memory accesses going into
the off-chip memory. This would quickly exhaust the offjgltniandwidth. Without using

on-chip memory, its diminishing return is 2-thread. Aftg@plying the tile percolation

3 Courtesy to Juan del Cuvillo!
4 We use256 x 256 matrix, the data tile i96 x 16
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Table 3.2: Instruction Timing of FAST Simulator (Courtesy to Juan del @al)

Instruction type exe | delay
Bit gather 1 1
Branches 2 0
Count population 2 0
Integer multiplication 1 6
Integer division signed 1 69
Integer division unsigned 1 68
Integer remainder signed 1 70
Integer remainder unsigned 1 69
Move indirect register 3

Floating add, subtract and conv. 1

Floating multiplication 1

Floating multiply and add 1 11
Floating divide double 1 63
Floating divide single 1 34
Floating square root double 1 62
Floating square root single 1 33
Floating mult. and accumulate 1 6
Memory operation (local SRAM) 1 2
Memory operation (global SRAM) 1 31
Memory operation (off-chip DRAM 1 57
All other operations 1 0
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Figure 3.8: Experiment Results of SASUM and SAXPY: Comparison of Speedup
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optimization, the number of memory accesses has been @tucEn?(1 + 2n/b)). Its
speedup increased from less than 4 to around 12. For otheases, their floating-point
computations ar®(n?) (SGEMV) orO(n) (EP). So their speedup enhancement is not as
big as SGEMM.

An interesting finding is that, without applying tile perattbn, most testcases’
speedup diminishing return point is at 16-thread. They &83V, SAXPY, EP, and
MG. The speedup diminishing return point of SGEMV is 8-tltbeahile for SGEMM, it
is 2-thread. For SASUM, its memory accesses and floatingtppierations are the same.
This reveals that, without on-chip data reuse, the off-dd@pdwidth would be saturated

when there are more than running 16 threads.

3.5 Summary

Writing a parallel program for multicore processor is alngadrery difficult task.

It is even more difficult if the multicore processor has usetraged memory hierarchy,
like the IBM Cyclops-64 processor. On this kind of processbe programmers not
only need to take care of program parallelization, but atsedrto tackle data movement.
Although many efforts have been made to develop automatzcrdavement code gener-
ation [85, 80, 79], it only proves its efficiency on a limiteldss of problems.

In this chapter, we have proposed a semi-automatic apptoagata movement
code generation. This novel approach is termetil@percolation It provides the pro-
grammers with a set of OpenMP-like directives. The progransncan annotate the their
programs with these directives to tell the compudrereandhowdata movement should
be performed. Accordingly, the compiler will generate tpémized data movement code
and the correct computation code based on the informatioviged in the tile percola-
tion directives. That way, the programmers can save thems&lom writing tedious and
error-prone data movement code.

Tile percolation is a kind of OpenM#ile aware parallelizatiortechnique [32] de-

veloped for the IBM Cyclops-64 multicore processor. As fatesauthor is aware, this is
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the first research that try to develop pragma directivesdta dhovement code generation
in OpenMP. The tile percolation directives are orthogondhe canonical OpenMP par-
allelization directives. This chapter shows that the téecolation directives can be used
together with the traditional OpenMP parallelization direes. Meanwhile, they can also
be used independently in the parallel programs written Ritiread library. Experiments

conducted on the Cyclops-64 processor show that tile pegrgolaan enhance the uti-

lization of the Cyclops-64 on-chip memory, which turns ouiniprove the performance

and scalability of the programs. This implements an efficmerformance portingor

OpenMP programs developed for the traditional SMP system.
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Chapter 4

THREAD-LEVEL DECOUPLED ACCESSEXECUTION

Cyclops-64 is a many-core processor with user-managed nyememarchy. For
OpenMP programs running on this processor, a frequentlg asmputing paradigm is:
(i) copy data into on-chip memory; (ii) perform computasoan the chip; (iii) copy
results back to off-chip memory. Obviously, hiding memoppyg latency is very cru-
cial to the performance of this computing paradigm. Theiti@hl solution is to use
the asynchronous DMA transfer to overlap computation anchamg copy, like the IBM
CELL processor. However, DMA is not supported in the Cyclopg6ocessor. There-
fore, in this chapter, we propose a software solution, dallareadt evel Decoupled
AccesdExecution (TL-DAE for short). It is a data-driven executiomdel for OpenMP
programs running on the Cyclops-64 processor. The TL-DAE@@n model is inspired
by the canonical decoupled architecture. In our desigra daivements and computa-
tions are decoupled implicitly by OpenMP compiler. At rumd, two different groups of
threads are spawned: themputatiorthreads and thpercolationthreads. Computation
threads execute computation code while percolation tisreaeicute data movement code.
The execution of computation thread and percolation thoaadslip with respect to each
other, so percolation thread can run further ahead than etatipn thread and fetch data
for it. In this chapter, we will not only develop the runtimexhniques used to implement
the TL-DAE execution model, but also propose the requiredDAE programming inter-
face that is used by OpenMP compiler to generate the deabuptie. We have evaluated
the TL-DAE execution model by using two OpenMP task benchaExperimental re-

sults show significant performance enhancement.
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4.1 Introduction

The IBM Cyclops-64 (C64) [70, 11] is a many-core processor wirtmanaged
memory hierarchy. As shown in Figure 1.1, the C64 chip has b®ddgeneous process-
ing cores. The chip has 512KB instruction cache but no dathecalnstead, each core
contains a small amount of SRAM (5.2MB in total) that can befigumed into either
Scratchpad Memory (SPM), or Global Memory (GM), or both imtmnation. Off-chip
DRAM are attached onto the crossbar switch through 4 on-cliRpR controllers. All
memory modules are in the same address space and can besdatdiesstly by all pro-
cessing cores [13]. However, different segments of the mgmaddress space have dif-
ferent access latencies and bandwidths. Apparently, trelhgmmemory is faster and has
huge access bandwidth, while the off-chip memory is slowerfzas very limited access
bandwidth. See Figure 1.2 for the detailed parameters ad@#ememory hierarchy.

Given an segmented memory model like in the C64 process@istap compu-
tation paradigm[26, 86] is frequently used, i.g1) copy data from off-chip memory to
on-chip memory(2) perform computations on the data in on-chip mem¢8ycopy com-
putation results back to off-chip memory Because of the lengff-chip memory access
latency, it is desired to hide the memory copy latency by leyging computations and
data movements. On C64, the major bottleneck of the mulétimemory hierarchies is
between the on-chip and off-chip memory (like in all othesqassors), so our discussion
will only focus on the data movement across this interface.

Usually, the overlapping is achieved by using double bufte[26] and asyn-
chronous DMA transfer that supported in hardware, like weetseen in the IBM CELL
processor [87, 88]. However, the hardware design for DMAas/wcomplex and the
runtime overhead of DMA is disproportionally high [27]. 187], authors report that, on
a 3.2GHz CELL processor, for a single DMA (128 bytes, 128-byteradid), the DMA
setuptime is 297.7ns (= 900 cycles). But the real DMAransferonly takes6.09n.s

~ 18 cycles). Taking all latencies into account, it costs moentt)00 cycles to transfer
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a 128-byte data block from main memory to local storage irBeéL processor. Similar
numbers can also be observed on multi-DMA and DMA-list. Duthese reasons, DMA
is not supported in C64. Therefore, we must resort to somedisdftware solutions to
overlap computation and data movement operations.

In this chapter, we propose such a software solution, whecterimedT hread-

L evel DecoupledAccesdExecution (TL-DAE for short). It is inspired by the original
hardware based DAE [28, 29], in which memory access (opsriatch and results store)
and computation execution aaechitecturallydecoupled and thus can be maximally over-
lapped. Not like the hardware based DAE, TL-DAE is developged software execution
model for OpenMP programs running on the C64 processor. Irdesign, data move-
ment code and computation code are decoupled implicitly pgr@®MP compiler at com-
pile time. At runtime, two different groups of threads ar@wped: thecomputation
threads and theercolationthreads. Computation thread runs computation code while
percolation thread runs data movement code. The executioonaputation thread and
percolation thread can slip with respect to each other, smfaion thread can run further
ahead than computation thread and fetch data for it. To eehignamic load balancing
among the threads, the work-stealing policy [89] is usedctedule both computation
tasks and percolation tasks. Besides, a computation thrébdotvbe scheduled until
all the data it needs in computation are copied from off-chgmory to on-chip mem-
ory. Hence, TL-DAE is also considered as a data-driven di@tunodel for OpenMP
programs running on C64.

To help OpenMP compiler decouple the program, we proposé& tRBAE pro-
gramming interface for the the programmers. The TL-DAE paagming interface is a set
of OpenMPtile aware parallelizatior{30] pragma directives. Programmers can use these
directives to annotate their programs to specify where amddata movement would be
performed. OpenMP compiler, accordingly, will interpreése directives and generate

the correct decoupled data movement code.
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The major contributions of this chapter are as follows: (hg Hesign and im-
plementation of the Thread-Level Decoupled Access/ExacufTL-DAE) model for
OpenMP programs running on a many-core processor withmaeaged memory hi-
erarchy; (b) The design of the TL-DAE programming interféltat can be used to help
OpenMP compiler to generate decoupled code; (c) Detailpdréxents and performance
analysis of the OpenMP task benchmarks that use the TL-DA&Ewon model. The ex-
perimental results demonstrate the effectiveness of TIE@Aecution model.

The remainder of this chapter is organized as follows. IntiGect.1, we will
use a motivating example to demonstrate why thread-leveuf@ed access/execution is
necessary. In Section 4.3, we present the design and imptation of the TL-DAE ex-
ecution model, including TL-DAE API, TL-DAE code generatjand TL-DAE runtime
support. We report our experimental results in Section ddtdraw our conclusion in

Section 4.5.

4.2 Motivation

In this section, we will use a motivating example to dematstwhy thread-level
decoupled access/execution is necessary and also pdssi@leenMP programs running
on the C64 processor. We will also derive the framework of thdJRE execution model
in this section.

The code in Figure 4.1 is the major part of thgarseLU(Sparse LU Decompo-
sition) benchmark from the Barcelona OpenMP Task Suite (BQ9Q) In order not to
waste memory storage on sub-matrices with all zero elenmthetsparseL Uprogram uses
a 2-level hierarchical data structure to store the spargexni which theall-zero sub-
matrix is shrank to ai | pointer. Figure 4.1(b) shows the details of this data stmect

ThesparseLUprogram performs computations only nan-zerasub-matrices.

1'In the sparseLU benchmark, all diagonal sub-matrices dtialined to non-zero
matrix
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#defi ne NB 100
#define B 100

void fwd(float *diag, float *col) { ...; }
void bdiv(float »diag, float row) { ...; }

int main(int argc, char* argv[]) //uses A

{
f1oat *Al NB|[NB] :

#pragma onp parallel single

for (kk=0; kk<NB; kk++) {
I uO( Al kK] [kk]);
{
for (jj=kk+1l; jj<NB; jj++)
if (ALkK][jj] '= NULL)
#pragma onp task firstprivate(kk, jj) shared(A)

fwd(ALkk] [kk], ALKK][jj]);

for (ii=kk+1; ii<NB; ii++)
if (Alii][kk] !'= NULL)
#pragma onp task firstprivate(kk, ii) shared(A)
bdiv (A kk][kk], Alii][kk]);
}

#pragma onp taskwait

}

Figure4.1: The OpenMP Version of theparseLUSource Code
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5 void bdiv(float *diag, float *row)

6 {

7 int i, j, k;

8

9 for (i=0; i<B; i++)

10 for (k=0; k<B; k++) {

11 rowi *B+k] = rowi*B+k] / diag[ k*B+k];
12 for (j=k+1; j<B; j++)

13 rowi*B+j] = rowi*B+] - rowix*B+k]=*diag[ kxB+j];
14 }

15 }

Figure4.2: bdi v: the OpenMRaskfunction used irsparseLU

30 void fwd(float =diag, float =*col)

31 {

32 int i, j, k;

33

34 for (j=0; j<B; j++)

35 for (k=0; k<B; k++)

36 for (i=k+1; i<B; i++)

37 col[i*B+j] = col[i*B+j] - diag[i=*B+k]*col [k+*B+j];
38 }

Figure4.3: f wd: the OpenMRaskfunction used irsparseLU

The code is parallelized by using the OpenMP task direct\g. [ According to
the specification of OpenMP 3.0 [5], each time the progransetken reaches line 53 (and
also line 58), an OpenMP task is constructed and is put iretslegool. OpenMP threads
in the current team fetch tasks from task pool and executéutietions specified in the
task. In this example, functiohwd() will be executed, with sub-matrid] kk] [ kK]
andA[ kk] [jj ] asreal arguments. The same scenario repeats at line 58.

To port this piece of OpenMP code to C64, we need to considdrdterogeneity
of the C64 memory model and try to leverage the fast on-chip ongras much as we
can. This is concerned with moving the associated sub-cestinto and out of on-chip

memory. A naive approach is to insert data movement code atiginn functionf wd( ) ,

54



B*B

\ B*B

B*B

B*B

NB=100
B=100

B*B

Figure4.4: The 2-level hierarchical data structure usegparseLUcode

oid fwd(float »diag, float =*col)

1
2
3 Copy the matrix pointed to by *diag into on-chip nenory;

3 Copy the matrix pointed to by *col into on-chip nenory;

4 Per f orm conput ati ons on the on-chip copies of the matrices
5 poi nted by *diag and *col

6 Copy conputation results back to off-chip menory;

7

}

Figure4.5: An Intuitive Approach: Synchronous Data Movement
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just right before and after the computation code. See pseade in Figure 4.5. The
problem of this approach is obvious. Data movement code ratedded in the main
trunk of the thread. The real computations can not startwgi@cuntil all data it needs
are copied into on-chip memory. There is no overlapping betwdata movement and
computation.

The inadequacy of this approach motivates us to explore anmetivod, i.e. com-
pletely decouple computations and data movements of tigraamoand use independent
threads to execute them. This is possible for the C64 procéss@muse there are 160
thread units on the chip. One can always find extra or idleathtenits that can be used
for data movement. By using this method, we will reduce the orgntatency hiding
problem to a thread scheduling problem, which can be hareffedently by OpenMP

runtime library.

4.3 Thread-Level Decoupled Access/Execution
In this section, we first give an overview on the TL-DAE mod€hen we intro-
duce the techniques we proposed to implement the TL-DAEwi@tmodel, including

the programming interface, code generation, and the TL-DAEmMe design.

431 Overview

The first step of this approach is to "separate” computatmiecand data move-
ment code in the program. Actually, therens data movement code in the original
program (that's why we surround "separate” in quotationkspr We need to add data
movement code into the program either manually or autorliitii.e. let OpenMP com-
piler generate it). Although it is not difficult for progranams to write data movement
code and they also have more flexibility to choose how to marmegchip memory, we
found that such kind of flexibility brings huge amount of ditflties to the compiler to in-
terface the data movement code with OpenMP runtime libfawythis reason, we prefer

to shipping this task from programmer to compiler.
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To help OpenMP compiler generate data movement code, wegedpe TL-DAE
programming interface. The TL-DAE API is actually a kindTile Aware Parallelization
(TAP) [92] technique proposed for OpenMP programs runnimgnailti/many-core pro-
cessors with user-managed memory hierarchy. The TL-DABrarmaming interfaces are
OpenMP pragma directives that can be used by programmertiae their program,
to tell OpenMP compiler where and how data movement wouldds®pmed. Compiler
will interpret these information and generate correct dad@ement code. We will present
more details about TL-DAE API in the next section.

In the second step, the execution of the decoupled progrdirbeviser-managed
by the TL-DAE runtime system. The design of TL-DAE runtimdldws the idea of
OpenMP task runtime. Instead of using one task pool, we usditvds of task pool: the
percolationtask pool and theomputatiortask pool. The master thread first spawn a team
of slave threads (i.e. the computation threads) and a gribperoolationthreads. Then, it
"executes” the program, constructs percolation tasks ahthgm in the percolation task
pool. The structure of the percolation task contains enonfgiimation for the percola-
tion thread to construct computation tasks. The executigreccolation threads follow
OpenMP task model. After a percolation thread finishing @s&,tit would construct a
computation task from the percolation task structure andtmoto the computation task
pool. The computation threads consume the tasks in the datioutask pool. After
a computation thread finishing its job, it will construct agmation task which tells the
the percolation thread how to store the computation rebaltk to off-chip memory. This
task will be put in the percolation task pool by the curremhpatation thread. We present

the design of TL-DAE runtime in details in the next section.

4.3.2 TL-DAE Programming Interface
The purpose of TL-DAE programming interface is to grant pamgmers a certain
extent of power to direct OpenMP compiler to generate deleaugiata movement code.

In tradition, this part of work is assumed completely by cderd93, 85], by using the
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canonical static analysis techniques, sucltoap nest optimizatiof©4, 95]. For array-
intensive applications, the data access patterns can ibeietesred from loop constructs.
However, we found that this approach relies too much on tipatwitities of compiler.
Sometimes a program’s data access pattern is very difficahalyze by compiler. For
instance, for the program in Figure 4.1(a), before the Odemdmpiler can decide the
shape and size of the data block pointed td bpat *di ag (the first formal argument
of functionf wd()) ), it must be able to analyze the code in both functe n() and
functionf wd() at the same timé This indicates that we need to incorporate some kind
of IPA (Inter-Procedure Analysis) techniques [96] in therent OpenMP compiler. As
far as we know, such kind of IPA technique does not exist yesid&ss, developing such
kind of IPA technique in OpenMP compiler will greatly comgaie the compiler design
while would achieve only limited effect on a very few numbébenchmarks, just like
the currentuto-parallelizationtechniques.

In order to solve this problem, programmer’s interferenmmdd help a great lot,
i.e. programmer provides a certain amount of hints by arnimgtéhe code while compiler
use these hints to perform the required code transformatibis idea is the same as the
design philosophy of the OpenMP programming model. Basethisridea, we propose
the TL-DAE API as OpenMP pragma directive. See Figure 4.6.

We introduce a new directiveper col at e. It must be used together with the
OpenMPt ask directive. Semantically, theer col at e directive declares a percolation
region. Operand data blocks are copied into on-chip membtiieabeginning of the
percolation region (including allocation of on-chip memogsources). Result data blocks
are copied back to off-chip memory at the end of the peramtatgion (including release
of on-chip memory resources). In between, the correspgndisk function is executed.

All three parts are executed by independent threads in thRBAE model.

2 This is further complicated by the facts ttfatd() may be called by more than one
function.
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#pragma onp percolate [altfunc(FUNC NAME)] ARG DESC, ARG DESC|

on

DN

ARG _DESC TI LE_DESC| SCALAR_DESC
TI LE_DESC <rd|wt|rw, ADDR, TY, DIM std|enb, \
[SZ1[[SZ]]1|[SZ, HSZ] [ [ SZ, HSZ] ] >
SCALAR DESC :: <SCALAR NAME=VALUE>
(a) TL-DAE percolation API
per col at e: Directive name. It specifies a percolation region.
al tfunc: Clause name. The "altfunc” clause declares an alternative funct
that will be used to perform the computation after the associated
data tiles were copied into on-chip memory.
ARG_DESC. Argument descriptor.
TI LE_DESC: Tile argument descriptor.
rdfwt|rw Percolation attributest d indicates that the data tile will be only
read into on-chip memory in the current percolation region;
indicates that the data tile will be only write out of on-chip memor
in the current percolation regionyindicates that the data tile will
be both read into and write out of on-chip memory.
ADDR: Starting address of the tile.
TY: Tile element type. It specifies the type of the tile element.
DI M Tile dimension. It specifies the dimension of the tile.
std: Tile attribute. It specifies that the current tile istandalondile.
enb: Tile attribute. It specifies that the current tile isembeddedile.
SZ: Size of the corresponding dimension of the tile.
HSZ: Size of the corresponding dimension of the host multi-dimensig
array of the embedded tile.
SCALAR DESC. Scalar argument descriptor.
SCALAR NAME: Name of a particular scalar formal argument.
VALUE: Adjusted initial value that assigned to the corresponding scalar

gument.

(b) Explanation of the TL-DAE tile percolation API

Figure4.6: The OpenMP API for TL-DAE tile percolation (C/C++)
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Theper col at e directive provides programmers a mechanism to specify lwhic
data blocks will be copied into on-chip memory, which datackk will be copied back
to off-chip memory, and what they look like (shape, size, podition). Besides, if the
original task function(function guarded by theask andper col at e directives) can
no longer be used to perform correct computations becaude ahanges made on data
layout, programmers can provide an alternate task funttiawugh theal t f unc clause.
Once theal t f unc is used, the original function guarded by thask directive is ig-
nored. Thaeal task function becomes the one specified inahé f unc clause.

Whether or not the real task function is changed, the assaldaagument descrip-
torsare listed on th@er col at e directive. Eachactualargument used by the real task
function has a corresponding argument descriptor placethatrlist, in the same order
as it in the function’s formal argument list. Although somérmation about the real ar-
guments can also be found in the task function’s declaratiarall site, this redundancy
would greatly simplifies code generation in the next step.

We define two types of argument descriptdiie descriptorandscalar descriptor
Tile descriptor is used to depict actual arguments that argi-simensional data tiles.
Scalar descriptor is used to depict actual arguments oftadirdypes.

Tile descriptor specifies the starting addresB)R), the element typeT(Y), and
the dimension@ M of a particular data tile. Moreover, it also specifies wieetthe
current data tile will be read into on-chip memamly (r d); or will be written out from
on-chip memoryonly (wt ); or will do both ¢w). 3. In our current design, data tiles
are categorized into two typestandalonedata tile (indicated by the keywost d) and
embeddediata tile (indicated by the keywordrh). A standalone data tile’s existence, as
its name implies, is independent on any other data objecha8gcally, standalone data

tile is self contained. Physically, standalone data tilaliscated in contiguous memory

3 We consider copy into on-chip memory @sad and copy out of on-chip memory as
write.
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unsi gned Roww dt hB);

QUOUWoO~NOOUPA,WNEO

=

void Ml tiplyByD vi deAndConquer (REAL *C,
REAL *A, REAL *B, unsigned MatrixSize,
unsi gned RowwW dt hC, unsi gned Roww dt hA,
unsi gned RowwW dt hB, int Additivehbde);

voi d Fast AdditiveNai veMatrixMiltiply (REAL *C,
REAL *A, REAL *B, unsigned MatrixSize,
unsi gned RowwW dt hC, unsi gned Roww dt hA,

(a) Functions performing divide-and-conquer matrix-matrix multiplication

off-chip memory on-chip memor

< RowWidthA————* e

h Y

ool [

Matrix$ize

Alll

MatrixSize

(b) Diagram of embedded matrix A

Figure4.7: An example olembeddediata tile used in strassen benchmark

space. Examples of standalone data tile are the sub-nsafpomted to byA] kk] [jj 1)

used in the sparseLU program. See Figure B3Z] [ [ SZ] ] specifies the size of each

dimension of the data tile.SZ can be a constant and can also be a variable. An 1-

dimension data tile with dimension size equaling 1 is atyumkcalar. Programmers can

use this property to represent a bigs€r uct in tile descriptor so that it can also be

copyin/copyout as a multi-dimensional data tile.

The embedded data tile, as its name implies, is itself paainother bigger data

object. In our design, this bigger data object must also belé-aimensional data array
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of the same type. Logically, the embedded data tile is tckasea computation data unit,
like in most divide-and-conquer algorithms [97]. Phydigahowever, it is distributed
inside the body of a bigger multi-dimensional data array.edabedded data tile is usually
not in contiguous memory space. An example of the embeddedtiia is shown in
Figure 4.7. The code in Figure 4.7(a) is from tsteassenprogram of the Barcelona
OpenMP task benchmark suite. Both of the two functions are imste recursive divide-
and-conquer algorithms [97]. They are called at the pasittbere recursion termination
condition is satisfied. In order to access the elements irstii,ematrix, we not only
need to know the position, shape, and size of the sub-mauixalso need to know the
shape and size of the host multi-dimensional data arrayutrdesign, we deem that the
dimension of the embedded data tile is the same as the hostdiménsional data array.
So, inthetuplg¢ Sz, HSZ] [ [ SZ, HSZ] | , SZ is the dimension size of the embedded data
tile andHSZ is the size of the corresponding dimension of the host naltiensional data
array. These information are used by compiler to generateciodata movement code.
As Figure 4.7(b) shows, moving an embedded data tile frorariggnal location
in off-chip memory to on-chip memory will change its dataday. Usually, the em-
bedded data tile will be copied row by row from non-contigsidocations in off-chip
memory into contiguous locations in on-chip memory. Altgbunformation in the tu-
ple[ Sz, HSZ] [ [ SZ, HSZ] ] is enough for compiler to generate correct data movement
code?. It is far from enough for compiler to adjust every data-glement reference

statement in the original task function. Sometimes, thi®asdifficult to be carried in

4 Actually, compiler does not generate the read data movecogiet It uses the param-
eters in the tupl¢ Sz, HSZ] [ [ SZ, HSZ] ] to generate stub code to call the correct
runtime library function. It is the runtime function thateothe real job.
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compiler®. That is why we provide thal t f unc clause. Programmer can write an-
chip versionof the task function and supersede the original one by spedift in the
al t f unc clause.

Sometimes, programmers do not need to provide an alterasitefunction. Be-
cause the data-tile-element references in the origin&l fimsction have already been
parametrized. Programmers only need to set those pararegectly when calling
the original task function. See examples in Figure 4.7(d&e argument®owW dt hC,
Roww dt hA, andRowwW dt hB are used by the function to calculate correct offset of
each data tile row. Fordatatid ] [],B[][],andC[ ][] that are copied into contigu-
ous memory space, we can still call the original function ues# the adjusted real argu-
ments. For example, in both functions, because the on-cigptdeA[ ] [ ] is embedded
in itself, RowW dt hA equals tovat ri xSi ze of A[ ][] . So, we can fix the value of
the real argumerRowW dt hAtoMat ri xSi ze. This also applies oRowW dt hB and
RowWw dt hC. Programmers can specify the fixup value in the scalar gasciof the cor-
responding scalar argument. Currently, we only supporithsliilt-in data types. See an
use case in Figure 4.9, which is an example of embedded tatatgure 4.8 gives an

example of standalone data tile.

4.3.3 TL-DAE Code Generation

The design of TL-DAE code generation follows one rule: letDAE runtime do
most of the dirty jobs and leave as less work for code germerats possible. Follow-
ing this rule, most of the real works, like task creationktasheduling, data movement,
and task execution are performed by TL-DAE runtime routinBEserefore, the purpose

of TL-DAE code generation is to connect the OpenMP prograthéol L-DAE runtime

5 Two difficulties. OpenMP compiler need to perform some kiridnter-procedure
analysis before it can change any code in the task functieagi®l, OpenMP com-
piler needs to deal with the code versioning problem. Bothassare far above an
OpenMP compiler’s capability.
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13

14 for (jj=kk+1; jj<NB; jj++)

15 if (A[kk][jj] !'= NULL)

16 #pragma onp task firstprivate(kk, jj) shared(A)

17 #pragma onp percolate <rw, Alkk][jj],double,?2,std,[B][B]>,)\
18 <rd, Al kk] [ kk] , doubl e, 2, std, [ B] [ B] >
19 fwd(ALKK] [kk], ALKK]I[jj]);

20

21

Figure4.8: TL-DAE API Example 1: applied on standalone data tile

0

1 #pragma onp task firstprivate(MatrixSize) shared(C, A B)

2 #pragna onp percol ate

3 <rw, C double, 2, enb, [ Matri xSi ze, RowN dt hC] [ Mat ri xSi ze, RowwW dt hC] >, \
4 <rd, A doubl e, 2, enb, [ Matri xSi ze, RowN dt hA] [ Mat ri xSi ze, RowW dt hA] >, \
5 <rd, b,doubl e, 2, enb, [ Matri xSi ze, RowW dt hB] [ Mat ri xSi ze, RowW dt hB] >, \
6 <MatrixSize> <RowW dt hC=Matri xSi ze>, <RowW dt hA=Matri xSi ze>, \
7 <RowW dt hB=Mat ri xSi ze>

8 Fast Addi tiveNai veMatrixMiltiply(REAL *C, REAL *A, REAL =B,

9 unsi gned Matri xSi ze, unsi gned Roww dt hC,

10 unsi gned RowwW dt hA, unsi gned RowwW dt hB);

11

Figure4.9: TL-DAE API Example 2: applied on embedded data tile

routines. The compiler will insert stub code in the progranptepare the required ar-
guments and call the correct runtime library functions with right arguments. Such
a design philosophy not only simplifies code generation mgiger but also makes the
TL-DAE framework more flexible.

In TL-DAE code generation and also runtime, the most fretjy@ised data struc-
ture ist | dae_t ask{}. This data structure, as its name implies, represents autatk
that will be scheduled and executed in the TL-DAE executiadeh. It contains complete
information that tells TL-DAE runtime how the current tasklWwe performed. It is also

the major interface between the original OpenMP programldnBAE runtime. So, one
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tidae_task{}
( 0

next -

prev

nase _tldae_read (struct tidae_task *)

tasklet_array”| /"_tldae_task_func" (struct tidae_task *)

0
1 - _tldae_write (struct tidae_task *)
/
2 - ,
arg_array 7| istile
0 arg_desc |.-~ size
1| arg_desc| .-~ val_ptr
2| arg_desc new_addr
AN old_addr
N t_attr
n-1 arg_desc \ =
N t class
N o -
N dim
N dsz
AN hdsz

Figure 4.10: Diagram of thet | dae_t ask{} structure
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61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83

struct tldae_task

{

struct tldae_task *prev;
struct tldae_task *next;

[+ index point to tasklet _array[], to indicate the current
* task function that will be executed

*/

i nt phase;

[+ this array stores function pointers that point to task

* functions currently, only three functions are supported

*/

void (+taskl et_array[ DEFAULT _MAX TSK]) (struct tldae_task =*tsk);

[+ this array stores the argunment descriptors for

* each argunment specified on the argunent |ist of the
* task function.

*/

struct arg_desc arg_array[ DEFAULT _MAX ARG ;

of the major work of TL-DAE code generation is to generats thata object and insert

correct runtime function invocations on it. Diagram in Higu4.10 presents the internal

Figure4.11: Definition oft | dae_t ask{}

design of the | dae_t ask{} data structure. As shown in the diagrarhdae_t ask{}

consists of three partsask phasé. phase), tasklet array(. t askl et _array[] ), and

argument descriptor array. ar g_arr ay[ ] ). Figure 4.11 gives the source code of the

definition oft | dae_t ask{}.

e Line 70: . phase denotes the current phase of the task. It is an index into the

e Line75: . taskl et _array[] stores the pointers to the functions that would be

tasklet array at line 75.

executed during each phase of the current task. All funstrecorded by tasklet

array take a pointer tbl dae_t ask{} as the only argument and this pointer must
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point to the current task. t askl et _array[] and index. phase together de-
cide which function would be called if the current task isestiled for running.
In the current design, only three tasklets are allokedt askl et _ar r ay[ 0]
and. t askl et _array[ 2] point to two fixed functions:t | dae_r ead() and
tldaewite(). while.taskl et _array[1] points to a function gener-
ated by compiler, which is not the same in different casesFigure 4.10 we
use a temporary common namel dae_t ask f unc to refer to all of them.
t1 dae_task_func is simply a wrapper of the original computation function
(In Figure 4.8, it is functiorf wd() .). Figure 4.13 and Figure 4.14 will give an

example oft | dae_t ask_func().

e Line81: .arg.array[] contains the detailed information of every argument
that will be used in the execution of thel dae_t ask_f unc() tasklet. Each ar-
gument in the argument list of the original computation tisrt has a slot (i.e.
struct arg.desc{}) in this array, no matter the argument is a scalar or a
data tile pointer. Thet | dae_read() and_t| dae w it e() tasklets will scan
.arg.array[] andcopyincopyoutthe corresponding data tiles from/to off-chip
memory. _t | dae_t ask_func() uses these arguments to call the original task

function to perform the computations.

Figure 4.12 shows the source code of the definitioara_desc, i.e. argument
descriptor. This piece of code is part of the TL-DAE runtif@@mpiler need to create an
argument descriptor for each argument in the argumentfligteooriginal task function.

Figure 4.13 gives such an example of argument descriptatiore

e Line25: .istil eisaflag to tell whether this is a scalar argument descriptor o

a tile argument descriptor.

5 It can be extended to have more tasklets and can deal with coanplicated execu-
tion patterns.
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18

19 #define DEFAULT _MAX_TSK 6
20 #define DEFAULT MAX DIM 6
21 #define DEFAULT_MAX_ARG 10

22

23 struct arg_desc

24 {

25 bool istile; [+ scalar or tile «/

26

27 int size; [+ decided by the type of tile elenent */
28

29 voi dx val ptr; [+ point to arg value */

30

31 voi d* new_addr; /+* the new start address of the tile after
32 * it has been copied into on-chip nenory.
33 */

34

35 voi dx ol d_addr; [+ the original start address of the tile
36 * in off-chip nenory

37 */

38

39 enumtile attr {

40 rd = 0; [+ read-only =/

41 w = 1; [+ wite-only */

42 rw = 2; I+ read-wite =/

43 } ot _attr;

44

45 enumtile_class {

46 std = 0; [+ standal one tile =/

47 emb = 1; /= enbedded tile */

48 } t_class;

49

50 int dim [+ tile dimension */

51

52 int dsz[ MAX DIM; [+ size of each dinmension of the tile */
53 int hdsz[ MAX DIM; [/ size of each dinension of the

54 * mul ti-dinensional array that hosts

55 * this tile

56 */

57 };

58

Figure 4.12: Definition ofar g_desc{}
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e Line 27: For a scalar argument,si ze records the size of the argument; for a
data tile argument, si ze records the size of the data tile element. This informa-
tion comes from tha@ field in the tile descriptor{l LE_DESC) of the guarding

pragma.

e Line29: . val ptr points to the memory location where the argument value is
stored. For a tile argument, it points.tmew_addr (line 31) in which the new on-
chip memory address of the data tile would be stored. Forlarsasggument, it still
points to. new_addr , to where the value of the scalar argument will be copied. In
this case, the rest fields af g_desc are useless. They are only useful when the

argument is a data tile.

e Line 31: If the argument is a tile, new_addr stores the new address of the data
tile after it has been copied into the on-chip memory. Otle#w new.addr
stores the value of the scalar argument. If the size of thiarsaegument is bigger
than the size of new_addr , it will occupy the bytes following it, because the rest

fields in thear g_desc{} structure is useless, so is undefiried

e Line 35. For a data tile argument,ol d_addr stores its original address in off-

chip memory. For a scalar argument, the value of this fielshdefined.

e Line 39: For a data tile argumentt _at t r specifies the attributes of the tile, i.e.
whether it isread-only write-only, or read-write For a scalar argument, the value

of this field is undefined.

" Currently, we use the same type of data structure for both tilatargument and
scalar argument. This may waste some memory if the argumergmall scalar. But
it simplifies code generation. In the future, this can be mupd by having two types
of data structures for data tile and scalar argument.
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e Line45: For a data tile argumentt _cl ass specifies whether it is standalone
data tile or arembeddedlata tile. For a scalar argument, the value of this field is

undefined.

e Line50: For a data tile argumentdi mrecords the dimensionality of the data tile.

For a scalar argument, the value of this field is undefined.

e Line52: For adatatile argumentdsz|[ ] stores the size of each dimension of the

tile. It is undefined if the argument is a scalar.

e Line53: For anembeddedata tile,. hdsz[ ] stores the size of each dimension of
the host multi-dimensional array. For other kind of argutagthe content of this

array is undefined.

After finishing the introduction of the above two importanata structures
t | dae_t ask{} andar g_.desc{}, we now present an example of code generation us-
ing the real OpenMP program. The original OpenMP source t®d&kown in Figure
4.1. We will use the TL-DAE programming API to perform tile ave parallelization
on the task functiomwd() at line 54. The usage of the TL-DAE API is shown in Fig-
ure 4.8. The generated code is shown in Figure 4.13. The cogenierated from the
ROSE source-to-source compiler with our modification tgoeupTL-DAE code genera-
tion. The generated code without TL-DAE support from the adified ROSE compiler
is shown in Figure C.2. We illustrate the generated TL-DAErsewcode in the rest of

this section.

e Line274: QUT_4_1527() is a function outlined by the ROSE compiler to deal
with thepar al | el directive shown at line 46 in Figure 4.1. ROSE compiler will
also outline all the private variables that would be used &gheOpenMP thread
and put them in a separate data structureyice.d * __out _ar gv[ ], whichis an

array that stores pointers pointing to each private vagialbhis greatly simplifies
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274 void QUT__4 1527 (void **__out_argv)
275 {

276 int *ii (int *)(__out_argv[3]);
277 int *jj (int *)(__out_argv[2]);
278 int xkk (int *=)(__out_argv[1]);
279 float =(+*A)[100UL][100UL] =\

280 (float =(*)[100UL][2100UL])(__out _argv[O0]);

281 for ( *kk = 0; =*kk < 100; ( *kk)++) {

282 Luo(((C *A) [ *kk])[ *kk]));

283 /[ #pragma onp taskgroup

284 {

285 for ( *jj = ( *kk + 1); *jj < 100; ( *jj)++)

326 i{f (CCC *A[ *kk])[ *jjl) '= ((float *)(((void *)0))))
7

288 struct tldae_task »tsk = TLDAE get _task();

289 ((tsk)->phase) = 0;

290 (((tsk)->tasklet_array)[0]) = (_tldae_read);

291 (((tsk)->tasklet _array)[1]) = (OUT__3 1527 );

292 (((tsk)->tasklet _array)[2]) = (_tldae_ wite);

293 ((((tsk)->arg_array)[0]).istile) = 1;

294 ((((tsk)->arg_array)[0]).size) = (sizeof(float));

295 ((((tsk)->arg_array)[0]).val _ptr) =\

296 (void *) (& (((tsk)->arg_array)[0]).new addr));

297 ((((tsk)->arg_array)[0]).old addr) =\

298 (void *)((( *A)[ *kk])[ *kk]);

299 ((((tsk)->arg_array)[0]).t_attr) = O;

300 ((((tsk)->arg_array)[0]).t_class) = 0;

301 ((((tsk)-=arg_array)[0]).dim = 2;

302 (((((tsk)->arg_array)[0]).dsz)[0]) = 100;

303 (((((tsk)->arg array)[0]).dsz)[1]) = 100;

304 ((((tsk)->arg_array)[1]). |st|Ie) = 1,

305 ((((tsk)->arg_array)[1]).size) = (S|zeof(float))

306 ((((tsk)-=arg_array)[1]).val _ptr) =\

307 (void *) (& (((tsk)->arg array)[1]).new addr));

308 ((((tsk)->arg_array)[1]).old addr) =\

309 (void =) ((( *A)[ *kk])[ *jjl);

310 ((((tsk)->arg_array)[1]).t_attr) = 2

311 ((((tsk)->arg_array)[1]).t_class) = 0;

312 ((((tsk)-=arg_array)[1]).dim = 2;

313 (((((tsk)->arg_array)[1]).dsz)[0]) = 100;

314 (((((tsk)->arg_array)[1]).dsz)[1]) = 100;

315 TLDAE_schedul e_t ask(t sk);

316 }

317

318 }

Figure 4.13. Code Generation Example 6fmd() in sparseLU: the outlined function
that creates TL-DAE tasks
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the generation of outlined function interface becausewdlireed functions generate

by ROSE only take one argument of the same type.

Line 284: the code from line 284 to line 318 corresponds to the code froeb0
to 78 in Figure 4.1. This piece of code is generated by ROSEpdento imple-
ment the semantics of the OpenNIBsk directive and the TL-DABper col at e

directive in Figure 4.8.

Line 288: For each OpenMP task, we generateladae t ask{} structure for
it. A tldae_task{} pool with a small number of freel dae_t ask{} struc-
ture is maintained by the TL-DAE runtime in the on-chip SRAMETfunction
TLDAE_get _t ask() allocate a free TL-DAE task unit from thid dae_t ask{}

pool.

Line 289-292: first the task phase is initialized to zero. Then the taskletya

is initialized. The first tasklet ist | dae_r ead, which copies critical data tiles
into on-chip memory. The second taskleOdT__3_1527__, an outlined wrapper
function that executes real task computation functionufégt.14 shows the source
code of this function. The third tasklet is set ol dae wr it e. It writes the
computation results back to off-chip memory. The task i$qrered starting from
the first tasklet to the last tasklet in the array. The traalestthis array is controlled
by the variable phase. . phase is increased by one after the current tasklet is

finished.

Line293-314: the code between 293 and 314 is used to setup the argumenpedesc
tors of the current task functionfand( ) . This task function has two arguments.
Both of them are 2-D standalone data tiles. The values of hightl size of the as-
signments are coming from the information in the TL-DAE&r col at e directive.

See Figure 4.8, line 17 & 18.
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263

264 void OUT__3 1527 (struct tldae_task =*tsk)

265 {

266 fwd((float *)(x(void »*)((((tsk)->arg_array)[0]).val _ptr)),\
267 (float *)(*(void **)((((tsk)->arg_array)[1]).val _ptr)));
268

269 ((tsk)->phase) ++;

270 TLDAE schedul e_t ask(t sk);

271 return;

272 }

273

Figure 4.14: Code Generation Example dimd() in sparseLU: the outlined TL-DAE
task function
e Line 315: After the creation of a new TL-DAE task unit, the TL-DAE rumi
function TLDAE schedul e_t ask() is called to insert the newly created task
unit into one of the task queue owned by a certain percoldtiioead. See Figure
4.15 for details.

e Line 317: The rest of the generated code is performing the same opesabin
another task functiohdi v()) . Since the these two pieces of code are very similar,

we omitted it here to avoid wasteful duplication of effort.

Figure 4.14 shows the source code of the outlined wrapperctim
ouUT_3_1527_..

e Line 266: the real task functiohwd( ) is called to perform the task works. The
purpose of outlining a wrapper function is t¢a) simplify the generation of the
versatile argument list of the task function. For here, tigeianent list string is very

simple.(b) have a place to place to put post-execution code.

e Line 269: increment. phase by one to advance to the next tasklet. Next time if
the current task is scheduled for running, it will run the tiasklet in the tasklet

array.
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e Line 270: reschedule the same task unit. See Figure 4.15 for details.

As shown in Figure 4.15, the job of functidiL DAE_schedul e_t ask() is to
insert the task unit into the corresponding task queue dowpto its phase (line 88, 95, &
102). If the task is finished, the runtime will reclaim thealatructure | dae_t ask{},
so it can reused by the next new task.

Figure B.1 in Appendix gives a set of important TL-DAE runtifo@ctions

4.3.4 TL-DAE Runtime Support

The TL-DAE runtime library provides two set of functions. ©sget of functions
deal with data tile movement between on-chip memory analof--memory. The other
set of functions handle task creation, scheduling, andutie@t These functions cooper-
ate with each other at runtime to implement decoupled at®e=sution for the program.

In the previous subsection, we already introduced two fanst _t | dae_r ead
and_t| daewite. They are actually driver functions that control how dataveio
ments are performed. These two functions traverse the aguarray in the current
t | dae_t ask. For each data tile they encounter, different data moverugrtions are
called based on the tile’s dimension, tygé ( orenb), and attributesr(d/wt /r w). Argu-
ments used by the particular data movement function arenastérom the corresponding
fields of the argument descriptor. With accurate and coraptgormation §hape size
position) of a data tile, it is easy to write the required data movenfiigmttions. Due to
the page limits, we omit the implementation details of trastp

There are two kinds of threads in TL-DAE runtime, ipercolationthread and
computatiorthread. Percolation threads perform data movement tadk whimputation
threads deal with computations. The two groups are in sepagane spaces. They are all

spawned by OpenMP master thréad he number of each kind threads can be specified

8 To simplify code generation, the current implementatiomavap all percolation
threads and computation threads at the very beginning opitbgram execution,
I.e. at the beginning of themi n function.
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80

81 void

82 TLDAE schedul e_task(struct tldae_task =*tsk)

83 {

84 #defi ne TLDAE_READ PHASE 0

85 #defi ne TLDAE_COWVPUTE_PHASE 1

86 #define TLDAE WRI TE_PHASE 2

87

88 i f (tsk->phase == TLDAE READ PHASE) ({

89 /* insert the task into the task queue that bel ongs
90 * to one of the percolation threads. The task will
91 * be inserted at the TAIL of the queue.

92 */

93 TLDAE t ask_enqueue_read(t sk);

94

95 else if (tsk->phase == TLDAE COWPUTE PHASE) {

96 /* insert the task into the task queue that bel ongs
97 * to one of the conputation threads. The task will
98 * be inserted at the TAIL of the queue.

99 * |

100 TLDAE t ask_enqueue_conput e(t sk) ;

101 }

102 el se if (tsk->phase == TLDAE WRI TE_PHASE) {

103 /* insert the task into the task queue that bel ongs
104 * to one of the percolation threads. The task will
105 * be inserted at the HEAD of the queue.

106 * |

107 TLDAE task _enqueue wite(tsk);

108 }

109 el se {

110 /* the task is finished. rel ease the nmenory resources
111 * |

112 TLDAE put _task(tsk);

113 }

114

115 return;

116 }

117

Figure 4.15. Code Generation Example défwd() in sparseLU: the TL-DAE task
scheduling runtime function
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by programmer either through environment variable or tghotuntime library function.
Each thread has its own task queue, which is called localgaske. A thread can access
any other threads’ task queue, which is termed remote tasiequLock is provided to

guarantee mutually exclusive access on the task queues.

head

]

tldae tidae tidae| tidae tldae tldae
task task task task task task

Figure4.16: Task Queue implemented as a double-linked list

Each element of the task queue stores a pointet tadkae _t ask data object. The
task queue is designed as a circular bufEanqueue anddequeue operations can be
performed on both the head and the tail of task queue. Howeotr kind of threads only
take a task unit from the head of the task queue. Currentlyaiequeue is implemented
as a double-linked list. Figure 4.16 shows the diagram.

After creating the percolation threads and the computatiweads, the master
thread traverses the loop (see line 14 in Figure 4.8). In d@acdttion, it creates a task
unit, i.e. at | dae_t ask{} data object. When &l dae_t ask object is created, its task
index is set to zero and it is enqueued at the tail of the taskeowned by a percolation
thread. Since the task unit’s task index is zero, at the firs tvhen it is scheduled for
execution by a percolation thread, the thread calls functid dae_r ead() (pointed
to byt ask_array[ 0] ) to copy allr d/r w data tiles into on-chip memory. After fin-

ishing all data movement operations, this percolationatirecreases the task index by
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copyout tasks enqueued at the head of a percolation task queue

'

n computation co
thread t

Q LHd
read ~ thread

putation computation
ead thread

\ N
| |

\
|
|

computation tasks enqueued at the tail of computation task queue

Figure4.17: 1 Percolation thread and 5 computation threads and th&igtasues

one and enqueue the samkedae_t ask{} object at the tail of the task queue owned
by a computation thread. At the second time when this taskisisicheduled for exe-
cution, it is executed by a computation thread which caelisk array[ 1], i.e. the
tldae_task_func(). This function performs the real computation on the datstil
located in on-chip memory. After finishing computation,ntieases the task index by
one and enqueues the satrledae_t ask{} object at thenheadof the task queue owned
by a percolation thread. This time, thédae_t ask{} object is inserted at the head of
the queue (see Figure 4.17) because flushing the resultléaticdm on-chip memory to
off-chip memory has higher priority than moving data tilgsta on-chip memory. Oth-
erwise, the on-chip memory resources will be exhausted alhdause deadlock. Figure
4.17 shows an example of 1 percolation thread and 5 compntttread. It shows how
task units are flowed between percolation thread and cortipathreads.

After finishing creating all percolation tasks, the maskeedd becomes a com-
putation thread and joins other computation threads topartomputation tasks. Each
thread works on the task units stored its local task queue.nVehgew task unit is pro-

duced, the producer will use the round-robin policy to ihslee new task unit into the
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task queue of the corresponding thread group. After a thiieesthes all the task units in
its local task queue, it will try to steal task unit from ottiereads of the same group. It
also uses the round-robin policy to steal the task unit. &mesthods are used to achieve

load balance among the threads.

4.4 Experiments

We have used two OpenMP task benchmasksrseLUandstrasserto evaluate
the TL-DAE execution model. The strassen benchmark waspiiegirocessed to trans-
form the the recursive invocation of the function to listveesal, just like thesparseLU
benchmark. We plan to extend the TL-DAE model to accommoatersive invocation
in our future work. The required TL-DAE code generation isiiaeed by source-to-
source translation.The experiments were conducted on HAQJ] an execution-driven
C64 simulator with accurate instruction timing. Table 3.1Chapter 3 shows the C64
configuration simulated by FAST [84]. Table 3.2 gives theadetl timing of each in-
struction simulated by FAST [84]. Besides, Figure 1.1(b)vahthe detailed latency
numbers of the load/store operations when accessing efliffenemory segments. The
experimental results are shown in Figure 4.18 and 4.19.

Figure 4.18 (a) and (b) compare the execution time betweedde running in
TL-DAE execution model and the code running in the base mdiellecoupled, i.e. data
movement code embedded in computation code). Both code esathgotal number
of threads. To be more specific, if we use 32 threads to ex#oeitendecoupled code, we
use 8 percolation threads and 24 computation threads to&<€t-DAE code. The same
number of percolation threads are used in other cases iexpsriment. Experimental
results show that, the decoupled code execution outpesftinmmundecoupled code exe-
cution in all cases. One of the reason that can explain thigis when there are a great
number of threads performing data movement (in undecougbele, there are chances
that most of the threads are performing data movement atatine $ime), their compe-

titions for off-chip memory bandwidth would super-lingamcrease the latency of data
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transfer. This greatly slows down the threads’ computataia. Another observation is
from Figure 4.18 is that, the scalability of both benchmaiesnot very good, no matter
they are executed in TL-DAE model or undecoupled model. feigul9 clearly shows
this.

Figure 4.19 shows the speedup of sparseLU and strassen difféegnt num-
ber of percolation threads. Since both benchmarks are nigasive applications, their
performances (throughput and scalability) are highly aheiieed by how many data can
be transferred from off-chip memory into on-chip memory pait of time. As shown
in both Figure 4.19(a) and (b), when the number of computatiweads is belovs2,
most of the executions get good speedup. This is due to (egeparation of the off-
chip and on-chip memory accesses; (b) the less intensiveetition for the shared task
gueues; and (c) the less intensive competition for the éichdn-chip memory capacity.
The speedups do not scale after the number of computatieadbrexceed®. The rea-
son is the increased contention for the shared on-chip ressuespecially the contention
for the on-chip memory storage The speedup curves f8rpercolation threads anidb
percolation threads almost overlap with each other. Thaues to the limited off-chip
memory bandwidth, which is saturatedigiercolation threads. Adding more percolation
threads after the saturation point would not make the progten faster. Instead, it might

cause performance penalty.

45 Summary

In this chapter, we have introduced a new method we develtupkidle memory
access latency for OpenMP programs running on the IBM Cydi@pprocessor. This
new method is named TL-DAE, stands for Thread Level Decaliplecess/Execution.
We used an example to explain why decoupled execution isseape and possible on

the C64 processor. We also introduced the techniques usadpternent the TL-DAE

9 On C64, the available global on-chip memory is configured 50/2.
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execution model, i.e. the TL-DAE programming interfacesl ame TL-DAE runtime
library. From the experience of developing this executiordel and the experimental

results, we have the following conclusions:

1. The TL-DAE programming interface is an indispensable pathe TL-DAE exe-
cution model that helps OpenMP compiler to generate deedymiogram.

2. The thread level decoupled access/execution is an igentecution model to hide
memory copy latency on a many-core processor like C64 thaa haserogeneous

memory hierarchy.

3. For data intensive applications, off-chip memory bamtlwvlimit is a more heavy-

weight factor in determining the programs’ throughput acalability.

4.6 Related Works

The TL-DAE execution model was inspired by the original heaice based DAE
model, which wadecoupled access/executidine original DAE model was first pro-
posed as the core hardware technique in decoupled archad2s, 29, 98]. In decoupled
architecture, memory access (operands fetch and resuitd and computation execution
are architecturally decoupled. Aatcess processqAP) works on the memory access
instruction stream and agxecute processqEP) works on the computation instruction
stream. The two processors communicate data values vigeattinally visible queue.
The running of AP and EP caslip with respect to each other, thus AP can run further
ahead than EP and fetch operands for EP. This provides grpattanity for memory la-
tency hiding. Due to this advantage and its hardware sintylresearchers claimed that
the decoupled architecture is more complexity-effectind acalable than the compara-
ble superscalar processors [99]. Later, the initial detmbprchitecture were improved
by combining with different kinds of multithreading techagies. Dorozhevets’ Multi-
Threaded Decoupled (MTD) architecture [100, 101] propdeasse speculative multi-

threading [102] to enable the part of the parallelism thatild@therwise be suppressed
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by control dependencies; Parcerisa’s multithreaded DAB[104] adopts simultaneous
multithreading [14] in decoupled architecture to effeelwhide function unit latencies;
The D3-machine [105, 106], on the contrary, introduce the conoépiecoupled execu-
tion into the multithreaded data-flow machine, in which,reactor is decoupled into two
parts: the synchronization portion and the computationiquaor All of the above works
are hardware based DAE and decoupling happens at fine-gxagh i.e. the instruction
level. These are quite different from our work which is a wafte based DAE execution
model and decoupling happens at very coarse-grain level.

A set of similar works is software controlled pre-executmnspeculative pre-
computation [107, 108, 109]. These works were extended fransoftware prefetching
technique [110, 111] and were targeted to multithreadedgasors. Instead of inserting
prefetching instructions in the main thread, compiler (agpammer) constructs a piece
of prefetching code (which is termed psslice or speculative sliceand lets a separate
thread execute the prefetching code. The thread runningréfetching code is called
helperthread omprecomputatiorthread, which is similar to thpercolationthread [112]
in our work. However, the differences are obvious. The codeated by precomputa-
tion thread is carefully extracted from the body of main #tt@nd its main purpose is to
calculate (speculatively) the address of the loads thadechie most cache misses. Our
percolation thread executes runtime library code and itpgse is to move (with cer-
tainty) a specific chunk of data from off-chip memory to ongcimemory. Besides, pre-
computation thread usually operates on very small numbdataf values, like 8 bytes or
16 bytes, while percolation thread usually operate on almignk of data with pre-defined
structure. Usually, there is no communication betweengmguitation thread and main
thread. However, in our work, percolation thread and comtjput thread communicate
with each other through a software queue.

In DSWP [113, 114], a sequential program is splitted into rpldtnon-speculative

threads. One of the thread is dedicated to executing ingingcon critical path, which
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are the code that traverse the recursive data structur@maaddcethe pointers to each
node on the recursive data structure. Other threads existitections on the off critical
path, whichconsumehe pointers and perform computations on each node indepdgd
The two kinds of threads communicate via a hardware bsygachronization arrayHere,
the thread that execute the code on critical path is alsdasita our percolation threads.
However, its purpose to discover more ILP in a sequentiajanm.

CellSs [115, 116] proposes an OpenMP-like programming miade¢he Cell BE
architecture, which is similar to the tile aware parallatian proposed for OpenMP in
[92]. CellSs also has helper thread at runtime. Its helpeathruns on the PPE side,
in parallel with master thread. It is responsible for schieduactive tasks to SPEs and
managing the task-dependency graph. It is not responsiblddta movement. Data
movement is performed by SPE thread via the DMA primitivggosuted by Cell proces-

sor, which is not available in the Cyclops-64 processor [13].
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Chapter 5

TILE REDUCTION

In the previous chapters, we have discussed two technigDes. is calledile
percolation the other is thehread-level decoupled access/executioodel. These two
tile aware parallelizationtechnologies are developed to help compiler to generate dat
movement code automatically and execute data movementaiutieomputation code
concurrently. In this chapter, we will introduce the thii@ taware parallelization tech-
nique. This technique is not dealing with data movement. él@s its purpose is to
enable an efficient parallelization which is not possibl¢he traditional OpenMP pro-
gram. The name of the new parallelization technique is déilie reduction

Tile reductionis an OpenMP tile aware parallelization technique thatadlceduc-
tion to be performed on multi-dimensional arrays. This isural extension of thecalar
reductionin the current OpenMP specification. This chapter has thoa&ributions:(a)
it is the first practice in OpenMP to support parallel redution data tiles(b) it presents
the methods used to implement tile reduction, which inclingeOpenMP API extension
and the associated code generation technidags;demonstrates the effectiveness of tile
reduction with a set of benchmarks. The experimental reshiow that, in some case,
tile reduction can make parallelization more natural arnxilfle. It not only can expose

more parallelism in an OpenMP program, but also can imprvédta locality.

5.1 Introduction
Tiling [117, 95, 118, 76] has been used as an effective canpptimizing tech-

nigue to generate high performance scientific codes. Tiiogonly can improve data
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locality for both the sequential and parallel programs [1120] , but also can help the
compiler to maximize parallelism and minimize synchrotia[121, 22] for programs
running on parallel machines. Thus, sometimes, it is usetthdyprogrammers to hand-
tune their scientific programs to get better performancéngris essentially a program
design paradigm. It is a natural representation for manyonaot data objects that are
heavily used in scientific and engineering algorithms. &die code that is written with
the concept of tile/tiling in mind usually looks concise améar, and thus is much easier
to understand and less error prone.

Due to these advantages, it is desirable to provide cerigim level language
constructs in the programming languages to support tifeftin program design directly.
To meet this requirement, researchers have proposed sadiesigns in many parallel
programming languages or sub-languages. The examplegi&lPF[122], UPC[66],
X10[123], ZPL[124], CAF[125], Titanium[126], and HTA[12/hich are among the
most popular parallel languages. They support the condefieaware programming
either through the first class language constructs or thrdibgary routines with uniform
interfaces.

In this chapter, we propogie reductionfor the OpenMP programming language.
It is an OpenMP tile aware parallelization technique thidved parallel reduction to be
performed on multi-dimensional arrays. Its purpose is tte@ce the OpenMP API with
the concept of tile/tiling so that more data parallelism banexposed to the OpenMP
compiler. It not only grants greater flexibility to the OpeRMompiler to perform more
data parallelization, but also brings better data locatity the code.

Basically, reduction is a form of recursive calculation thige mathematically
associative and commutative operators to "aggregate” afsgata. Reduction can be
performed in parallel to improve performance. For this ogasnany programming lan-

guages and sub-languages support parallel reduction. 8wareples are UPC [128],
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MPI [129], ZPL [130], and OpenMP [5]. According to the curtédpenMP API spec-
ification, reduction can only be performed on "named scalariables. It cannot be
applied on multi-dimensional arrays. We call this kind oflwetion scalar reduction
In this chapter, we evolve the current reduction parabeion from scalar variables to
multi-dimensional arrays, which is terméite reduction We have extended the tradi-
tional r educt i on clause to allow the programmers to annotate their code wiiere
reduction can be applied. We have also developed the rebemde generation technique
to interpret the new educt i on clause and generate the required parallel code accord-
ingly. The rest of the chapter is organized as follows. Inti®ad.2, we use a motivating
example to show why tile reduction is necessary. Sectiomdl2liscuss how to imple-
ment tile reduction in the OpenMP compiler. We present opeerental data in Section

5.4 and make our conclusions in Section 5.5. The relateds\amd given in Section 5.6.

5.2 Motivation

In this section, we use the "histogram reduction” [131] cedean example to
demonstrate the limits of the current OpenMP reductionsdauwWe will also use the
same example to show the advantages of exterstiatar reductiorto tile reduction

Figure 5.1(a) shows the code of the histogram reductionrprog The code
worksonA[ ] [][], a3-dimensional array with each element containing ant8{byng
| ong. It aggregates all elements along thdimension and stores the results in the?
tle AO][][]. The diagram in Figure 5.1(b) shows these operations. Werasshat
the cache line size is 32 bytes and that the the array is storadow-major order in
the memory. Therefore, elements with the sdmepordinate can be fed into the same
cache line, as shown in Figure 5.1(c). There are three nkxipd in the code. Each loop
traverses one of thie, j , k dimension of the array. Data dependence only exit in loop
because of the recursive calculation.

Given the code in Figure 5.1(a), there are many differentsatayparallelize it.

However, due to the data dependence in lbpywe cannot parallelize this loop. Therefore,
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1 long long A[1[2][2];

2

7 for (k=1; k<10000000; k++)

8 for (i=0; i<2; i++)

9 for (j=0; j<2; j++)

10 ALOT[I][i] += ALKITi ][]

(a) Original Histogram Reduction Code

[Lj] [00] [01] [10] [11]
k= ' 32 Bytes!

0
1 | |
N
2 ‘
4

5 L

(b) The 3D Diagram (c) A's Memory Layout
Figure5.1: The Histogram Reduction Example

without changing the code, we can only parallelize lo@nd;j , as shown in Figure 5.2(a)
and 5.2(b). Itis obvious that there are trivial workload &tite parallelism in loop and
loopj . Thus, it is not worthwhile to parallelize these two loopgere while using the
col | apse clause (supported in OpenMP 3.0 [5]).

To get a larger workload and more parallelism, we can intangle the loops man-
ually before parallelizing the code, as shown in Figure H3Figure 5.3(a) and 5.3(b),
the workload that can be assigned to the threads is largegandiowever, the available
parallelism is still very small (only supports two or fourmmurrent threads).

Figure 5.4(a) shows a better solution. In Figure 5.4(a) skeupar al | el for
directive is used to parallelize the recursive additiomgsher educt i on clause (with
trivial code change). Although the code in Figure 5.4(a) leaerage all levels of paral-
lelism in the program, its stride data access pattern woalde a great number of unnec-

essary cache misses, as shown in Figure 5.4(b). Code in Bd(e and 5.3(b) have the
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0 for (k=1; k<10000000; k++)

1 #pragma onp parallel for

2 for (i=0; i<2; i++)

3 for (j=0; j<2; j++)

4 ALOT[iI][J] += ALKITi ][]

(a) Parallelize loop "i”

for (k=1; k<10000000; k++)
#pragma onp parallel for collapse(2)
for (i=0; i<2; i++)
for (j=0; j<2; j++)
ALOT[iI][J] += ALKITi][i]

(b) Parallelize loop "i” and "j” using the collapse clause

A WNPEFLO

Figure5.2: Parallelize the Histogram Reduction Program Without Chamntjie Code

same data locality problem. Apparently, the current Opergdrallelization techniques
cannot harvest the maximum parallelism and data localithéncode at the same time.
They suffer from either insufficient parallelism or poora#icality.

The ideal parallelization is shown in Figure 5.5. Logicathe recursive addition
can be viewed as being performed on an arragxdl data tiles. In theory, these tiles can
be added together in parallel by multiple threads, as shaviaigure 5.5(a). In this way,
the code can achieve both the maximum parallelism and thalb&slocality (see Figure
5.5(b)). Besides, from the programmers’ angle, this is thetmatural way to perform
parallelization on this piece of code. However, the cur@penMP specification does
not provide any mechanism to support such kind of parad&bn. This motivates us to

extend the traditionadcalarreduction tatile reduction.

5.3 TileReduction
In this section, we will discuss the techniques used to implat tile reduction.
They include the extended OpenMP programming interfacet@dequired code gener-

ation design. The related runtime support will be mentiowben needed.
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0 #pragma onp parallel for

1 for (j=0; j<2; j++)

2 for (i=0; i<2; i++)

3 for (k=1; k<10000000; k++)
4 ALOI[jILiI] += ALKI[j][i]

(a) Parallelize the outer most loop: "

0 #pragma onp parallel for collapse(2)
1 for (j=0; j<2; j++)

2 for (i=0; i<2; i++)
3 for (k=1; k<10000000; k++)
4 ALOI[JITT] += ALKI[j][i]

(b) Parallelize the outer most two loops: "j” and "i”

Figure5.3: Parallelize the Histogram Reduction Program After Perfagrioop Inter-
change

5.3.1 Programming Interface Extension

In order to support tile reduction, we need to extend theecur©OpenMP pro-
gramming interface. The extension was made based on thitegacr First, it must be
able to cover most of the common cases of tile reduction c8deond, it must be simple
and easy to use and provide the programmers with the maximabifity. Third, the
extension should not complicate the code generation of {en®IP compiler and the
OpenMP runtime. Figure 5.6(a) shows the OpenMP API (C/C++grestbn we proposed
for ther educt i on clause. Figure 5.6(b) gives a simple example that uses teaded
reduct i on clause to parallelize the tile reduction code.

Compared with the current OpenMP API specification, the diffee is in the
I i st construct. In addition to the "named scalar” variables, W@nathe programmers
to put a "multi-dimensional array” in thlei st construct. This "multi-dimensional array”
is not a real array data structure in the language sense.altasaguage construct that
conveys important information to the OpenMP compiler. listthe compiler the shape,

the size, and the element type of the tile and how its elenaetgaversed by the loops.
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0 #pragma onmp parallel for private(sum collapse(2)
1 for (j=0; j<2; j++)
for (i=0; i<2; i++) {
sum = O;
#pragma onp parallel for shared(sum reduction(+:sum
for (k=0; k<10000000; k++)
sum += ALK][j][i]
ALOT[j][1] = sum

ONO O WN

}

(a) Nested parallelization to harvest more parallelism

il [00] [01] [10] [11]
k = I I I

A W N FP O

5 v \/ \/ y

(b) Data access pattern

Figure5.4: More Parallelization for Histogram Reduction Code

To make the thesis easy to follow, we call the tile under rédanas theeduction
tile; the "multi-dimensional array” in théi st construct as théle descriptor and the
loops involved in performing "one” recursive calculatios thereduction kernel loops
For the example in Figure 5.6(B) the reduction tile iS8[ ][], the tile descriptor is
B[j,0,2][i,0,2],andthereduction kernel loops are thandi loops (notincluding
the k loop, i.e., the parallelized loop). In our design, the shapéhe reduction tile
must be a rectangle or a high-dimensional rectangle. Teaogother shapes are not
yet supported. The exact shape and size of the reductioargleletermined by the tile
descriptor.

The format of the tile descriptor is shown in Figure 5.6(a)hds two parts: the

1 Index variable k starts from zero because array B[][] is usesidre the accumulation
results, otherwise it starts from one.
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(a) Schema of tile reduction
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(b) Better locality

Figure5.5: The Ideal Parallelization Schema for the Histogram Redod@iode

tile name(i.e., T) and thedimension descripto{i.e., [ji, Lx, Ux].--[j2, L2, Us][j1, L1, U1])-
Tile name must be the same as the multi-dimensional arragblaron which the recursive
calculations are performed. For the example in Figure %.6ftis corresponds to the
name of thdhs variable in line 4, which iB. It tells the OpenMP compiler the data type
of the tile element, which must be a built-in scalar type. @iaension descriptor, on
the other hand, is an array of 3-tuples. Each 3-tuple coorefpto one dimension of the
tile and stores important information of that dimension.e3é 3-tuples are listed in the
dimension descriptor in descendant order (higher dimerfsist). Each 3-tuple has three
elements: loop index variable, upper bound expressionicaver bound expression. The
loop index variable identifies a loop in the reduction kelnebs. Since stride accesses
are not allowed, the loop stride is alwal;sso it is omitted from the tuple. The size of the

k-dimensional tile is calculated from equation (5.1).

(Uk — Lk) X (UQ — Lg) X (Ul — Ll) (51)
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reduction(operator : T[jk, Lk, Ux]...[j2, L2, Us]|j1, L1, U1]) ‘

T: Tile name

k:  Dimension of the tile

ji: the loop index that is used in the traversal of ttfedimension of the tile
L;: the lower bound ofj;

U;: the strict upper bound gf

(a) OpenMP API (C/C++) extension for theduct i on clause

int B[2][2] = {{0,0},{0,0}};

0 #pragma onp parallel for reduction(+: B[j,0,2][i,0,2])
1 for (k=0; k<10000000; k++)

2 for (j=0; j<2; j++)

3 for (i=0; i<2; i++)

4 BljlI[i] += ALKI[jI[i]

(b) Simple example using the extended API

Figure5.6: OpenMP API (C/C++) extension and a simple example code

The information stored in the tile descriptor is very impaitfor the OpenMP compiler

to generate correct parallel code.

Theoper at or, as usual, must be a mathematically associative and cortiveuta

operator that performs the recursive calculation. In ouresut example, it is a+".

0 #pragma onp parallel for reduction(+: Aj,0,2][i,0,2])
1 for (k=1; k<10000000; k++)

2 for (j=0; j<2; j++)

3 for (i=0; i<2; i++)

4 ALOI[jILI] += ALKITi][i]

5

Figure5.7: Tile reduction: tile is part of a bigger multi-dimensionatay

The reduction tile is not required to be a standalone muntiethsional array. In-

stead, it can be part of another larger multi-dimensionayarFor example, in the code
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in Figure 5.7, the reduction tile K[ O] [j ] [i] ( = {0,1},7i = {0,1}). Itisa2 x 2
slice cut out from the 3-dimensional array/] [ ][] ;

Besides, as we have mentioned before, the lower and uppeddauthe dimen-
sion descriptor are expressions. They are not required wohstants. Generally, the
lower and upper bounds can be a function of other variabkekrg as the result of the
function can be decided at runtime. Figure 5.8 shows suclxamgle. The code in
Figure 5.8 is a blocked matrix multiplication program. Iteasy to see that there is an
opportunity to apply tile reduction on the loop in line 3, j#ekk loop. The diagram on
the right hand side gives an intuitive illustration. In tleis&ample, the reduction tiles are
blocks cut out from a bi@ x 2 matrix (C[ ] [ ] ). Therefore, the lower and upper bounds
of the reduction tiles are not fixed values. In addition, tretnw C[ ] [ ] might not be
able to be evenly blocked. So, the tiles located at the marfyjthe matrix are usually
smaller than the tiles located inside of the matrix. Thus dizes of the reduction tiles are
not necessarily the same. All these information is reflestede lower and upper bound
expressions (or functions) in the dimension descriptorrddoer, there is a restriction for
the lower bound and upper bound expressions. They shoulgberfoinctions of any index
variable in the reduction kernel loops, i.e., they are agthm@l. This is to make sure that
the shape of the reduction tile is a rectangle, or high-dsimral rectangle.

An interesting observation of this example code is that timalver of the reduction
kernel loops (which is, from line 6 to line 8) is not the same as the dimension of the
reduction tile (which i2). Generally, we do not require the number of the reduction
kernel loops to be the same as the dimension of the redudigon/Ne only require that
the operations performed by the code in the reduction kéooels can be viewed as one

associative and commutatimeacrooperation performed on the entire reduction tile.

5.3.2 Code Generation
Since tile reduction is derived from scalar reduction, itgle& generation shares

the same framework as scalar reduction. Thus, we illustrege€ode generation for tile
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for (ii=0; ii<n; ii+=b)
for (jj=0; jj<n; jj+=b)
#pragma parallel for reduction(+: \

di,ii,mn(ii+b,n)][j,jji,mn(jj+b,n7])
for (kk=0; kk<n; kk+=b)
for (i=ii; i<min(ii+b,n); i++)

for (j=jj; j<min(jj+b, n); j++)
for (k=kk; k<m n(kk+b,n); k++)
Aillil+=Ali][Kk]*B[K][]];

QUOUWoO~NOODUPA,WNEO

1
C A B
0 1 2 3 4 0 1 2 3 4 0 1 2 3 4
0 0 S N o[ 5%11
1 o 1 \\Q§§\< Y- # C%N§§fi o
2 o =2 N DO X2l 5\11 o

Figure5.8: Tile reduction: upper and lower bounds are functions

reduction under the same framework as scalar reduction senthe code generation for
scalar reduction as a reference. Generally, the code gemerseeds to deal with the

following problems:

1. Distribute the iterations of the parallelized loop amtmgthreads;

2. Allocate memory for the private copy of the tile used in il recursive calcula-

tion;

3. Perform the local recursive calculation which is spedifiy the reduction kernel
loops;

4. Update the global copy of the reduction tile;

Figure 5.9 shows the code generated for the tile reductiameie in Figure 5.8. To make

the thesis easy to follow, we present the pseudo C code ingheefi
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As we have mentioned at the beginning of Section 5.3.1, wiotawoid compli-
cating the code generation when we were developing the sgtefor ther educt i on
clause. A good example is the code generation for distnigitie iterations of the paral-
lelized loop among the dynamic threads. Actually, this p&the code generation for tile
reduction is the same as that for scalar reduction.

In the tile reduction program, the reduction kernel loops lsa viewed as a single
statement that performs the recursive calculation, whidhé same as its counterpart in
the scalar reduction program. So, from the angle of itemadistribution, the scalar reduc-
tion code and the tile reduction code are logically the sahterefore, the method used
to generate iteration distribution code for scalar redurcttan also be used to generate
iteration distribution code for tile reduction. It doesnitatter whichschedul e policy
(static,dynam c,gui ded, orrunti ne) is deployed.

In Figure 5.9, we usset at i ¢ scheduling policy as an example. In the code from
line 2 to line 7, the iterations of thiek loop (line 5 in Figure 5.8) are evenly distributed
among the threads. The iterations of the loop are dividemlahtinks and each chunk is
assigned to one dynamic thread. The iteration chunk assignthe thread is delimited
by the lower bound variablél b" and the upper bound variablaib™ , which are de-
termined by theéhread numbenf the owner thread. This piece of code only deals with
the parallelized loop and the user specified OpenMP parasaetedoes not even need
to look into the code of the reduction kernel loops. This i slame for other schedule
policies.

At line 10, the OpenMP runtime routine allocates memory ff@r the private tile
(private_til e),whichis a2-dimensional array. This private tile is usgdhe thread
as a temporary storage to perform the local sequentiaktilaation. Its size is calculated
from the parameters specified in the dimension descripéar €gjuation 5.1). Its element
data type is inferred from the tile name. All this informatiis obtained from the extended

r educt i on clause.

96



1 /* statically partition the iteration space anong
* the threads */
2 numthr = _builtin_onp_get _numthreads ();
3 thr_id = __builtin_onp_get_thread_num ()
4 chunk_size = (((n+(b-1))/(b-1))%umthr) == 0 ? \
5 (((n+(b-1))/(b-2))/numthr): (((n+(b-1))/(b-1))/numthr)+1
6 Ib chunk_size = thr_id; [+ | ower bound =/
7 ub m n( (I b+chunk_si ze), n); [ * upper bound =/
8

9 /* allocate nenory for private tile =/
10 private tile = (int *)_builtin_onp_nenory_alloc( \
11 (mn(ii+b,n)-ii)*(mn(jj+b,n)-jj)=*sizeof(int));

13 /* local tile reduction: serial =*/
14 for (kk=lb; kk<ub; kk+=b)

15 for (i=ii; i<min(ii+b,n), i++)

16 for (j=jj; j<mn(jj+b,n), j+t)

17 for (k=kk; k<m n(kk+b, n), kk++)

18 private tile[i-ii]l[j-jj] += Alil[k]*B[Kk]I[]]
19

20 /x update the global reduction tile */
21 __builtin_onp_ atomc_start ();

22 for (i=ii; i<min(ii+b,n), i++)

23 for (j=jj; j<mn(jj+b,n), j++)

24 Ci][j] += private_tile[i-iil[j-]Jj];
25 __builtin_onp_atomc_end ();

26

27 free(private_tile);

28

Figure5.9: Pseudo code generated for the matrix multiplication exartgoperform tile
reduction
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The local sequential tile reduction is performed by the clwdm line 14 to line
18. This piece of code is almost the same copy as the origawplential program (line
5 to line9 in Figure 5.8) except two places. At line 14, the lower andardgounds of
the loop are changed tol b" and" ub". This is to restrict the range of the iteration
space in the chunk assigned to the current thread. Besidésedit8, we replace the
original reduction tile with the private tile and updateiitglices. This index calibration
is required because the global reduction tile is cut out feobigger multi-dimensional
array, while the private tile is a standalone array. Thic@ief code performs local tile
reduction sequentially, as in the original un-paralledizede.

After finishing the local tile reduction, the thread must agedthe global reduction
tile. The code is shown from line 21 to line 25. The runtimetioes called at line 21
& line 25 ensure atomic access to the global reduction tilee Toops at line 22 and
line 23 are extracted from theduction kernel loops Only the loops listed in théle
descriptorare selected. So, the lodpin the reduction kernel loops is not included. The
Ihs variable of the statement at line 24 is the same variable #eeinriginal code (line 9
in Figure 5.8). However, thehs variable has been replaced with the private tile, in which
the indices have been updated.

From the code in Figure 5.9, it is easy to see that the codergtom for the
tile reduction is as easy as that for the traditional scaduction. Meanwhile, no extra
runtime supports is required. These advantages make thermaptation of tile reduction
in the OpenMP compiler very easy. In the next section, we prdsent the experimental

results of applying the tile reduction on several typicaidiemarks.

54 Experiments

We have applied tile reduction on three benchmarks: the 2pdpiam reduction,
matrix-matrix multiplication and matrix-vector multigktion. The required code gener-
ation was implemented through source-to-source transfbom and was prototyped in

the Omni-1.6 OpenMP compiler [83]. The machine used in theerents has 4 Intel
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Dual-Core Xeon (Paxville) chips, which are clocked at 3.0 GHach core has Hyper-
Threading (HT) enabled. Therefore, the machine can be dese 16-processor shared
memory parallel computer. Each chip has 4MB L2 cache (2MB eace) and each core
has 16KB L1 cache. The machine runs Linux Ubuntu 7.04.

Figure 5.10, Figure 5.11, and Figure 5.12 show the expetmhdata of the each
three benchmarks. The curve graphs in these figures didpagpeedup of the bench-
mark programs parallelized either through the tile redurctlause (w/ tile reduction) or
through the standard OpenMP directives/clauses (w/oddection). The bar charts, on
the other hand, demonstrate the difference of the absoketeugon time between the
corresponding programs (w/ and w/o tile reduction) of theeaet of benchmarks.

Figure 5.10(b) shows great performance enhancement if vedigae the 2D his-
togram reduction benchmark with the tile reduction cla@enerally, compared with the
program parallelized with standard OpenMP pragma, thelatesexecution time of the
tile reduction version decreased ab60% and its speedup on 8 threads increased from
1.5 to 4.5. The performance gain comes from the improved data localitych owes to
the tile reduction optimization. Without using tile redict, the 2D histogram reduction
program exhibit very poor scalability (shown in Figure 5.3)he tile reduction paral-
lelization successfully rectifies the data access pattedrttaus significantly improves its
scalability. However, no matter what kind of optimizati@rs used, this benchmark stops
scaling beyond 8 threads. This is because of the huge nurfipeeroory references in
the code, which results in that its performance is finallyrreted by the bandwidth of the
shared memory bus.

The same phenomena are also observed in the matrix-mattigpheation bench-
mark (see Figure 5.11(a) and 5.12(b)). Tile reduction can décrease its execution time
and improve its scalability. However, the magnitude of teef@rmance enhancement

caused by tile reduction is not as big as that of the 2D histoagreduction benchmark.
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Figure 5.10: 2D histogram reduction: Comparison of the speedup and execution time
between the code parallelized with tile reduction and theequarallelized
with the standard OpenMP pragma.
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Figure5.11: Matrix-matrix multiplication: Comparison of the speedup and execution
time between the code parallelized with tile reduction dreldode paral-
lelized with the standard OpenMP pragma.
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Figure5.12: Matrix-vector multiplication: Comparison of the speedup and execution
time between the code parallelized with tile reduction dreldode paral-
lelized with the standard OpenMP pragma.
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This is also the same for the scalability enhancement. Tasoreis that the data lo-
cality of the tiled matrix-matrix multiplication prograns better than the 2D histogram
reduction benchmark. Therefore, the performance gain fiterreduction in the ma-
trix multiplication program is less than that in the 2D hgatam reduction program. On
average, the execution time decrea34% after applying tile reduction and its speedup
increased fron2.15 to 3.18 on 8 threads and fror 26 to 3.32 on 16 threads.

For the matrix-vector multiplication case, the performaeahancement brought
about by tile reduction is smaller than that of the previous benchmarks. The reason is
the same as the previous one. Moreover, compared with tlee b benchmarks, there
are less data memory references in this benchmark. So, digegon’s performance de-
grades a little bit when it runs with 8 or 16 threads. This isdaese of the synchronization
overhead caused by the code in liieand25 in Figure 5.9. In average, its execution

time decreased.28%.

55 Summary

In this chapter, we introduced the concept of tile aware |fgization for
OpenMP. Meanwhile, we developed the first tile aware pdizditton technique - tile
reduction, and illustrated the details of code generatwrtfe tile reduction clause. We
also designed a series of experiments to evaluate the tilectien technique. From the
experimental results and our experience of parallelizimy lenchmarks, we have the

following conclusions:

1. As a building block of the tile aware parallelization thgdile reduction brings

more opportunities to parallelize dense matrix applicetio

2. For some benchmarks, tile aware parallelization is a mataral and intuitive way

to reason about the best parallelization decision.

3. Tile reduction not only can improve data locality for sopregrams, but also can

expose more parallelism.
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5.6 Related Works of Parallel Reduction

Parallel reduction operations are supported in many mgratbgramming lan-
guages. They include C**[132], SAC [133], ZPL [131], UPC [128nd MPI [129]. Most
of them support user-defined reduction operations, eitireugh language constructs or
through library routines. User-defined reduction operegicovides a flexible way to im-
plement tile reduction. However, programmers need to ohdmogh data structures and
algorithms, which, sometimes, is not a trivial job.

Another piece of work that we need to mention is [134]. In [[L84e authors pro-
pose to extend the OpenMReduct i on clause to parallelize C++ generic algorithms.
They propose to support user-defined types, overloadeaimpsy and function objects
in the same way as the built-ins supported in the current ®peneduct i on clause.
Their work is very close to that presented in this chaptenweéier, we study the reduc-
tion problem from a different angle. We propose tile reduttas one of the tile aware
parallelizing technique for OpenMP, while [134] propossesudefined reduction opera-
tion to complete their OpenMP extensions for parallelizyemeric libraries. In our tile
aware parallelization technique, we are concerned witld#tae partition, locality and a
more flexible and efficient way to parallelize dense matrpgoams written in canonical
C syntax, while the purpose of [134] is to allow people to flaliae programs written in
modern C++ idioms such @®ratorsandfunction objectswhich are not canonical C syn-
tax. Second, due to the non-trivial dynamic overhead of #eegc techniques, generic
libraries are not widely used in programming high perforo®scientific and engineering

algorithms. Finally, there are no experimental data in [134
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Chapter 6

CONCLUSIONSAND FUTURE DIRECTIONS

In this thesis, we have proposed a seTité Aware Parallelizatior{TAP for short)
techniques for OpenMP programs running on many-core psocgesvith software man-
aged memory hierarchies, like the IBM Cyclops-64 processbe gurpose of TAP is to
grant OpenMP programmers the ability to interact with Op@nddmpiler to orchestrate
data movement in a parallel program running in the segmenedory space, thus the
program can take full advantage of the fast on-chip memotthofigh, for Cyclops-64,
there are three different kinds of memory segments in theessddress space, TAP only
focus on the interface between on-chip and off-chip mem®dhe reason is that, among
all the memory segment separators, the interface betweehiprand off-chip memory
is the most critical one due to the memory bandwidth issueetkiats at this interface. In
the following two sections, we will draw our conclusion aram out the possible future

work directions.

6.1 Summary and Conclusions

In Chapter 3, we have designed and develoféxlPercolation a TAP technique
used to generate data movement code for OpenMP programisigunmthe Cyclops-64
many-core processor. To make sure the generated data molveoue can be executed
in parallel with the computation code, we developed anciiddt technique (in Chapter

4) calledThread-Level Decoupled Access/Executioa the TL-DAE execution model
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for executing OpenMP programs on Cyclops-64. In Chapter 5,eveldped a TAP tech-
nique calledrile Reductiorto perform parallel reduction operation on multi-dimemsib
arrays.

From our experience in developing these TAP techniques, at¢hg following

conclusions:

1. As more and more many-core processors adopt softwaregeamaemory hierar-
chy design, many new problems would come out if we use thdiegi©penMP
APIs to parallelize a sequential program for these mang-poscessors. Our devel-
opment of tile aware Parallelization techniques show th&t,not only necessary
but also possible to solve some of these new problems bydunting new data tile

directives/clauses into the current OpenMP programmindeho

2. The tile percolation technique can protect the progrararfrem involving in the
hassles of dealing with the heterogeneity of the memoryes$dspace. The TL-
DAE execution model makes sure that the data movement cateraged by tile
percolation can be executed in parallel with computatiatec@®oth techniques can
make programming on Cyclops-64 easier and make programtxeom Cyclops-

64 more efficient.

3. The tile reduction technique grant OpenMP the power ttop@rparallel reduction
on multi-dimensional arrays. Experimental results shoat,tthis technique can

both improve parallelism and optimize data locality.

6.2 Future Works
The followings are the possible future directions for theige and implementa-

tion of the Tile Aware Parallelization techniques.

1. At the current stage, the design of the tile aware paizdigbn techniques is re-

stricted by itsad hocimplementation through a source-to-source transformatio
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approach. This affects the design of the tile aware parzdiigbn API. For exam-
ple, in the API for the TL-DAE programming model, there is ddiealledTY in the
definition of tile descriptoill LE_DESC. It tells the compiler the type of the data
tile element. Actually, in a decent compiler implementatithe compiler can infer
the type of the data tile element from the intermediate isgm&ation of the guarded
function call. Therefore, it is not necessary to ask the mogner to respecify it in
the API. So, the API does not need to have this field, which doohke the API
simpler and more clean. There are other similar issues inuhent design which
can be optimized in a decent compiler implementation. Teega final decision
on the design of the APl needs a comprehensive discussioectdedwhich fields

need to be kept in the API.

. The current TL-DAE programming and execution model onlpport three
tasklets, i.e. the 3-step operaticopyin compute and copyout However, the
design of the implementation allows it to be extended to suppore complicated
computation models. For instance, the stream processBigj fhodel. In order
to achieve a more general and flexible framework to suppasiatide computation
models, efforts must be exerted to improve in the followingctions:(a) First, the
programming interface must be extended to give programtherpower to anno-
tate a task that may have more tasklet functions and may goesere complicated
relationships. In addition, the programmer also need thitieg to specify how
data are exchanged among these tasklets. The current OperadiPa/directives
do not support theséh) Second, the data structuredae_t ask{} needs to be ex-
tended. The tasklet arrayt askl et _array[] should have more entries to store
more tasklet functions that might be specified by programmerxcordingly, we
need to add more argument descriptor arrays irt thelae t ask{} to accompany
the multiple numbers of tasklet functions specified by paogmer;(c) Currently,

the dependence between tasklets in TL-DAE execution mgdatforced by their
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ordersinthe t askl et _array[] . This array is an one dimension structure, so it
can only be used to enforce dependence relationship betwedasklets in a total
order. If the execution of tasklétis dependent on taskiBtand taskleC, we must
insertA andB in front of Cin the same tasklet array. Therefore, we would serialize
the execution of tasklé® and taskleC although they can be executed in parallel.
We need a scheme to express such a dependence relationalpprimal order data

structure, which means that a DAG is needed instead of ap. arra

. In the current TL-DAE model, the data movement tasks amapeation tasks are
created and executed in parallel. However, the current wlodgs not intend to
leverage the data tile reuse that might exist among therdiffeasks. This actu-
ally can also be solved under the TL-DAE framework. Effonts aeeded tda)
first provide a method that programmer can annotate dateetilsage(b) second,
compiler needs to interpret the annotations and generateaitiect code and data
structurec) third, create partial order dependence graph so the taslssheduled

to reuse the computation results produced by the leadikg.tas

. As we mentioned, it is very desirable to extend the cur@pgnMP programming
model to deal with the issues brought up by the software nmethagemory hier-
archy design. So, a set of simple and uniform new OpenMP AfPtequired to
be added into OpenMP of the next generation. Therefore, praictical OpenMP
benchmarks need to be studied to improve the current tileeawarallelization

directives/clauses.
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Appendix A

DIAGRAM OF THE CYCLOPS-64 SOFTWARE TESTBED

A Cyclops Architecture Software Testbed
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Figure A.1: Cyclops-64 Softeare Testbed (Courtesy to Ziang Hu)
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Appendix B

IMPORTANT TL-DAE RUNTIME ROUTINES

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

voi d TLDAE schedul e_task(struct tldae_task *tsk);
void _tldae read(struct tldae_task =*tsk);

void tldae_ wite(struct tldae_task *tsk);

voi d TLDAE task _enqueue_read(struct tldae task *tsk);
voi d TLDAE task_enqueue_conput e(struct tldae_task =tsk);
voi d TLDAE task_enqueue wite(struct tldae task *tsk);
struct tldae_taskx TLDAE get task();

voi d TLDAE put _task(struct tldae_task *tsk);

FigureB.1: TL-DAE Runtime Routines
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Appendix C

ROSE COMPILER CODE GENERATION EXAMPLE

C.1 Original sparselL U code with OpenMP task pragma

156

157

158

159 #pragma onp parallel single

160

161 for (kk=0; kk<NB; kk++) {

162 [ uO( Al kk] [ kK]);

163 //#pragna onp taskgroup

164 {

165

166 for (jj=kk+1; jj<NB; jj++)

167 if (ALkk][jj] '= NULL)

168 #pragma onp task firstprivate(kk, jj) shared(A)
169 fwd(ALKK] [kk], A[KK]I[jj]);
170

171 for (ii=kk+1; ii<NB; ii++)

172 if (A[ii1][kk] !'= NULL)

173 #pragma onp task firstprivate(kk, ii) shared(A)
174 bdiv (A kk][kk], Alii][kk]);
175 }

176

177 #pragnma onp taskwait

178

179

180

Figure C.1: Original OpenMP task code segment from sparsetdll n function

C.2 Code Generated from ROSE Compiler with OpenM P Task Support
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47 void QUT__4 1527 (void **__out_argv)

48 {

49 int xii = (int *)(__out_argv[3]);

50 int xjj = (int *)(__out_argv[2]);

51 int xkk = (int *)(__out_argv[1]);

52 float *(*A)[100UL][2100UL] =\

53 (float =(*)[100UL][2100UL])(__out_argv[O0]);

54 for ( *rkk = 0; =*kk < 100; ( =*kk)++) {

55 Luo(((( *A) [ *kk])[ *kk]));

56 //#pragna onp taskgroup

57 {

58 for ( *jj = ( *xkk + 1) *jj < 100; ( *jj)++)

59 i CCCC *A) T +kkI) [ *jj]) '= ((float »)(((void %)0)))) {
60 void »_out_argv3d 1527 [3];

61 _out_argv3d__ 1527 [0] = ((void *) (& *A)));

62 _out_argv3__1527__[1] = ((void *)(& =*kk)));

63 _out_argv3__ 1527 [2] = ((void *)(& *jj)));

64 GOWP_task(OQUT__3_ 1527 ,& out_argv3d__1527_ ,0,12,4,1,0);
65 }

66 for ( *ii = ( *kk + 1); =*ii < 100; ( *ii)++)

67 it (CCC *A)[ *ii])[ +kk]) t= ((float *)(((void %)0)))) {
68 void »__out_argv2_ 1527 [3];

69 _out_argv2__ 1527 [0] = ((void *) (& *A)));

70 _out_argv2__1527_[1] = ((void *)(& =*kk)));

71 _out_argv2_ 1527 [2] = ((void *) (& =*ii)));

72 GOWP_task(OQUT__2_ 1527 ,& out_argv2__1527_,0,12,4,1,0);
73 }

74 }

75 GOVP_taskwait ();

76

77 for ( xii = ( *kk + 1); *ii < 100; ( *ii)++)

78 if ((CC A *ii])[ =kk]) = ((float =)(((void *)0))))
79 for (*jj = ( xkk + 1) *jj < 100; ( *jj)++)

80 ifCCCC *A L +kkI)T *jj1) '= ((float *)(((void *)0)))) {
81 void * _ out_argvl 1527 [4];

82 _out_argvl__1527_[0] = ((void *)(& *A)));

83 _out_argvl_ 1527 [1] = ((void *)(& +kk)));

84 _out_argvl_ 1527 [2] = ((void *)(& *jj)));

85 _out_argvl_ 1527 [3] = ((void *)(& *ii)));

86 GOWP_task(QUT__1_ 1527 ,& out_argvl__1527_ ,0,16,4,1,0);
87 }

88 GOWVP_t askwai t () ;

89 }

90 }

FigureC.2: Code Generated by ROSE Compiler with OpenMP Task Support: diséam
thread code
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02 void QUT__1 1527 (void *+x__out_argv)

03 {

04 int xii = (int *)(__out_argv[3]);

05 int xjj = (int *)(__out_argv[2]);

06 int *kk = (int *)(__out_argv[1]);

07 float *(*A)[100UL][200UL] =\

08 (float =(*)[100UL][2100UL])(__out_argv[0]);
09 int pii;

10  _p_ii = =*ii;

11 int _pijj;

12 _pjj = *jj;

13 int _p_kk;

14  _p_kk = =*kk;

15 0if (CCC*A[_p_ii])[_p_jjl) == ((float =)(((void *)0))))

16 (C *A)[_p_ii])[_p_jjl = allocate_clean_bl ock();
17 bmod(((( *A)[_p_ii])[_p_kk]), ((( *A[_p_kk])[_p_jjl), \
18 (CC*Al_p_iil)[_pdil));

19 }

20

21 void QUT__2_ 1527_ (void *x__out_argv)

22 {

23 int *xii = (int *)(__out_argv[2]);

24 int *kk = (int *)(__out_argv[1]);

25 float »(*A)[100UL][2100UL] =\

26 (float =(*)[2100UL][100UL])(__out _argv[0]);
27 int pii;

28 _p_iio= o*iiy

29 int _p_kk;
30 _p_kk = xkk;
31 bdiv(((( *A)[_p_kk])[_p_kk]), ((C *A[_p_ii])[_p_kKk]));

32}

33

34 void QUT__3 1527 (void *+x__out_argv)
35 {

36 int xjj = (int *)(__out_argv[2]);

37 int xkk = (int *)(__out_argv[1]);

38 float »(+=A)[100UL][100UL] =\

39 (float =(*)[100UL][100UL])(__out_argv[O0]);
40 int _pjj;

41 _pjj = +jj;

42 int _p_Kkk;

43 _p_kk = =*kk;

21451} fwd(((C *A)[_p_kk])[_p_kk]), ((C *A)[_p_kk])[_p_jjl));

Figure C.3: Code Generated by ROSE Compiler with OpenMP Task Supporte thre
outlined wrapper functions of the task functions

113



BIBLIOGRAPHY

[1] A. Buittari, J. Langou, J. Kurzak, and J. J. Dongarra, “Rarrled QR factorization
for multicore architectures,” LAPACK Working Note, Tech. R4®0, July 2007.
[Online]. Available: http://www.netlib.org/lapack/lavspdf/lawn190.pdf

[2] G. R. Gao, “Developing Program Execution Models for 1,000 cores and Be-
yond: Issues and Challenges,” 2008, slides presented ata&Sand

[3] Intel, “Intel Core 2 Duo Processor,” 2007. [Online]. Alable: http:
/lwww.intel.com/products/processor/core2duo/inder.h

[4] AMD, “AMD Quad-Core Opteron Processors,” 2007. [Onlindyailable: http:
/Imulticore.amd.com/us-en/AMD-Multi-Core/Products/RkhCore-S-WS.aspx

[5] OpenMP Architecture Review Board, “OpenMP Applicatiorogram Interface
Version 3.0,” May 2008, http://www.openmp.org/mp-documséspec30.pdf.

[6] D. E. Culler, J. P. Singh, and A. Gupt@arallel Computer Architecture — A Hard-
ware/Software Approach San Francisco: Morgan Kaufmann Publishers, Inc.,
1999.

[7] K. Asanovic, R. Bodik, B. C. Catanzaro, J. J. Gebis, P. Hushands
K. Keutzer, D. A. Patterson, W. L. Plishker, J. Shalf, S. W.lI}ns,
and K. A. Yelick, “The landscape of parallel computing rasha A
view from berkeley,” EECS Department, University of Calif@n Berkeley,
Technical Report UCB/EECS-2006-183, December 2006. [OnliAedilable:
http://www.eecs.berkeley.edu/Pubs/TechRpts/2006/EETH-183.pdf

[8] F. Allen, “Compiling for performance a personal tour,” rEdiego, CA,
2007, turing Award Lecture given at PLDI 2007. [Online]. Aeable:
http://awards.acm.org/images/awards/140/vstreand/2@ingaward2006.mov

[9] J. A. Kahle, M. N. Day, H. P. Hofstee, C. R. Johns, T. R. Maeuwaed D. Shippy,
“Introduction to the cell multiprocessor/BM J. Res. Dey.vol. 49, no. 4/5, pp.
589-604, 2005.

114



[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

H. P. Hofstee, “Power efficient processor architectanel the Cell processor.”
in 11th International Conference on High-Performance Computashitecture
(HPCA-11 2005)San Francisco, CA, USA, February 2005, pp. 258-262.

J. del Cuvillo, W. Zhu, Z. Hu, and G. R. Gao, “Towards a s@ftevinfrastructure
for cyclops-64 cellular architecture,” IHPCS 2006Labroda, Canada, June 2005.

Y. Zhang, T. Jeong, F. Chen, H. Wu, R. Nitzsche, and G. R. Gastudy of the
on-chip interconnection network for the ibm cyclops64 macdire architecture,”
in IPDPS’06: Proceedings of the 20th International ParalleldaDistributed Pro-
cessing Symposium, 25-29 April 2006, Rhodes Island, Grégci 2006.

Z. Hu, J. del Cuvillo, W. Zhu, and G. R. Gao, “Optimizatiohdense matrix mul-

tiplication on ibm cyclops-64: Challenges and experieridesEuro-Par 2006,

Parallel Processing, 12th International Euro-Par ConfecenDresden, Germany,
August 28 - September 1, 2006, Proceedi2@96, pp. 134-144.

D. M. Tullsen, S. J. Eggers, and H. M. Levy, “Simultansanultithreading: Max-
imizing on-chip parallelism,” inProceedings of the 22nd Annual International
Symposium on Computer Architecture Santa Margherita Ligure, Italy: ACM
SIGARCH and IEEE Computer Society, June 22—-24, 1995, pp. 3®-&Zdn-
puter Architecture New23(2), May 1995.

H. Akkary and M. A. Driscoll, “A dynamic multithreadingrocessor,” irProceed-
ings of the 31st Annual International Symposium on Micrbdecture Dallas,
Texas: IEEE-CS TC-MICRO and ACM SIGMICRO, November 30—-December2
1998, pp. 226—-236.

P. Marcuello, A. Gonalez, and J. Tubella, “Speculative multithreaded proass'so
in Conference Proceedings of the 1998 International Conferencgupercomput-
ing. Melbourne, Australia: ACM SIGARCH, July 13-17, 1998, pp. 74-8

G. S. Sohi, S. E. Breach, and T. N. Vijaykumar, “Multissmaprocessors,” ifPro-
ceedings of the 22nd Annual International Symposium on Ctanpuchitecture
Santa Margherita Ligure, Italy: ACM SIGARCH and IEEE Computecisty,
June 22-24, 1995, pp. 414-4Zxmputer Architecture New23(2), May 1995.

E. Rotenberg, Q. Jacobson, Y. Sazeides, and J. Smitacé&Tprocessors,” iRro-
ceedings of the 30th Annual International Symposium onddichitecture Re-
search Triangle Park, North Carolina: IEEE-CS TC-MICRO and ACI&IgI-
CRO, December 1-3, 1997, pp. 138-148.

D. W. Wall, “Limits of instruction-level parallelisrhjn Proceedings of the Fourth
International Conference on Architectural Support for Piragpming Languages

115



and Operating Systems Santa Clara, California: ACM SIGARCH, SIGPLAN,
SIGOPS, and the IEEE Computer Society, April 8-11, 1991, @p-188,Com-
puter Architecture Newd,9(2), April 1991;0perating Systems Revie@b, April
1991;SIGPLAN Notices26(4), April 1991.

[20] C. Ancourt and F. Irigoin, “Scanning polyhedra with DQpfs,” in Proceedings
of the Third ACM SIGPLAN Symposium on Principles & PracticBarllel Pro-
gramming Williamsburg, Virginia, April 21-24, 1991, pp. 39-58/GPLAN No-
tices,26(7), July 1991.

[21] P. Feautrier, “Toward automatic partitioning of arsayn distributed memory com-
puters,” inConference Proceedings, 1993 International Conference persam-
puting Tokyo: ACM, July 20-22, 1993, pp. 175-184.

[22] A. W. Lim and M. S. Lam, “Maximizing parallelism and mimizing synchroniza-
tion with affine transforms,” irfConference Record of POPL'97: The 24th ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Lagesi Paris,
January 15-17, 1997, pp. 201-214.

[23] J. Xue,Loop Tiling for Parallelism Kluwer Academic Publishers, 2000.

[24] John Paul Shen and Mikko H. Lipasklodern Processor Design: Fundamentals
of Superscalar Processors McGraw-Hill Book Company, 2005.

[25] John L. Hennessy and David A. Patters@Gomputer Architecture: A Quantitative
Approach 4th ed. San Francisco: Morgan Kaufmann Publishers, 10062

[26] T. Chen, Z. Sura, K. M. O’Brien, and J. K. O’'Brien, “Optimigj the use of
static buffers for dma on a cell chip,” ibCPC, ser. Lecture Notes in Computer
Science, G. Alrasi, C. Cascaval, and P. Wu, Eds., vol. 4382. Springer, 2006, pp
314-329. [Online]. Available: http://dx.doi.org/10.10078-3-540-72521-23

[27] Tao Liu and Haibo Lin and Tong Chen and Kevin O'Brien andd-8hao, “DBDB:
optimizing DMATransfer for the cell be architecture,” Rroceedings of the 23rd
international conference on Supercomputing, ICS 2009, t¥ank Heights, NY,
USA, June 8-12, 2009 ACM, 2009, pp. 36-45.

[28] J. E. Smith, “Decoupled access/execute computer t@athres,” ACM Trans.
Comput. Syst. vol. 2, no. 4, pp. 289-308, 1984. [Online]. Available:
http://doi.acm.org/10.1145/357401.357403

[29] J. E. Smith, S. Weiss, and N. Y. Pang, “A simulation stuafy decoupled
architecture computerslEEE Trans. Computvol. 35, no. 8, pp. 692—702, 1986.
[Online]. Available: http://dx.doi.org/10.1109/TC.198676820

116



[30] G. Gan, X. Wang, J. Manzano, and G. R. Gao, “Tile Peromati an
OpenMP Tile Aware Parallelization Technique for the Cycléds Multicore
Processor,” inEuro-Par 2009, Parallel Processing, 15th International reétPar
Conference, Delft, Netherlands, August 25 - August 28, 2008¢ceRdings
ser. Lecture Notes in Computer Science. Springer, 2009.if€nlAvailable:
http://dx.doi.org/10.1007/118232851

[31] G. Gan and J. Manzano, “TL-DAE: Thread-Level Decouphartess/Execution
for OpenMP on the Cyclops-64 Many-core Processorl’anguages and Compil-
ers for Parallel Computing, 22nd International Workshop, LCP009, Newark,
Delaware, US, October 8-10, 2009, Revised Selected Pagmrd_ecture Notes in
Computer Science. Springer, 2009.

[32] G. Gan, X. Wang, J. Manzano, and G. R. Gao, “Tile Reductite First Step
towards OpenMP Tile Aware Parallelization,” irecture Notes in Computer Sci-
ence: OpenMP in a New Era of Parallelism, IWOMP’09, Interpatl Workshop
on OpenMR ser. Lecture Notes in Computer Science. Springer Berlin délei
berg, 2009.

[33] “International Technology Roadmap for Semiconducto@ct 2007. [Online].
Available: http://www.itrs.net/Links/2007ITRS/HomeZ0@tm

[34] K. Krewell, “Best servers of 2004Microprocessor Repoytlan 2005.

[35] P. P. Gelsinger, “Microprocessors for the new millernmi Challenges, opportuni-
ties, and new frontiers,” isolid-State Circuits Conference, 2001. Digest of Tech-
nical Papers. ISSCC. 2001 IEEE International[IEEE Computer Society Press,
2001, pp. 22-25.

[36] J. Liand J. F. Martinez, “Power-performance consitlers of parallel computing
on chip multiprocessors,ACM Trans. Archit. Code Optimvol. 2, no. 4, pp.
397-422, 2005. [Online]. Available: http://doi.acm.dri§/1145/1113841.1113844

[37] T. Agerwala and S. Chatterjee, “Computer architecture: alléhges and
opportunities for the next decaddEEE Micro, vol. 25, no. 3, pp. 58-69, 2005.
[Online]. Available: http://dx.doi.org/10.1109/MM.26Q15

[38] D. M. Brooks, P. Bose, S. E. Schuster, H. Jacobson, P. N.v&ud
A. Buyuktosunoglu, J.-D. Wellman, V. Zyuban, M. Gupta, andWp. Cook,
“Power-aware microarchitecture: Design and modeling lehges for next-
generation microprocessorsiEEE Micro, vol. 20, no. 6, pp. 26—44, 2000.
[Online]. Available: http://dx.doi.org/10.1109/40.888L

117



[39] W. A. Wulf and S. A. McKee, “Hitting the memory wall: imjgations of the
obvious,” SIGARCH Comput. Archit. Newsol. 23, no. 1, pp. 20-24, 1995.
[Online]. Available: http://doi.acm.org/10.1145/21&5816588

[40] S. A. McKee, “Reflections on the memory wall,” OF '04: Proceedings of the
1st conference on Computing frontiersNew York, NY, USA: ACM Press, 2004,
p. 162. [Online]. Available: http://doi.acm.org/10.119437091.977115

[41] C. Grassl, “Optimizing for performance on ibm power4tsyss,” inThe 7th SCI-
COMP Meeting: IBM System Scientific User Gro@p03.

[42] K.I. Farkas, P. Chow, N. P. Jouppi, and Z. Vranesic, “Thaticluster architecture:
reducing cycle time through partitioning,” MICRO 30: Proceedings of the 30th
annual ACM/IEEE international symposium on Microarchiteet Washington,
DC, USA: IEEE Computer Society, 1997, pp. 149-159.

[43] F. Li, C. Nicopoulos, T. Richardson, Y. Xie, V. Narayanamd M. Kandemir,
“Design and management of 3d chip multiprocessors usingarktin-memory,”
SIGARCH Comput. Archit. Newsol. 34, no. 2, pp. 130-141, 2006. [Online].
Available: http://doi.acm.org/10.1145/1150019.113649

[44] N. Mitchell, L. Carter, J. Ferrante, and D. Tullsen, “IMersus TLP on SMT,”
in Supercomputing '99: Proceedings of the 1999 ACM/IEEE cemie on
Supercomputing (CDROM) New York, NY, USA: ACM Press, 1999, p. 37.
[Online]. Available: http://doi.acm.org/10.1145/3315331569

[45] P. Machanick, “How multithreading addresses the mgmaail,” School of IT and
Electrical Engineering, University of Queensland,” Teic@hReport, 2002.

[46] J. Clabes, J. Friedrich, M. Sweet, J. DiLullo, S. Chu, DadB| J. Dawson,
P. Muench, L. Powell, M. Floyd, B. Sinharoy, M. Lee, M. Gouldt,Wagoner,
N. Schwartz, S. Runyon, G. Gorman, P. Restle, R. Kalla, J. McGitid
S. Dodson, “Design and implementation of the POWERS5 micragssar,” in
DAC '04: Proceedings of the 41st annual conference on Desigtomation
New York, NY, USA: ACM Press, 2004, pp. 670-672. [Online]. Aable:
http://doi.acm.org/10.1145/996566.996749

[47] P. Kongetira, K. Aingaran, and K. Olukotun, “Niagara: 3®-way multithreaded
sparc processorlEEE Micro, vol. 25, no. 2, pp. 21-29, 2005. [Online]. Available:
http://dx.doi.org/10.1109/MM.2005.35

[48] C. McNairy and R. Bhatia, “Montecito: A dual-core, dualg¢hd itanium
processor,”IEEE Micro, vol. 25, no. 2, pp. 10-20, 2005. [Online]. Available:
http://dx.doi.org/10.1109/MM.2005.34

118



[49]

[50]
[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

J. Held, J. Bautista, and S. Koehl, “From a few cores toyn#ntera-scale com-
puting research overview,” Intel White Paper, 2006.

ClearSpeed Technology, “CSX processor architecturéaphper,” 2006.

“NVIDIA CUDA Revolutionary GPU Computing,” Oct 2007. [Ommle]. Available:
http://developer.nvidia.com/object/cuda.html

“ATI Radeon HD 2900 XT - Overview,” 2007. [Online]. Avable: http:
/lati.amd.com/products/radeonhd2900/radeonhd29a@et.html

S. Bell, B. Edwards, J. Amann, R. Conlin, K. Joyce, V. LeungMacKay,
M. Reif, L. Bao, J. Brown, M. Mattina, C.-C. Miao, C. Ramey, D. Wentizla
W. Anderson, E. Berger, N. Fairbanks, D. Khan, F. Montenedro$tickney,
and J. Zook, “Tile64 - processor: A 64-core soc with meshrauenect,”
in Solid-State Circuits Conference, 2008. ISSCC 2008. Digestechnical
Papers. IEEE International Feb. 2008, pp. 88-598. [Online]. Available:
http://dx.doi.org/10.1109/ISSCC.2008.4523070

L. Hammond and K. Olukotun, “Considerations in the desif hydra: A
multiprocessor-on-a-chip microarchitecture, Tech. RepL-TR-98-749, 1998.
[Online]. Available: citeseer.ist.psu.edu/hammond9&oderations.html

K. Mai, T. Paaske, N. Jayasena, R. Ho, W. J. Dally, and MroMitz, “Smart
memories: a modular reconfigurable architecture, ISCA '00: Proceedings
of the 27th annual international symposium on Computer éechire New

York, NY, USA: ACM Press, 2000, pp. 161-171. [Online]. Avaie:

http://doi.acm.org/10.1145/339647.339673

C. E. Kozyrakis and D. Patterson, “A new direction for qarter architecture re-
search, JEEE Computervol. 30(9), 1997.

M. B. Taylor, J. Kim, J. Miller, D. Wentzlaff, F. GhodratB. Greenwald,
H. Hoffman, P. Johnson, J.-W. Lee, W. Lee, A. Ma, A. Saraf, Mné&:ki,
N. Shnidman, V. Strumpen, M. Frank, S. Amarasinghe, and AanAgl, “The raw
microprocessor: A computational fabric for software cit€and general-purpose
programs,”|EEE Micro, vol. 22, no. 2, pp. 25-35, 2002. [Online]. Available:
http://dx.doi.org/10.1109/MM.2002.997877

E. Waingold, M. Taylor, D. Srikrishna, V. Sarkar, W. L&& Lee, J. Kim, M. Frank,
P. Finch, R. Barua, J. Babb, S. Amarasinghe, and A. Agarwal, faitiall to
software: Raw machineslEEE Computervol. 30(9), pp. 86—93, Sept. 1997.

119



[59] K. Sankaralingam, R. Nagarajan, R. McDonald, R. DesikanD®lia, M. S.
Govindan, P. Gratz, D. Gulati, H. Hanson, C. Kim, H. Liu, N. Rangthan,
S. Sethumadhavan, S. Sharif, P. Shivakumar, S. W. Keckiat, x Burger,
“Distributed Microarchitectural Protocols in the TRIPS ftype Processor,” in
MICRO 39: Proceedings of the 39th Annual IEEE/ACM Internaiddymposium
on Microarchitecture Washington, DC, USA: IEEE Computer Society, 2006,
pp. 480—491. [Online]. Available: http://dx.doi.org/1Q209/MICRO.2006.19

[60] J. Oliver, R. Rao, P. Sultana, J. Crandall, E. CzernikowsRiy. J. IV, D. Franklin,
V. Akella, and F. T. Chong, “Synchroscalar: A multiple clockndain, power-
aware, tile-based embedded processorSGA '04: Proceedings of the 31st an-
nual international symposium on Computer architectufd/ashington, DC, USA:
IEEE Computer Society, 2004, p. 150.

[61] G. R. Gao, “Programming and Compiling for TiNy Threads {l)N- Experience
with Cyclops-64 Architecture,” Dec 2006.

[62] P. M. Kogge, “Past predictions, the present, and futtereds,” Oct 2006.

[63] L. Seiler, D. Carmean, E. Sprangle, T. Forsyth, M. AbrdaDubey, S. Junkins,
A. Lake, J. Sugerman, R. Cavin, R. Espasa, E. Grochowski, T., Jaad
P. Hanrahan, “Larrabee: a many-core x86 architecture feuaticomputing,”
ACM Trans. Graph. vol. 27, no. 3, pp. 1-15, 2008. [Online]. Available:
http://doi.acm.org/10.1145/1360612.1360617

[64] Khronos, “OpenCL - The open standard for parallel prograng of
heterogeneous systems,” 2010. [Online]. Available: Httpvw.khronos.org/
opencl/

[65] Microsoft, “Example of DirectCompute for Next Genemti Game Effects,”
2009. [Online]. Available: http://www.microsoft.commcase/en/us/details/
6efl116dc-b1d9-41db-8a7b-db1932ff72a5

[66] T. EI-Ghazawi, W. Carlson, T. Sterling, and K. YeliddPC: Distributed Shared-
Memory Programming Wiley-Interscience, 2003.

[67] A. E. Eichenberger, J. K. O’Brien, K. M. O’'Brien, P. Wu, T. &n, P. H. Oden,
D. A. Prener, J. C. Shepherd, B. So, Z. Sura, A. Wang, T. Zhanghab, M. K.
Gschwind, R. Archambault, Y. Gao, and R. Koo, “Using advanaedpiler tech-
nology to exploit the performance of the cell broadband ieeign architecture,”
IBM Syst. J.vol. 45, no. 1, pp. 59-84, 2006.

[68] A. E. Eichenberger, K. O’'Brien, K. O'Brien, P. Wu, T. Chen, R. Oden,
D. A. Prener, J. C. Shepherd, B. So, Z. Sura, A. Wang, T. Zhangh®&o,

120



[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

and M. Gschwind, “Optimizing compiler for the cell processin PACT '05:
Proceedings of the 14th International Conference on Paraiehitectures and
Compilation Techniques Washington, DC, USA: IEEE Computer Society, 2005,
pp. 161-172. [Online]. Available: http://dx.doi.org/1Q009/PACT.2005.33

M. Kandemir and A. Choudhary, “Compiler-directed schatpad memory
hierarchy design and management,DAC '02: Proceedings of the 39th annual
Design Automation ConferenceNew York, NY, USA: ACM, 2002, pp. 628—633.
[Online]. Available: http://doi.acm.org/10.1145/513914077

J. del Cuvillo, W. Zhu, Z. Hu, and G. R. Gao, “Fast: A functadly accurate sim-
ulation toolset for the cyclops-64 cellular architecttine,Workshop on Modeling,
Benchmarking and Simulation (MoBS’05) of ISCA'®@adison, Wisconsin, June
2005.

——, “TiNy Threads: A thread virtual machine for the Cypkb4 cellular archi-
tecture,” inFifth Workshop on Massively Parallel Processing, in cotiut with
19th International Parallel and Distributed Processingngyosium (IPDPS 2005)
Denver, Colorado, USA, April 2005, p. 265.

J. del Cuvillo, W. Zhu, and G. Gao, “Landing openmp on opd-64: an efficient
mapping of openmp to a many-core system-on-a-chipCki06: Proceedings of
the 3rd conference on Computing frontiersNew York, NY, USA: ACM, 2006,
pp. 41-50. [Online]. Available: http://doi.acm.org/1046/1128022.1128030

E. Anderson, Z. Bai, J. Dongarra, A. Greenbaum, A. Mckannl. D. Croz,
S. Hammerling, J. Demmel, C. Bischof, and D. Sorensen, “Lapackortable
linear algebra library for high-performance computers,’Supercomputing '90:
Proceedings of the 1990 conference on Supercomputirag Alamitos, CA, USA:
IEEE Computer Society Press, 1990, pp. 2-11.

E. Anderson and J. J. Dongarra, “Evaluating block athor variants in
LAPACK,” LAPACK Working Note, Tech. Rep. 19, April 1990. [Onlg).
Available: http://www.netlib.org/lapack/lawnspdf/lad9.pdf

H. Ltaief, J. Kurzak, and J. Dongarra, “Parallel blockskenberg reduction
using algorithms-by-tiles for multicore architecturesvisged,” LAPACK
Working Note, Tech. Rep. 208, August 2008. [Online]. Avaléab http:
/lIwww.netlib.org/lapack/lawnspdf/lawn208.pdf

M. S. Lam, E. E. Rothberg, and M. E. Wolf, “The cache parfance and op-
timizations of blocked algorithms,” ifProceedings of the Fourth International
Conference on Architectural Support for Programming Larggesaand Operating
Systems Santa Clara, California: ACM SIGARCH, SIGPLAN, SIGOPS, and

121



[77]

[78]

[79]

[80]

[81]

[82]

[83]

[84]

the IEEE Computer Society, April 811, 1991, pp. 63-Cdmputer Architecture
News,19(2), April 1991;Operating Systems Revig@5, April 1991; SIGPLAN
Notices,26(4), April 1991.

A. Buttari, J. Langou, J. Kurzak, and J. J. Dongarra, “Aassl of
parallel tiled linear algebra algorithms for multicore ltectures,” LAPACK
Working Note, Tech. Rep. 191, September 2007. [Online]. lakde: http:
/Iwww.netlib.org/lapack/lawnspdf/lawn191.pdf

J. J. Dongarra, I. S. Duff, D. C. Sorensen, and H. A. van\@est, Numerical
Linear Algebra for High-Performance ComputersPhiladelphia: Society for In-
dustrial and Applied Mathematics, 1998.

T. Chen, T. Zhang, Z. Sura, and M. G. Tallada, “Prefetghimregular

references for software cache on cell,” ®GO ’'08: Proceedings of the
sixth annual IEEE/ACM international symposium on Code gei@mraand

optimization New York, NY, USA: ACM, 2008, pp. 155-164. [Online].
Available: http://doi.acm.org/10.1145/1356058.135607

T. Chen, H. Lin, and T. Zhang, “Orchestrating data trandbr the cell/b.e.
processor,” iNCS '08: Proceedings of the 22nd annual international coafee
on Supercomputing New York, NY, USA: ACM, 2008, pp. 289-298. [Online].
Available: http://doi.acm.org/10.1145/1375527.13757

J. Lee, S. Seo, C. Kim, J. Kim, P. Chun, Z. Sura, J. Kim, andi&, “Comic:

a coherent shared memory interface for cell be,”"PACT '08: Proceedings
of the 17th international conference on Parallel architgets and compilation
techniques New York, NY, USA: ACM, 2008, pp. 303—-314. [Online]. Availizb

http://doi.acm.org/10.1145/1454115.1454157

D. Tarditi, S. Puri, and J. Oglesby, “Accelerator: ugidata parallelism to

program gpus for general-purpose uses ABPLOS-XII: Proceedings of the 12th
international conference on Architectural support for gramming languages and
operating systems New York, NY, USA: ACM, 2006, pp. 325-335. [Online].
Available: http://doi.acm.org/10.1145/1168857.116889

K. Kusano, S. Satoh, and M. Sato, “Performance evalnaif the omni openmp
compiler,” in ISHPC ’00: Proceedings of the Third International Sympasion
High Performance Computing London, UK: Springer-Verlag, 2000, pp. 403—
414,

J. del Cuvillo, “Breaking away from the os shadow: a prograxecution model
aware thread virtual machine for multicore architecttiré®).D. dissertation,
Newark, DE, USA, 2008, chair-Guang R. Gao.

122



[85] M. M. Baskaran, U. Bondhugula, S. Krishnamoorthy, J. Ramamn, A. Rountev,
and P. Sadayappan, “Automatic data movement and computatapping for
multi-level parallel architectures with explicitly maredy memories,” inPPoPP
'08: Proceedings of the 13th ACM SIGPLAN Symposium on Piiesiand
practice of parallel programming New York, NY, USA: ACM, 2008, pp. 1-10.
[Online]. Available: http://doi.acm.org/10.1145/134%21345210

[86] I. E. Venetis and G. R. Gao, “Mapping the lu decompositmna many-core
architecture: challenges and solutions,”"GR '09: Proceedings of the 6th ACM
conference on Computing frontiers New York, NY, USA: ACM, 2009, pp.
71-80. [Online]. Available: http://doi.acm.org/10.118531743.1531756

[87] Michael Kistler and Michael Perrone and Fabrizio RetriCell multiprocessor
communication network: Built for speedEEE Micro, vol. 26, no. 3, pp. 10-23,
2006. [Online]. Available: http://dx.doi.org/10.1109W42006.49

[88] Tong Chen and Haibo Lin and Tao Zhang, “Orchestrating dedansfer for the
cell/B.E. processor,” ifProceedings of the 22nd Annual International Conference
on Supercomputing, ICS 2008, Island of Kos, Greece, June 2008 ACM,
2008, pp. 289-298.

[89] R. D. Blumofe and C. E. Leiserson, “Scheduling multithredd¢omputations by
work stealing,” inProceedings of the 35th Annual Symposium on Foundations of
Computer Science Santa Fe, New Mexico: IEEE, November 20-22, 1994, pp.
356-368.

[90] The NANOS Group at Universitat Pakitnica de Catalunya, “Barcelona OpenMP
Task Suite,” May 2009, http://nanos.ac.upc.edu/corttantelona-openmp-task-
suite.

[91] E. Ayguadk, N. Copty, A. Duran, J. Hoeflinger, Y. Lin, F. Massaioli, X.rdel,
P. Unnikrishnan, and G. Zhang, “The design of openmp task&E Trans. Paral-
lel Distrib. Syst, vol. 20, no. 3, pp. 404-418, 2009.

[92] Ge Gan, Xu Wang, Joseph Manzano, Guang R. Gao, “Tile fron: an openmp
tile aware parallelization technique for the cyclops-64ltroare processor,” in
Euro-Par 2009, Parallel Processing, 15th International redPar Conference,
Delft, Netherlands, August 25 - August 28, 2009, Proceedifg89. [Online].
Available: http://dx.doi.org/10.1007/11823283

[93] M. T. Kandemir, J. Ramanujam, M. J. Irwin, N. Vijaykrislhm |. Kadayif,
and A. Parikh, “A compiler-based approach for dynamicallgnaging scratch-
pad memories in embedded system#EE Trans. on CAD of Integrated

123



Circuits and Systemsvol. 23, no. 2, pp. 243-260, 2004. [Online]. Available:
http://doi.ieeecomputersociety.org/10.1109/TCAD.28022123

[94] M. E. Wolf and M. S. Lam, “A loop transformation theory égman algorithm to
maximize parallelism,;1IEEE Transactions on Parallel and Distributed Systems
vol. 2, no. 4, pp. 452—-471, October 1991.

[95] J. M. Anderson, S. P. Amarasinghe, and M. S. Lam, “Dath@mputation trans-
formations for multiprocessors,” iRroceedings of the Fifth ACM SIGPLAN Sym-
posium on Principles & Practice of Parallel Programmir§anta Barbara, Califor-
nia, July 19-21, 1995, pp. 166—-1GPLAN Notices30(8), August 1995.

[96] S. S. MuchnickAdvanced compiler design and implementatioisan Francisco,
CA, USA: Morgan Kaufmann Publishers Inc., 1997.

[97] M. Frigo, C. E. Leiserson, H. Prokop, and S. Ramachandi@ache-oblivious
algorithms,” inFOCS '99: Proceedings of the 40th Annual Symposium on Foun-
dations of Computer Science Washington, DC, USA: IEEE Computer Society,
1999, p. 285.

[98] L. Kurian, P. T. Hulina, and L. D. Coraor, “Memory latenejfects in decoupled
architectures with a single data memory module,Pnoceedings of the 19th An-
nual International Symposium on Computer Architectur&old Coast, Australia:
ACM SIGARCH and IEEE Computer Society, May 19-21, 1992, pp. 2362
Computer Architecture New20(2), May 1992.

[99] M. Sung, R. Krashinsky, and K. Asanayi“Multithreading decoupled architec-
tures for complexity-effective general purpose computir§iGARCH Comput.
Archit. Newsvol. 29, no. 5, pp. 56-61, 2001.

[100] M. N. Dorozhevets and P. Wolcott, “The el’brus-3 andrsam: recent advances
in russian high-performance computing,”"Supercomputvol. 6, no. 1, pp. 5-48,
1992. [Online]. Available: http://dx.doi.org/10.1007/8F128641

[101] M. N. Dorojevets and V. G. Oklobdzija, “Multithreadel@coupled architecture,”
International Journal of High Speed Computjngl. 7, no. 3, pp. 465—-480, 1995.

[102] J. G. Steffan, C. B. Colohan, A. Zhai, and T. C. Mowry, “A stdé approach to
thread-level speculation,” iRroceedings of the 27th Annual International Sympo-
sium on Computer Architecture Vancouver, British Columbia: IEEE Computer
Society and ACM SIGARCH, June 12-14, 2000, pp. 1-d@nputer Architecture
News,28(2), May 2000.

124



[103]

[104]

[105]

[106]

[107]

[108]

[109]

[110]

J.-M. Parcerisa and A. Goalez, “Multithreaded decoupled access/execute proces-
sors,” Universitat Polécnica de Catalunya, Departament dArquitectura de Com-
putadors, Technical Report UPC-DAC-1997-83, 1997.

J.-M. Parcerisa and A. Goalez, “The synergy of multithreading and ac-
cess/execute decoupling,” Rroceedings of the Fifth International Symposium on
High-Performance Computer Architecture Orlando, Florida: IEEE Computer
Society, January 9-13, 1999, pp. 59-63.

Paraskevas Evripidou, “D3-machine: a decoupled-deten multithreaded ar-
chitecture with variable resolution supporarallel Comput, vol. 27, no. 9, pp.
11961225, 2001.

P. Evripidou and J.-L. Gaudiot, “The USC decoupled titaviel data-flow exe-
cution model,” inAdvanced Topics in Data-Flow Computing-L. Gaudiot and
L. Bic, Eds. Englewood Cliffs, New Jersey: Prentice-Hall, 198h. 13, pp.
347-379, book contains papers presented at the First Wappksh Data-Flow
Computing, held in conjunction with the 16th Annual Interaaal Symposium
on Computer Architecture in Eilat, Israel, May 1989.

C.-K. Luk, “Tolerating memory latency through softwacontrolled pre-execution
in simultaneous multithreading processors,Pimceedings of the 28th Annual In-
ternational Symposium on Computer ArchitectureGoteborg, Sweden: IEEE
Computer Society and ACM SIGARCH, June 30-July 4, 2001, pp. 40S6fn-
puter Architecture New29(2), May 2001.

J. D. Collins, H. Wang, D. M. Tullsen, C. Hughes, Y.-F. L.é& Lavery, and

J. P. Shen, “Speculative precomputation: long-range foteifeg of delinquent
loads,” inISCA '01: Proceedings of the 28th annual international syswpm on

Computer architecture New York, NY, USA: ACM, 2001, pp. 14-25. [Online].
Available: http://doi.acm.org/10.1145/379240.379248

C. Zilles and G. Sohi, “Execution-based predictionngsspeculative slices,” in
Proceedings of the 28th Annual International Symposium omgtder Architec-
ture. Goteborg, Sweden: IEEE Computer Society and ACM SIGARCH, June
30-July 4, 2001, pp. 2-1&omputer Architecture New29(2), May 2001.

T. C. Mowry, M. S. Lam, and A. Gupta, “Design and evalaatiof a compiler
algorithm for prefetching,” inASPLOS-V: Proceedings of the fifth international
conference on Architectural support for programming laages and operating
systems New York, NY, USA: ACM, 1992, pp. 62—-73. [Online]. Available
http://doi.acm.org/10.1145/143365.143488

125



[111]

[112]

[113]

[114]

[115]

[116]

[117]

[118]

D. Callahan, K. Kennedy, and A. Porterfield, “Softwarefptching,” inASPLOS-
IV: Proceedings of the fourth international conference achitectural support
for programming languages and operating systenis$ew York, NY, USA: ACM,

1991, pp. 40-52. [Online]. Available: http://doi.acm.dr@.1145/106972.106979

A. Jacquet, V. Janot, C. Leung, G. R. Gao, R. Govindaraad, T. L. Sterling,
“An executable analytical performance evaluation appndac early performance
prediction,” in17th International Parallel and Distributed Processingngyosium
(IPDPS 2003), 22-26 April 2003, Nice, France IEEE Computer Society, 2003,
pp. 268-276.

R. Rangan, N. Vachharajani, M. Vachharajani, and D. Igdst, “Decoupled
software pipelining with the synchronization array,” RACT '04: Proceedings
of the 13th International Conference on Parallel Architeegiand Compilation
Techniques Washington, DC, USA: IEEE Computer Society, 2004, pp. 178-18
[Online]. Available: http://dx.doi.org/10.1109/PACT240.14

G. Ottoni, R. Rangan, A. Stoler, and D. I. August, “Autdiodhread extraction
with decoupled software pipelining,” iMICRO 38: Proceedings of the 38th
annual IEEE/ACM International Symposium on Microarchiteet Washington,
DC, USA: IEEE Computer Society, 2005, pp. 105-118. [Onlinejaikable:
http://dx.doi.org/10.1109/MICRO.2005.13

J. M. Perez, P. Bellens, R. M. Badia, and J. Labarta, “Ceffsaking it easier to
program the cell broadband engine procesdBiyl J. Res. Deyvol. 51, no. 5, pp.
593-604, 2007.

P. Bellens, J. M. Perez, R. M. Badia, and J. Labarta, “Cellsprogramming
model for the cell be architecture,” BIC '06: Proceedings of the 2006 ACM/IEEE
conference on SupercomputingNew York, NY, USA: ACM, 2006, p. 86.
[Online]. Available: http://doi.acm.org/10.1145/118&%41188546

F. Irigoin and R. Triolet, “Supernode partitioningfi Conference Record of the
Fifteenth Annual ACM Symposium on Principles of Programrhemgguages San
Diego, California: ACM SIGACT and SIGPLAN, January 13-15, 1988. 319—
329.

J. M. Anderson and M. S. Lam, “Global optimizations parallelism and locality
on scalable parallel machines,” Rroceedings of the ACM SIGPLAN '93 Confer-
ence on Programming Language Design and Implementafitouquerque, New
Mexico, June 23-25, 1993, pp. 112-13%5PLAN Notices28(6), June 1993.

126



[119]

[120]

[121]

[122]

[123]

[124]

[125]

[126]

[127]

A. W. Lim, S.-W. Liao, and M. S. Lam, “Blocking and arragrstraction across
arbitrarily nested loops using affine partitioning,” ®PoPP’01, Snowbird, Utah,
USA, June 2001.

M. E. Wolf and M. S. Lam, “A data locality optimizing abgithm,” in Proceedings
of the ACM SIGPLAN '91 Conference on Programming Languagegbesid Im-
plementation Toronto, Ontario, June 26—-28, 1991, pp. 30-845;PLAN Notices,
26(6), June 1991.

A. W. Lim and M. S. Lam, “Communication-free paralleimn via affine trans-
formations,” inProceedings of the 7th International Workshop on Languages
Compilers for Parallel Computingser. Lecture Notes in Computer Science, K. Pin-
gali, U. Banerjee, D. Gelernter, A. Nicolau, and D. Padua, Hdas 892. Ithaca,
New York: Springer-Verlag, August 8-10, 1994, pp. 92-106.

High Performance Fortran Forum, “High-performancdrain language specifica-
tion version 2.0,” Rice University,” Technical Report, 1997.

P. Charles, C. Grothoff, V. Saraswat, C. Donawa, A. KialsK. Ebcioglu,
C. von Praun, and V. Sarkar, “X10: an object-oriented apgraaaon-uniform
cluster computing,” iInOOPSLA ’'05: Proceedings of the 20th annual ACM
SIGPLAN conference on Object oriented programming, systeanguages,
and applications New York, NY, USA: ACM, 2005, pp. 519-538. [Online].
Available: http://doi.acm.org/10.1145/1094811.1092485

S. J. Deitz, “High-level programming language abstioms for advanced and dy-
namic parallel computations,” Ph.D. dissertation, SeaWA, USA, 2005, chair-
Lawrence Snyder.

Y. Dotsenko, C. Coarfa, and J. Mellor-Crummey, “A muliajiorm co-array
fortran compiler,” in PACT '04: Proceedings of the 13th International
Conference on Parallel Architectures and Compilation Teghas Washington,
DC, USA: IEEE Computer Society, 2004, pp. 29-40. [Online]. ikalde:
http://dx.doi.org/10.1109/PACT.2004.3

P. N. Hilfinger, D. Bonachea, D. Gay, S. Graham, B. Lilght,Pike, and K. Yelick,
“Titanium language reference manual,” Berkeley, CA, USA hldeep., 2001.

J. Guo, G. Bikshandi, B. B. Fraguela, M. J. Garzaran, andPBdua,
“Programming with tiles,” in PPoPP '08: Proceedings of the 13th ACM
SIGPLAN Symposium on Principles and practice of parallebgpmming
New York, NY, USA: ACM, 2008, pp. 111-122. [Online]. Availabl
http://doi.acm.org/10.1145/1345206.1345225

127



[128] UPC Consortium, “UPC Collective Operations Specifmasi V1.0 A publication
of the UPC Consortium,” 2003.

[129] M. P. I. Forum, “MPI: A message-passing interface dtad (version 1.0),” Tech.
Rep., May 1994, uRL http://www.mcs.anl.gov/mpi/mpi-repost

[130] S. J. Deitz, B. L. Chamberlain, S.-E. Choi, and L. Snyddhe design and
implementation of a parallel array operator for the arbjtneemapping of data,”
in PPoPP '03: Proceedings of the ninth ACM SIGPLAN symposiumrorciples
and practice of parallel programming New York, NY, USA: ACM, 2003, pp.
155-166. [Online]. Available: http://doi.acm.org/10451781498.781526

[131] S. J. Deitz, B. L. Chamberlain, and L. Snyder, “High-lelenguage support
for user-defined reductionsJ. Supercomput.vol. 23, no. 1, pp. 23-37, 2002.
[Online]. Available: http://dx.doi.org/10.1023/A:10181018449

[132] G. Viswanathan and J. R. Larus, “User-defined redustion efficient commu-

nication in data-parallel languages,” University of Wissm-Madison, Technical
Report 1293, Jan 1996.

[133] S.-B. Scholz, “On defining application-specific higivél array operations by
means of shape-invariant programming facilities,ARL '98: Proceedings of the
APL98 conference on Array processing languagdlew York, NY, USA: ACM,
1998, pp. 32-38. [Online]. Available: http://doi.acm.Ar@.1145/327559.327613

[134] P. Kambadur, D. Gregor, and A. Lumsdaine, “Openmp resitss for generic
libraries,” in Lecture Notes in Computer Science: OpenMP in a New Era of
Parallelism, IWOMP’08, International Workshop on OpenMmI. 5004/2008.
Springer Berlin / Heidelberg, 2008, pp. 123-133.

[135] J. Gummaraju and M. Rosenblum, “Stream programming emerpl-purpose
processors,” iINMICRO 38: Proceedings of the 38th annual IEEE/ACM
International Symposium on Microarchitecture Washington, DC, USA:
IEEE Computer Society, 2005, pp. 343-354. [Online]. Avdédab http:
//dx.doi.org/10.1109/MICRO.2005.32

128



