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ABSTRACT

During the past decade (2000 to 2010) , the multi / many core architectures have seen

a renaissance, due to the insatiable appetite for performance. Limits on applications and

hardware technologies have put a stop to the frequency race in 2005. Current designs can be

divided into homogeneous and heterogeneous ones. Homogeneous designs are the easiest to

use since most toolchain components and system software do not need too much of a rewrite.

On the other end of the spectrum, there are the heterogeneous designs. These designs offer

tremendous computational raw power, but at the cost of losing hardware features that

might be necessary or even essential for certain types of system software and programming

languages. An example of this architectural design is the Cell B.E. processor which exhibits

both a heavy core and a group of simple cores designed to be its computational engine.

Recently, this architecture has been placed in the public eye thanks to being a central

component into one of the fastest super computers in the world. Moreover, it is the main

processing unit of the Sony’s Playstation 3 videogame console; the most powerful video

console currently in the market. Even though this architecture is very well known for its

accomplishments, it is also well known for its very low programmability. Due to this lack of

programmability, most of its system software efforts are dedicated to increase this feature.

Among the most famous ones are ALF, DaCS, CellSs, the single source XL compiler, the

IBM’s octopiler, among others. Most of these frameworks have been designed to support

(directly or indirectly) high level parallel programming languages. Among them, there is

an effort called Open OPELL from the University of Delaware. This toolchain / framework

tries to bring the OpenMP parallel programming model (De facto shared memory parallel

programming paradigm) to the Cell B.E. architecture. The OPELL framework is composed

of four components: a single source toolchain, a very light SPU kernel, a software cache and

a partition / code overlay manager. This extra layer increases the system’s programmability,

xvi



but it also increased the runtime system’s overhead. To reduce the overhead, each of the

components can be further optimized. This thesis concentrates on optimizing the partition

manager components by reducing the number of long latency transactions (DMA transfers)

that it produces. The contributions of this thesis are as following:

1. The development of a dynamic framework that loads and manages partitions across

function calls. In this manner, the restrictive memory problem can be alleviated and

the range of applications that can be run on the co-processing unit is expanded.

2. The implementation of replacement policies that are useful to reduce the number of

DMA transfers across partitions. Such replacement policies aim to optimize the most

costly operations in the proposed framework. Such replacements can be of the form

of buffer divisions, rules about eviction and loading, etc.

3. A quantification of such replacement policies given a selected set of applications and

a report of the overhead of such policies. Although several policies can be given, a

quantitative study is necessary to analyze which policy is best in which application

since the code can have different behaviors.

4. An API that can be easily ported and extended to several types of architectures.

The problem of restricted space is not going away. The new trend seems to favor an

increasing number of cores (with local memories) instead of more hardware features

and heavy system software. This means that frameworks like the one proposed in

this thesis will become more and more important as the wave of multi / many core

continues its ascent.

5. A productivity study that tries to define the elusive concept of productivity with a

set of metrics and the introduction of expertise as weighting functions.

Finally, the whole framework can be adapted to support task based frameworks, by

using the partition space as a task buffer and loading the code on demand with minimal

user interaction. This type of tasks are called Dynamic Code Enclaves or DyCE.
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Chapter 1

INTRODUCTION

During the last decade, multi core and many core architectures have invaded all

aspects of computing. From embedded processors to high end servers and massive super-

computers, the multi / many core architectures have made their presence known. Their rise

is due to several factors; however, the most cited one is the phenomenon called “the power

wall.” This “wall” refers to the lack of effective cooling technologies to dissipate the heat

produced by higher and higher frequency chips[57]. Thus, the race for higher frequency was

abruptly stopped around 2006 with the “transformation” of the (single core) Pentium line

and the birth of the Core Duo family [51]. For the rest of this chapter, when referring to

the new designs, I will be using the term multi core to refer to both many and multi core

designs, unless otherwise stated.

Nowadays, the multi core architectures have evolved into a gamut of designs and

features. Broadly, this myriad of designs can be classified into two camps. The first one

is the “Type One” architectures which describes “heavy” cores1 glued together in a single

die. Designs in this family includes the AMD Opteron family and all the Intel Core Duo

line. The “Type Two” architectures refers to designs in which many “simple” cores2 are put

together in a single die. Most of today designs have an upper limit of eight with a projected

increased to twelve and sixteen in the next two years, with designs like Nehalem and Sandy

1 i.e. Cores which have many advance features such as branch prediction, speculative
execution and out of order engines

2 i.e. Cores that have simple features such as in order execution, single pipelines, lack
of hardware memory coherence and explicit memory hierarchies; however, they may
possess esoteric features to increase performance such as Processor in Memory, Full /
Empty bits, Random memory allocators, etc

1



bridge from Intel and AMD’s twelve-core Magni-Cours chips (being introduced in late 2011

or early 2012) [5].

On the other hand, type two designs can have processing elements counts of 64

(Tilera-64 [26]), 80 (Intel TeraFLOP Chip [59]), and 160 (Cyclops64 [31]). Their raw com-

putational power allows type two designs to be used in the current super computers which

now have enough computational power to handle PetaFLOPS calculations[27]. Examples

of both types of designs are given by figure 1.1. It is very common to separate the design

only based on the sheer number of processing elements. Thus, designs that have processing

elements numbering in the lower tens are considered multi core and the ones above are

classified as many core ones.

Although the rise of multi / many cores have brought a new era of computing, due

to the massive computational power that these designs provide, they do not come without a

price. For type one architectures, the cost of maintaining the advance hardware features does

set a very strict limit on the number of processing elements that can be glued together in a

chip or coexist in a single machine. This lesson was learned long ago by the supercomputing

community.

Most SMP and shared memory designs limit the number of core/processors that

can co-exist on a system using shared memory design to around 64 or 128. Using more

processors can incur in a disastrous loss of performance due to consistency / coherence

actions between the processor’s caches and main memory and long latencies between the

farthest memory banks[48]. Some companies, like Cray with its T3E, challenged this number

by producing systems that were “incoherent” in hardware but have some programming safe

nets that provides memory consistency if the programmer requires it[18]. This foreshadows

the current trends that are appearing in the market nowadays.

Conversely, type two design’s simplicity sends destructive waves upward to the soft-

ware development stack. Since many of the features that programmers, system software

designers and operating systems depended on are gone, most of the software components of

current systems require a “re-imagining” of their parts. Problems, such as restricted mem-

ory space, ILP exploitation and data locality and layout, which were fixed thanks to these
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(a) Pentium 4

(b) TeraFLOPS

Figure 1.1: 1.1a Examples of Type two[62] and 1.1b Type one architectures[30]
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advanced hardware features, have risen anew and are haunting programmers and system

software designers alike. This whole collection of problems (plus some classical ones) can

be summarized by characterizing the “productivity”3 of a computer system.

It is a common knowledge that parallel programming is difficult[79]. The easiest

parallel programming languages, like OpenMP and MPI, still present difficult problems

to the users (both programmers and compilers) such as efficient data decomposition and

layout, workload distribution, deadlock / livelock avoidance, priority inversion, effective

synchronization, among others. Thus, parallel programming has always been associated with

low productivity environments. This has been taken in consideration by major players in the

industry, such as IBM, Sun and Cray. An example of the renewed interest in productivity

was the High Productivity Computer Systems (HPCS) project[29] funded by DARPA. A

discussion about productivity in High Performance Computing can be found on chapter 2.

Next, we examine one of the major reasons that multi / many core has become the major

force in the market: Power.

1.1 The Power Race and Multi Core Designs

The current generation of programmers is faced with unique opportunities in this

new era of multi-core systems. New systems are coming into play which have an increased

number of cores but a shrinking of “heavy” hardware features. Such a trend results in a

plethora of multi core machines but a dearth of multi-core environments and languages. This

is due to the dependency of many of the low level software stacks to these hardware features.

This change came to the mainstream computing at the beginning of this decade (2000’s)

when chip manufacturers especially, Intel[50], changed their frequency race for multi core

and “green” chips. This move marked the official start of the multi core / many core era in

mainstream computing. This gave the chip manufacturers a free pass to extend their models

with more cores and cut off many of the “extra” baggage that many chips had. However,

3 In this thesis, productivity will be defined as the ability to produce sufficiently efficient
code in a reasonable amount of time by an average programmer
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this also involved a change on the way that main stream computing defines concepts such

as productivity[37].

As any computer engineer knows, the concept of productivity seems to be a very fluid

one. On one hand, we have performance being represented as code size, memory footprint

and power utilization (lower is better). Peak performance is still important but it can take a

second place when dealing with real time systems, in which a loss in performance is accept-

able as long as the quantum interval is respected. On the other hand, High Performance

Computing (HPC) plays a completely different game. On these systems, the total number

of Floating Point operations per second (FLOPS) is king. These systems and the applica-

tions written for them are created to exploit the most of the current technology to reach

the next computational barrier. As of the writing of this thesis, this barrier stands on the

PetaFLOPS (1015) range and there are many proposals to reach the next one (Exa) in the

not-so-distant future [78]. However, HPC, in particular, and the rest of the computing field

are changing. In HPC, and the general purpose field, another metric is being added: power.

Power was one of the major factors that put the nail in the coffin of the Pentium-4 line. To

gain a bit of perspective, we should take a view at features that made the Pentium-4 such

a power-hungry platform.

1.1.1 The Pentium Family Line

One of the perfect examples of the power trend is the Intel family of microprocessors.

The first Pentium microprocessors represented a jump in the general purpose processors.

They offered advance features such as SuperScalar designs4, 64 bit external databus, an

improved floating units, among others. However, this also started the famous frequency

race in which all major manufactures participated. In the case of Intel, all the iterations of

their Pentium family show an almost exponential increase on frequency from its introduction

in 1993 to 2006, as represented in figure 1.2. The Pentium line spanned three generations

of hardware design. These are the P5, the P6 and the Netburst architecture. The evolution

on these designs was represented by the addition of several features to increase single thread

4 Dynamic multiple issue techniques using principles presented in [80]
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performance. One of the most cited features is the extension of the pipeline (later christened

the hyper-pipeline) and the introduction of SuperScalar designs (e.g. the out of order

engine)5.

Figure 1.2: Intel Processor frequency growth from 1973 to 2006

The hyper-pipeline represented an increase on the number of stages of the normal

execution pipeline. This grew from 5 for the original Pentium to 14 on the Pro to 31 on the

Prescott core. This change had a tremendous effect on hardware design. First, it allowed the

frequency to jump up between designs. Second, the cores must be able to reduce the amount

of pipeline’s flushes that occur since they represent the greatest performance degradation

factor due to flushing such a long pipeline. For example, on a typical code in SPEC, there

is a branch every four to six instructions[53]. If you have a 31 stage pipeline, it will be

continually flushed and stalled6. Third, a longer pipeline has an average lower Instruction

Per Cycle (IPC) than a shorter one. Nevertheless, the lower IPC can be masked by the

higher operating frequency and the extensive hardware framework inside the cores.

5 Due to Intel’s secrecy about the designs of their cores, the following information was
extracted from [39] which was extracted using a combination of micro-benchmarks,
white papers and reference manuals

6 This is a very simple example since each instruction in the Pentium Core is decoded
into several micro operations and the reorder buffer, simultaneous multi threading and
the branch prediction will keep the pipeline busy, but the idea still holds
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Due to the branch cost, Intel engineers dedicated a great amount of effort to cre-

ate very efficient Branch predictor schemes which alleviate the branch costs. Some basic

concepts need to be explained. When dealing with predicting a branch, two specific pieces

of information need to be known: do we need to jump and where to jump to. On the

Intel architecture (even in the new ones), the second question is answered by a hardware

structure called the Branch Target Buffer. This buffer is designed to keep all the targets

for all recently taken branches. In other words, it is a cache for branch targets. The answer

for the former question (i.e. do we need to jump) is a bit more complex to explain 7.

The Pentium family of processors can be seen as an example of the evolution of

branch prediction schemes. Every chips in this family have two sets of predictors. One is

the static predictor which enters in effect when no information about the branch is available

(i.e. the first time that is encountered). In this case, the predictor is very simple and it

predicts only based on the direction of the branch (i.e. forward branches are not taken

and backward branches are taken). If a branch has been logged into the branch prediction

hardware, then the dynamic prediction part of the framework takes effect. This dynamic

prediction differs greatly across members of this processor family.

The first members of the family (Pentium 1) used a simple (yet slightly modified) 2-

bit saturation counter in which branches are predicted based on a four state Finite Automata

and the times that they were taken before. Figure 1.3 and 1.4 represent the FA for the simple

two bit saturation scheme and the modified one. In the simple method, a guess must be

correct at least twice to enter the steady state of the FA. This gives the FA a symmetrical

view. In the modified one, the steady state for the not taken part automatically jumps

back to the taken path after a single wrong prediction. Both methods are the simplest ones

used to dynamically predict the branches. However, the modified two bit saturation scheme

has a disastrous handicap. Due to the asymmetry of the FA, not taken branches are three

times more likely to be miss-predicted as taken branches. However, even the original 2-bit

saturation counter scheme is defeated when using some form of alternative taken / not taken

7 Be aware that when talking about static and dynamic branch prediction, I am referring
to conditional branches
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Figure 1.3: The Finite Automata for a simple Two Bit Saturation Scheme. Thanks to its
symmetry spurious results will not destroy the prediction schema

Figure 1.4: The Finite Automata for the modified simple Two Bit Saturation Scheme used
in the first Pentiums. Since it is not symmetric anymore the strongly taken path will jump
to strongly taken after one jump which will make this path more prone to misprediction
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branch[3]. Because of this, the next members of the family (the MMX, Pro, Pentium 2 and

Pentium 3) used a two level adaptive predictor. Figure 1.5 shows a high overview of the

predictor and their respective components. This predictor was first proposed in [92]. The

main idea is that each branch has a branch history which keeps its occurrences n times in

the past. When a branch is predicted the history is checked and used to select one of several

saturation counters in a table called the Pattern history table. This table has 2n entries,

each of which contains a two-bit saturation counter. In this way, each of the counters learns

about their own n-bit pattern. A recurrent sequence of taken / not taken behavior for a

given branch is correctly predicted after a short learning process.

Figure 1.5: Two Level Branch Predictor

A major disadvantage of this method is the size of the Pattern history table which

grows exponentially with respect to the history bits n for each branch. This was solved

by making the Pattern history table and the branch history register shared across all the

branches. However, this added a new indexing function and the possibility of interference
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Figure 1.6: The Agree Predictor

between branches. Since the table is shared and limited, it is very possible that the index-

ing function aliases two branches together. This is called interference and it can be very

detrimental if two branches have opposite outcomes. A solution proposed in [85] uses the

method called the “Agree Predictor”. Figure 1.6 shows a high level block diagram of this

predictor. In this case, each branch has what is called the biasing bit which suggests the

trend of a given branch (and all their aliases). Conversely, the global pattern table predicts

if the biasing bit is correct or not. Now, each of the branches can have a local two-bit

saturation counter which will produce the biasing bit. This is compared with the prediction

of the global pattern table (with a XOR) and a prediction value is generated. Thanks to

this method, negative interfaces are replaced with positive interferences (which do not incur
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any penalty).

Another important part of the pipeline is the addition of the Out of Order engine.

Out of order engines are used to schedule several concurrent instructions to distinct pipelines

without respecting a “strict” program order. However, all hazards (data, control and struc-

tural) are respected to ensure the correct execution of a given program. The out of order

engine accomplishes this by register renaming (called the Register Allocation Table (RAT),

multiple pipelines, reservation stations and a structure called the ReOrder Buffer (ROB).

During the first stage of the Pentium pipeline, the instructions are further translated into

the micro-operations (or uops for short). The decoding method is pretty much the same for

all of the Pentium family except on the number of decoding units and the function of each.

After the decoding is completed the uops go to the RAT and be renamed with temporary

registers. During the next step, the uops reserves an entry on the ROB and any available

operands are copied to the structure if available. Input registers in this case can fall into

three categories: the ones in which the inputs are in the permanent registers, the ones that

have the value in a ROB entry; and the ones in which the value is not ready yet. Next, the

“ready” uops are selected to go through the reservation stations and the execution ports for

each of the execution units. A ready uop is one which has all their dependencies resolved.

After the uops have been executed they enter a stage called retirement in which temporary

registers are written back to permanent registers and uops are retired from the ROB in

order. Besides these nominal stages, there are stages which take care of the prediction and

speculation (as described above) and some stages that are just designed to pass the data

from one part of the pipeline to another[77].

The out of order engine and the hyper-pipeline were introduced in the Pentium line

starting with Pentium Pro onward. The first Pentium design lacked the out of order engine.

Instead, it used the concept of instruction pairing to feed its two pipelines (named u and

v) which was mostly done by the programmer / toolchain. The differences between the

pipelines and the out of order engines of the subsequent generations were mostly on the

number and size of these features. The increase of the pipeline’s length (together with

the abilities of the ALU to “multiply” their frequencies for certain instructions) allowed
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an unprecedented increase in performance during the Pentium line lifetime. However, this

came with the price of harder hits on the branches miss predictions, an increase on the

thermal and power requirements and an overall reduction of performance per watt [87].

Intel and AMD define the Thermal Design Power (TDP) metric to address the max-

imum amount of power, when running non-synthetic benchmarks, that the cooling system

needs to dissipate. During 2006, the TDP of selected chips (like the Pressler XE Pentium 4’s

flavor) reached as high as 130 watts[22]. As a side note, the most power hungry component

of a typical computer is not the CPU but the graphic card with maximum power usage (not

TDP) of 286 watts (for ATI Radeon HD 4870 X2 [20]). During that year, Intel abandoned

their frequency race and their Netburst architecture to a more streamlined architecture and

multiple cores8.

1.1.2 The Multi Core Era: Selected Examples

As the 2000s decade came to a close, the hardware designs got simpler and more

streamlined. Pipelines became shorter, reorder engines got smaller, and complex cores began

to recede to allow simpler (albeit more numerous) ones. Moreover, advances in fabrication

technology allowed smaller gates to be created and more components to be crammed inside

a chip. In the current generation, chips with 45 nm gate sizes are common and new chips

with 32 nm were introduced in early 2011[23]. In the current market, Multi core chips are

on the range of two to sixteen, rarely venturing into the thirty two range. On the other

hand, many core designs start at around 40 cores and grows upward from there[25]. In these

designs, the cores are much simpler. Several examples for both classifications are presented

below.

1.1.3 Multi Core: IBM’s POWER6 and POWER7 Chips

IBM, especially with its POWER series, has been in the multi core arena for a long

time. Due to that its main selling factor is servers (which require a high amount of through

8 The Pentium D represented the last hooray of the Netburst architecture in which it
married the Netburst and multiple core design. However, it still had the power and
heat problems exhibit by its ancestors.
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put), IBM developed processors which have several cores to handle multiple requests. Their

chips have standard features such as dual cores and two-way Simultaneous Multi Threading,

for a total of four logical threads per processor. Larger core counts are created by using the

Multi-Chip Module packing technology to “fake” four and eight designs. Similar techniques

were used in the early days of the Intel’s Core chip family [39].

Up to the POWER5+, IBM continued with the trend of heavier chips with a plethora

of (very power hungry) hardware features and long pipelines. The POWER5 was notorious

for its 23 stages pipeline, out of order engine, register renaming and its power consumption.

Running from 2 GHz to 3 GHz, it wasn’t the speed demon that was expected. After

major revisions on the design, the next generation (POWER6) was born with the following

features: a higher frequency, an (almost) exclusion of the out of order engine, a reduction of

the pipeline stages from 23 to 13 and more streamlined pipeline stages. Major changes to the

design also included several components running at half or a fraction of the processor core

frequency (e.g. caches runs at half the frequency), a simplification of the branch prediction

hardware (from 3 BHT to one and a simplified scheme) and an increase on cache size by a

factor of 4. Even though the power profile of the POWER5 and POWER6 are practically

the same, the frequency of the POWER6 chips can be twice of their POWER5 counterparts

(up to 5 GHz). Details about both designs can be seen in [83] and [64].

For the next generation of POWER chips, IBM plans to create a design that is

concentrated on increasing the number of threads per processor. The POWER7 line consists

of dual, quad and octo cores. Each of them is capable of 4-way simultaneous multithreaded.

This achieves 32 logical threads in a single processor. Moreover, this chip has an aggressive

out of order engine and 32 MiB L3 cache of embedded DRAM. The pipelines in each core

runs with a reduced frequency compared to POWER6 ones (from 4.7 GHz in POWER6 to

4.14 GHz in POWER7). Several extra features include the dynamic change of frequency

and selectively switching on and off cores based on workload [84].
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1.1.4 Multi Core: Intel’s Core’s Family of Processors

After the Netburst design was abandoned, Intel took a gander at the Pentium-M line

(their low power mobile processors) and re-designed them for multi-core. This was the birth

of the Core family of processors. These processors are marked by a reduction of the pipeline

lengths (from 31 to 14 on the first generation Cores) with an understandable decrease in

frequency, a simpler branch prediction and no (on almost all models) Hyper Threading.

However, they kept the out of order engine, continued using its Intel SpeedStep power (a

feature in which frequency decreases or increases according to workload) technology and

they have provided distributed and distinct Level 1 caches but shared Level 2 ones.

The first lines of processors in this family are the Core Solo and Duo cores. Introduced

in 2006, they are based on the Pentium M design and they have a very low Thermal Design

Power; anywhere from 9 to 31 watts and frequency ranging from 1.06 GHz to 2.33 GHz.

The only difference between the two processor’s flavors is the number of actual cores being

used. The Core duo supports two cores and the Solo only one. When using the Solo design

one of the cores is disabled; otherwise, the designs are identical. Some disadvantages of

this first generation include only 32-bit architecture support; a slight degradation for single

thread application and floating point; and higher memory latency than its contemporary

processors.

The next product in the line was the Core 2. These processors came into dual and

quad core and have several improvements over the Core line. It enhanced the pipeline to

handle four uops per cycles (in contrast to the 3 for the Core one)9 and the execution units

have been expanded from 64 to 128 bits. It also has native support for 64-bit and support

for the SSE3 instruction set. The Thermal Power Design for these chips ranged from 10

watts to 150 watts with frequencies ranging from 1.8 GHz to 3.2 GHz. It is important to

note that even though the upper limits of the Core 2 line (codenamed Kentfield Extreme

Edition) has a higher TDP as the most power hungry Pentium 4, we are talking about quad

cores (each capable of 2 virtual threads) instead of single ones. One of the major bottlenecks

9 However, the four instructions are not arbitrary, they have to be of a specific type to
be decoded at the same time.
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of this design was that all the cores shared a single bus interconnect [39].

The next Intel line is the Core i7 processor (together with Core i3 and Core i5).

These chips are based on the Nehalem architecture. Nehalem architecture’s major change

is the replacement of the front side bus with a point-to-point network (christened Intel

QuickPath10) which has better scalability properties than the serializing bus, the integration

of the DRAM controller on the processor and the return of HyperThreading to the Intel

main line processors11. Other new features are an increase on the number of parallel uops

that can be executed concurrently, i.e. 128 uops in flight; a new second level predictor

for branches; the addition of a shared Level 3 cache; and the introduction of the SSE4.2

instruction set[39].

Besides the extensions and enhancements done to the cores, the chip power features

are worth a look too. Besides the Intel SpeedStep (i.e. Clock gating), the new Nehalem

designs have the TurboBoost Mode. Under this mode, under-utilized core are turned off

and their work re-distributed to other cores in the processor. The other cores on the chip

get a frequency boost to compensate for the extra work. This frequency boost continues

until the TDP of the machine is reached. Currently, the Nehalem design supports 4 and

8 cores natively (in contrast to the Core 2 Quad which used two Dual-core processor in a

single Multi Chip Module (MCM)).

1.1.5 Multi Core: Sun UltraSPARC T2

Sun Microsystems are well known on the server markets for their Chip Multithreaded

(CMTs). The latest one was the UltraSPARC T2 which concentrates on the idea of Simul-

taneous Multi threading (SMT). In these types of chips, Thread Level Parallelism (TLP)

is considered to be a major factor for performance instead of Instruction Level Parallelism

(ILP). This trend is reflected in their chip designs. The UltraSPARC T1 and T2 lack

complex out of order engines in favor of resource duplication for zero-cycle-context-switch

10 Long overdue, AMD has their Hyper Transport point-to-point interconnect introduced
in their OPTERON line around 2003

11 It is true that HT was available during the Core era before this. However, the chips
that used it were very high end chips reserved for gamers, HPC or computer experts
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between logical threads. This allows the integrations of numerous cores and logical threads

on a single die. The UltraSPARC T1 had support for 32 logical threads running on 8 hard-

ware cores. The T2 increased the number of logical threads from 32 to 64. In a nutshell, an

UltraSPARC T2 chip has eight physical SPARC cores which contain two integer pipelines,

one floating point pipeline and one memory pipeline. Each of them capable of eight logical

threads; a shared 4 MiB Level 2 cache with 16-way associative and four dual channel Fully

Buffered DIMM (FBDIMM) memory controllers. Another major improvement is the inte-

gration of the floating point pipeline into the core and the doubling of the execution units

per core. An extra pipeline stage (called pick) is added to the core so that instructions from

its two threads can be executed every clock cycle. Even with the integration of the floating

point unit and the addition of the new stage, the number of pipeline stages is still below

other cores in this list: eight for the integer data path and 12 for the floating point path.

During execution, the logical threads are statically assigned to one of two groups. This

means that during the Fetch stage, any instruction from the 8 threads may be chosen (only

one instruction per cycle because the I-cache has only one port). However, after they are

assigned to a thread group, a single instruction from each group is chosen per cycle for ex-

ecution. This process happens on the Pick state of the pipeline. The SPARC core supports

a limited amount of speculation and it comes into three flavors: load speculation, condi-

tional branch and floating point traps. Speculated loads are assumed to be level 1 cache

hits. Speculated conditional branches are assumed to be non-taken. Finally, the Floating

point pipeline will speculate the trap for speculated floating point operations. Since a failed

speculated operation will cause a flush of the pipeline, each thread on the core keeps track

of their speculated instructions[86].

All the cores in the processor communicate with the eight banks of the 4 MiB Level 2

cache and the I/O by an 8 by 9 crossbar. The total bandwidth for writes in the crossbar is 90

GB / sec and for reads is 180 GB / sec. Since each port is distinct for each core and the paths

from the cores to the cache and vice versa are separate, there can be sixteen simultaneous

requests between the cores and the caches; eight load and /or store requests and eight data

returns, acknowledgments and / or invalidations. When arbitration is needed, priority is
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given to the oldest requestor to maintain fairness.

Other interesting features is the integration of a network controller and a PCI-Express

controller on the processor and the addition of a cryptographic unit. Although its power

features are not as advanced as other processors, its power consumption is relatively low:

84 Watts on average with cores running at 1.4 GHz[86].

1.1.6 Multi Core: The Cray XMT

Figure 1.7: The Cray XMT Super Computer. It has 128 logical threads that shares a 3
LIW pipeline. The memory subsystem sports extra bits per memory word that provides
fine grained synchronization, memory monitoring, in-hardware pointer forwarding and syn-
chronization based interrupts.

Chip Multi Threading is not a new idea. There have been machines which have

massive number of logical threads sharing a single hardware pipeline (e.g Denalcor HEP,

Tera MTA1 and MTA2, etc [38]). One of the current designs that takes this concept
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to the extreme is the Cray XMT. A high level overview of a Cray XMT system can be

found in figure 1.7. The Cray XMT (which stands for eXtreme Multi-Threading) is the

latest generation of Cray / Tera multithreaded architecture. Its processor, named the

ThreadStorm, contains support for 128 threads sharing a single Long Instruction Word

(LIW) pipeline. The XMT system supports to up of 8192 ThreadStorms forming up to a 64

terabytes of shared memory space. The 128 Simultaneous multithreaded (SMT) processor

allows the overlapping of several logical threads when waiting for long latency operations.

Each of the ThreadStorm threads has a distinct register file, control register, program

counter and several other registers which represents its state. Although, the ThreadStorm

has great performance when running multiple threads, its single thread performance is less

than spectacular. This is alleviated by a very powerful parallelizing compiler, a custom-

designed parallel Operating System (called MTK), a parallel file system (the Lustre file

system[34]), and a high performance runtime.

The ThreadStorm pipelines are fed in a classical LIW way, i.e. the compiler stati-

cally schedules the instructions. A ThreadStorm can achieve 1.5 GFLOPS running at 500

MHz. Although the ThreadStorm pipeline is very interesting, there are other aspects of the

architecture that deserve some consideration. The memory and the network for instance

present considerable differences from typical systems. The Memory subsystem is designed

for applications which exhibit little to no locality. Each node on the system has up to 8

GiB of memory attached to it12. All memories form a global shared address space. Each

addressable word in the memory has extra bits that represent different states. These states

are used for fine grained synchronization (akin to the Dataflow M structures concepts[8]),

forwarding pointers and user defined traps. Moreover, the address of a memory word is

scrambled uniformly across all physical banks across the system. This reduces contention

across the banks. All these features allow very fast fine grained synchronization, efficient

traversal of pointer based structures and a normalized access latency for memory operations.

This provides very good advantages for irregular applications which exhibit unpredictable

behavior and access patterns [16].

12 However, the concept of local or nearby memory is hidden from the programmer
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The nodes of the Cray XMT are based on the boards for the Cray XT4 and XT5.

They are using AMD’s Torrenza Open Socket technologies and the same supporting infras-

tructure used for the XT machines. The nodes are arranged as a 3D torus connected using

the proprietary Cray SeaStar2 network. This switch sports an embedded PowerPC which

manages two DMA engines. The SeaStar2 chip takes care of communication between the

cores connected by the HyperTransport[88] and the inter-node communication with six high-

speed links. The network provides 30 to 90 millions of memory requests for 3D topologies

composed of 1000 to 4000 processors[16].

1.1.7 Many Core: The Tile64

Although Cray’s XMT takes the idea of CMT to new heights, other manufactures

based their designs on a large numbers of simple cores connected by high speed networks.

Some of these designs concentrate on improving the networks with several structures and

topologies.

On September 2007, the Tilera Corporation introduced the Tile64 chip to the market.

This is a many core composed of 64 processing elements, called Tiles, arranged in a 2D Mesh

(eight by eight). The chip has connections to several I/O components (Gigabit Ethernet,

PCIe, etc) and four DRAM controllers around the mesh’s periphery. The DRAM interfaces

and the I/O components provide bandwidth up to 200 Gbps and in excess of 40 Gbps,

respectively, for off-chip communication.

A tile is described as the core and its associated cache hierarchy plus the intercon-

nection network switch and a DMA controller. Each of the cores supports up to 800 MHz

frequency, three way Very Long Instruction Word (VLIW) and virtual memory. A Tile64

chip can run a serial operation system on each of their cores or a Symmetric Multi Proces-

sor Operation System (like SMP Linux) on a group of cores. The Tile64 chips is different

from other many core designs by their cache hierarchies, which maintain a coherent shared

memory; and their five distinct mesh networks.

The first two levels of the cache hierarchy on the Tile64 chips behave like normal

Level 1 and Level 2 caches, which accounts for almost 5 MiB of on chip memory. However,
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Tile64 presents a virtualized Level 3 which is composed by the aggregation of all Level 2

caches. To efficiently access other tile caches (i.e. data in the virtualized level 3 cache),

there are a group of DMA controllers and special network links.

Inter tile communications is achieved by five distinct physical channels. Although

having all the networks as physical links instead of virtualizing them sounds counter-intuitive

(i.e. more wires equals more cost, possible more interference, more real state, etc), advances

in fabrication (which makes the addition of extra links almost free) and the reduction of over-

all latency and contention are given as the main reasons to create the physical networks[90].

The network design is called iMesh and it has five links: the User Dynamic Network (UDN),

the I/O Dynamic Network (IDN), the Static Network (STN), the Memory Dynamic Network

(MDN), and the Tile Dynamic Network (TDN). Each tile uses a fully connected all-to-all

five-way crossbar to communicate between the network links and the processor engine. From

the five link types, four are dynamic networks. This means that each message is encapsu-

lated (i.e. packetized) and routed across the network in a “fire and forget” fashion. These

dynamic packets are routed using a dimension-ordered wormhole scheme. For latency, each

of these packets can be processed in a cycle, if the packet is going straight; or two, if it needs

to make a turn in a switch. In the case of the static network, the path is reserved so that

a header is not required. Moreover, there is an extra controller that will change the route

if needed. Due to these features, the Static Network can be used to efficiently stream data

from a tile to another by just setting up a route between the two of them. Like the STN

fabric, each of the other four networks has specific functions. The I/O Dynamic Network

(IDN) provides a fast and dedicated access to the I/O interfaces of the tile chip. Moreover,

it provides a certain “level isolation” since it is also used for system and hypervisor calls.

In this way, the system traffic does not interfere with user traffic and vice-versa; reducing

the O.S. and system software noise. As its name implies, the Memory Dynamic Network

(MDN) is used to interface between the tiles and the four off-chip DRAM controllers. The

Tile Dynamic network (TDN) is used as extension of the memory system and it is used for

tile to tile cache transfers. This network is crucial to implement the virtualized level 3 cache.

To prevent deadlocks, the request for the cache transfer is routed through the TDN but the
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responses are routed through the MDN. Finally, the Tile64 chip has extensive clock gating

features to ensure lower power consumption and according to its brochure, it consumes 15

to 22 watts at 700 MHz with all its cores running[24].

1.1.8 Many Core: The Cyclops-64

The Cyclops-64 architecture is the brain child of IBM’s Cray Award winner Monty

Denneau. It is a many core architecture that has 80 processing elements connected by a high

speed crossbar. Each processing element has two integer cores sharing a single floating point

pipeline and a single crossbar port. Moreover, each element has two SRAM banks of 30 KiB

which total to 4.7 MiB of on-chip memory13. Besides the on-chip memory, the architecture

supports up to 1 GiB of off-chip DRAM. The Cyclops-64 chip, or C64 chip for short, also

has connections to a host interface which is used to access external devices. Finally, the chip

has a device called the A-switch which is used to communicate with the neighbor chips. A

group of C64 chips are arranged into a 3D mesh network. A Cyclops-64 system supports up

to 13284 chips which provides more than 2 million concurrent threads[31]. A block diagram

for the Cyclops64 chip is given by Figure 1.8. Each of the components of the C64 chip is

described in more details in the subsections below.

Each 64-bit integer core runs at 500 MHz with a RISC-like ISA. A core is a simple

single in-order processor14 which uses 32-bit instruction words. Each of the cores can handle

concurrently branches and integer operations but they share other facilities like the floating

point pipeline, the crossbar port and the instruction cache 15. Each core has a 64 64-bit

register file and a set of special registers. Each processor (i.e. computational element) is

capable of achieving a peak performance of 1 GigaFLOPS (while using the fused multiply

add operation) which means that the chip can achieve a peak of 80 GigaFLOPS[31].

13 The terms KiB and MiB are used to indicate that these are power of 2 metrics, i.e. 210

and 220 respectively, and to avoid confusion when using the terms Kilo and Mega which
can be either base two or ten according to context

14 There are very limited out of order features on each core which helps to execute unrelated
instructions while waiting for memory operations (loads) to return.

15 The Instruction Cache is shared by five processing elements
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Figure 1.8: A Logical diagram of the Cyclops-64 Architecture

A C64 chip has two networks: the intrachip crossbar and the A switch controller

which provides interchip communication. The crossbar have 96 ports and connects all

the internal components of the chip. Communications to off-chip memory banks and the

interleaved global address space are processed by the crossbar which ensures equal latency

to all operations (sans contention). As shown in [95], the chip has a Sequential Consistency

memory model as long as all memory traffic goes through the crossbar. A crossbar port

can support up to 4 GiB/sec. This gives a total of 384 GiB/sec for the whole crossbar

network[31].

The A switch deals with communication between neighbor chips. It connects with

up to six chip neighbors in a 3D mesh network. At every cycle, the A switch can transfer 8

bytes in a single direction on each of its links [31].

The on-chip and off-chip memory spaces provide an explicit three level memory

hierarchy. The first level is composed of a fast access memory which is possible since

each core can access a region of their SRAM bank without going through the crossbar
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controller. This space is called the Scratch pad memory and it can be configured at boot

time. Moreover, this space is considered private to its connected cores16. The rest of

the SRAM bank is part of the interleaved global SRAM which is accessible by all cores.

Finally, we have the DRAM memory space which is the off-chip memory which has the

longest latency. Access to global SRAM and DRAM are Sequentially Consistent. However,

accesses to Scratch pad are not[95].

The chip does not have any hardware data cache, does not support virtual memory or

DMA engines for intra-chip communication. All memory accesses must be orchestrated by

the programmer (or runtime system). Application development for the Cyclops64 is helped

by an easy-to-use tool-chain, a micro-kernel and a high performance runtime system. Some

other important features of the architecture includes: hardware support for barriers, a light

weight threading model, called Tiny Threads, and several atomic primitives used to perform

operations in memory. The final system (composed of 24 by 24 by 24 nodes) will be capable

of over one petaFLOP of computing power [31].

All these designs show the way that processor and interconnect technologies work

together to ensure the habitation of dozen of processing elements. However, we must in-

troduce the other camp of parallel computing design: heterogeneous designs. Under these

designs, several different architectural types come together on a single die. The major fea-

ture of these designs, their heterogeneity, it is also their major weakness. Coordinating

all the elements of the design is a very difficult task to do either automatically or by the

programmer. This reduces the productivity of a system greatly and the need for software

infrastructure is essential for the survival of the design. In Chapter 3.3, the architecture

used in this study and its software infrastructure are introduced. However, before we jump

to this, we need to introduce the questions that this thesis tries to answer; and we introduce

the elusive concept of productivity to the readers (Chapter 2).

16 However it can be access by other cores if needed
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1.2 Problem Formulation: an Overview

Thanks to current trends, many of the old problems of yesteryears have come back

to haunt system designers and programmers. One of these problems is how to utilize effi-

ciently utilize the limited memory which each of the accelerator / co-processor units have?

Moreover, when a design is proposed, how to effectively optimize such a design so that it

can provide the maximum performance available?

Many frameworks have been designed to answer these questions. Several of them

are mentioned when in Chapter 7. This thesis answers the first question by proposing a

framework that loads code on demand. This solution is not novel since the concept of

overlays and partitions were used before the advent of virtual memory. However, their im-

plementation to the heterogeneous architectures is a novel idea. Moreover, the overlays and

partitions introduced here have a much finer granularity and a wider range of uses than the

ones provided by classical overlays, embedded systems overlays or even by virtual memory.

The second question is answered by several replacements methods that aim to minimize

long latency operations. The next sections and chapters introduce both the problems and

the proposed solutions further.

1.3 Contributions

This thesis’s framework was designed to increase programmability in the Cell B.E.

architecture. In its current iteration, many optimization efforts are under way for each com-

ponent. Two of the most performance-heavy components and the target of many of these

optimization efforts are the partition manager and the software cache. Both of these com-

ponents use Direct Memory Accesses (a.k.a. DMAs) transfers heavily. Thus, the objective

of all these efforts is to minimize the number of DMA transactions per given application.

This thesis main objective is to present a framework which provides support for dynamic

migrating code for many core architectures using the partition manager framework. To this

purpose some code overlaying techniques are presented. These techniques range from divi-

sion of the available overlay space through different replacement polices. The contributions

of this thesis are as follows.
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1. The development of a framework that loads and manages partitions across function

calls. In this manner, the restricted memory problem can be alleviated and the range

of applications that can be run on the co-processing unit is expanded.

2. The implementation of replacement policies that are useful to reduce the number of

DMA transfers across partitions. Such replacement policies aim to optimize the most

costly operations in the proposed framework. Such replacements can be of the form

of buffer divisions, rules about eviction and loading, etc.

3. A quantification of such replacement policies given a selected set of applications and a

report of the overhead of such policies. Several policies can be given but a quantitative

study is necessary to analyze which policy is best for which application since the code

can have different behaviors.

4. An API which can be easily ported and extended to several types of architectures.

The problem of restricted space is not going away. The new trend seems to favor an

increasing number of cores (with local memories) instead of more hardware features

and heavy system software. This means that frameworks like the one proposed in

this thesis will become more and more important as the wave of multi / many core

continues its ascent.

5. A productivity study which tries to define the elusive concept of productivity with a

set of metrics and the introduction of expertise as weighting functions.

This thesis is organized as follows. The next chapter (2) introduces the concept

of productivity and their place in High Performance Computing. Chapter 3 has a short

overview on the Cell Broadband engine architecture and the Open Opell framework. Chap-

ter 4 presents the changes to the toolchain and a very brief overview of the partition manager

framework. Chapter 5 shows the lazy reused (cache like) replacement policies and shows the
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replacement policies with pre-fetching methods and introduces the partition graph struc-

ture. Chapter 6 presents the experimental framework and testbed. Chapter 7 shows related

work to this thesis. Chapter 8 presents the conclusions drawn from this work.
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Chapter 2

PRODUCTIVITY STUDIES

“While computer performance has improved dramatically, real productivity
in terms of the science accomplished with these ever-faster machines has not
kept pace. Indeed, scientists are finding it increasingly costly and time con-
suming to write, port, or rewrite their software to take advantage of the new
hardware. While machine performance remains a critical productivity driver for
high-performance computing applications, software development time increas-
ingly dominates hardware speed as the primary productivity bottleneck” [37]

As new generations of multi / many core designs rise and fall, an old problem raises

its head: productivity. In layman terms, productivity refers to the production of a unit

of work in a specified amount of time. Under the High Performance Computing (HPC)

field, this objective is harder to achieve due to the challenges imposed by the new design

decisions which move many classical hardware features (i.e. coherent caches, hardware

virtual memory, automatic data layout and movement, etc) to the software stack. As a

result of these challenges, the High Productivity Computing System (HPCS) project led

by DARPA was created. This is not much different than current projects which deal with

hardware / software co-design issues like the Ubiquitous High Performance Computing

(UHPC) initiative, also lead by DARPA[29].

With all these considerations in mind, emergent parallel programming models need

to be carefully crafted to take advantage of the underlying hardware architecture and be

intuitive enough to be accepted by seasoned and novice programmers alike. One of the se-

lected groups for the HPCS project is the IBM’s Productive Easy-to-Use Reliable Computer

Systems (PERCS) initiative. This group created several methods to empirically measure

the productivity of selected parallel languages or languages’ features. These methods be-

came fundamental on their overview of language design. A graphical representation of such
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a design is given by figure 2.1. Under this approach, a language must be evaluated in

several aspects and revised accordingly. Some of these aspects include economic aspects,

performance capabilities and programmability. The method that was developed to measure

the productivity of the language from a programmability point of view is the productivity

study.

Figure 2.1: A New Approach to Language Design. A new language should go through
several phases in its development to ensure that it has sound syntax and semantics, it fits a
specific demographic and it has a specific place in the field. Moreover, optimization to the
runtime libraries should be taken into account while developing the language.

A productive study involves using a specified metric to calculate the productivity of

a programming language design. This being the parallel programming expressiveness (with

Source Lines of Code1) or its time to a correct solution. To put together such effort groups

of diverse specialists need to be assembled. These include sociologists, anthropologist and

computer scientists. The structure of the study gives groups of people several problems to

solve given a high performance parallel language. Each of the groups are closely monitored

in their resource usage and time management.

1 A flawed metric in which the work is equated to the number of lines of code produced
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One of the most difficult aspects of parallel programming is synchronization. These

features are designed to restrict the famous data race problem in which two or more concur-

rent memory operations (and at least one of them is a write) can affect each other resulting

value. This creates non determinism that is not acceptable by most applications and al-

gorithms2. In modern programming models, the synchronization primitives take the form

of lock / unlock operations and critical sections. An effect of these constructs in produc-

tivity is that they put excessive resource management requirements on the programmer.

Thus, the probability that logical errors appear increases. Moreover, according to which

programming model is used, these constructs will have hidden costs to keep consistency

and coherence of their protected data and internal structures[75]. Such overhead limits

the scalable parallelism that could be achieved. For these reasons, Atomic Sections (A.S.)

were proposed to provide a more intuitive way to synchronize regions of code with minimal

performance overhead [94]. The construct was implemented in the C language and it be-

haves like an acquire / release region under entry consistency[73] as far as their consistency

actions are concerned. Moreover, it provides the mutual exclusion and atomicity required

by the region. This construct was implemented in the OpenMP XN framework using the

Omni source-to-source compiler. More detailed explanation about A.S. can be found on

subsection 2.1. Using this new construct, we developed a productivity study (The Delaware

Programmability, Productivity and Proficiency Inquiry or P3I) to measure empirically its

effect on time to correct solution. One of this study salient feature is the introduction of

weights to the framework which will prune to the data according to the study’s point of

interest. This section shows the productivity study framework and initial results. However,

an short overview of Atomic Sections is required.

2 There are some algorithms that allows certain amount of error in their computation for
which the cost of synchronization might be too expensive and / or the probability of
the data race occurring is very low[11]
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2.1 Atomic Sections: Overview

An Atomic Section is a construct that was jointly proposed by Zhang et al[94] and

their colleagues at IBM. This construct has two implementations. One of them was cre-

ated for the IBM’s X10 language [35]. Atomic Sections’ second implementation is under

the OpenMP XN programming model developed by the University of Delaware. Due to

OpenMP’s status on the industry and the plethora of resources available for it, OpenMP

is an excellent platform to test new parallel programming constructs. For these reasons,

OpenMP was selected as a testbed for the development of this new feature. The OpenMP

implementation containing A.S. became known as OpenMP XN or OpenMP with eXteN-

sions. From now on, every time that the term Atomic Sections is used, the implementation

under OpenMP XN should be assumed, unless stated otherwise.

An Atomic Section is defined as a section of code that is intended to be executed

atomically, and be mutually exclusive from other competing atomic operations. The term

“competing” in this case is very similar to the way that competing accesses are presented

under the Entry Consistency memory model[73]. Atomic Sections that are competing should

be guarded against each other but they should not interfere with the ones that do not

compete with them. The OpenMP3 standard offers two extreme cases when it comes to

interference and synchronization. Its critical section construct provides a global lock (or a

statically named lock) that ensures that only a critical section is running and the others

are waiting, regardless of the effects of their execution. On the other hand, OpenMP’s lock

functions put the responsibility on the programmer to detect if the code interferes (data

race) with other protected blocks of code, and to lock it according to his/her judgment.

Listing 2.1: Atomic Section’s Example

1 #pragma omp p a r a l l e l for private (b)

2 for ( i = 0 ; i < 10 ; ++i ){

3 b = rand ()%256;

4 #pragma omp atomic s ec

3 OpenMP also offers the atomic directive but this construct is extremely restricted. It
is limited for read-modify-write cycles and for a simple group of operations
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5 {

6 a += b ∗ c ;

7 }

8 }

Atomic Sections provide the middle ground in which the programmer is free of lock

management and the compiler prepares the code to run the sections in a non-interfering

manner. The syntax and a code example of Atomic Sections are presented in Figure 2.2

and Listings 2.1. Each Atomic Section’s instance is associated with a structured block of

code. This block is defined as a piece of code that has only one entry point and one exit

point. For a more in depth explanation please refer to [94]. During the creation of this

construct, another aspect became apparent: how will programmers react to this construct?

Therefore, the Delaware group developed P3I to have an idea about the construct impact

on programmers and to create a methodology / framework template for future studies.

Figure 2.2: Atomic Section’s Syntax
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2.2 The Delaware Programmability, Productivity and Proficiency Inquiry: An

Overview

The Delaware Programmability, Productivity and Proficiency Inquiry was designed

to empirically measure the impact of a language or language feature on programmers. Some

of the main questions that this study aims to answer are: How much impact will the new

language / feature have on the programmer? How will the feature or language affect each

application development phase? Other important questions about the study methodology

are raised: Is there any way to ensure a correct distribution of our sample or to pre-filter

the results such that the data we consider relevant (i.e. novice and average programmers)

have more weights than others? This version of the study answered these questions and

provided a solid platform for future work and iterations.

The first P3I version had a total of fifteen participants. This participants were

carefully chosen from the University of Delaware Electrical and Computer Engineering de-

partment based on their familiarity with the field. The participants attended two meetings

in which a pre-study exercise was given and the methodology is explained to the partici-

pants. The study is presented and accessed through a web interface called the Web Hub. In

the web hub, the participants can review, download and fill the different parts of the study.

The study, as well as the web hub, is divided into four phases. The first phase, dubbed

phase 0, contains the web survey, web log and a programming exercise. The rest of the

phases contain the web log and the programming exercise. The web log is designed to be an

End-of-Phase check in which the participants log in when they have completed the phase.

A subjective ending time is saved when the participant complete the log.

After Phase 0, there are three more phases which represent the core of the study. For

a complete description of all phases and the data collection infrastructure, refer to Section

2.2.1. A code excerpt from Phase 0 is presented in Figure 2.3. It presents the code involving

a bank transaction using lock / unlock OpenMP construct and Atomic Section construct.

This study’s main metric is the time to correct solution, which is calculated thanks

to the data collection infrastructure explained in section 2.2.1. As stated before, this study

is not designed to measure performance (even though that will be one of its objectives in
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Figure 2.3: Code Excerpt from Phase 0: A comparison between the lock implementation
(left) and the AS implementation (right) for the unlucky banker
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future iterations). The Web Survey is used to calculate the weights that will be used in this

study. Its structure, purpose and results will be presented in sections 2.2.2 and 2.2.3. The

programming exercises in each of the phases are designed to put programmers in different

contexts that appear in the HPC domains. These situations can be described as developing

a complete parallel application, debugging a parallel code that deadlocks and parallelizing

a serial application. Finally, all the results will be filtered with the weights such that the

final data will be affected by the level of expertise of the participants, represented by the

weight calculated in the web survey phase.

2.2.1 P3I Infrastructure and Procedures

Figure 2.4 provides a picture depicting the structure of the main page of the study

and each of its parts.

Figure 2.4: P3I Infrastructure
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The study’s three main phases are named phase 1a, 1b and 1c. Each phase has the

same structure as the one presented above. The first of these phases is named the GSO

exercise. In this exercise, the participants are presented with a hypothetical case in which

a Gram Schmidt Ortho-normalization[69] is required. The whole application must be com-

pleted from a given pseudo-code and then parallelized using OpenMP XN. The participants

are given a high level pseudo-code of the application, helper functions and a skeleton C code

for them to work on. A successful run implies that the provided check function returns true

when testing the resulting vectors. Two versions of the file are required for the application

to complete successfully: one with atomic sections and one with locks. This specific exercise

was developed to test the programmer’s abilities in designing, parallelizing and debugging

an application.

The second phase, Phase 1b, is dubbed The Random Access Program. It is based

on the Random Access exercise which is used to test memory bandwidth systems. The

program contains a large table that is randomly accessed and updated. At the end of the

execution the table is checked for consistency. If the number of errors surpasses one percent,

the test has failed. The synchronization in this case is applied to each random access of

the elements in the table. Intuitively, the number of errors that might appear in the final

table reduces considerably when the table is made large enough. This makes the use of

synchronization constructs less desirable for this program since a small percentage of error

is tolerated. In this phase, the subjects are given a serial version of the program and are

asked to parallelize it with OpenMP XN. As before, two versions are required to complete

this phase (locks and Atomic Sections). An extra version can be completed and it consists

of the program without any synchronization constructs. This exercise simulates the scenario

in which programmers need to promote serial codes to parallel implementations.

Finally, phase 1c is called The Radix Sort Algorithm[6] and it is an implementation

of the famous algorithm. The participants are given a buggy parallel implementation of

this algorithm. There are three bugs in the algorithm that relate to general programming,

parallelization and deadlocks. All three bugs are highly dependent and when one is found

and solved, the others become apparent. As before, a lock and an Atomic Section version
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are required. The extra questions in this section involve the identification of the bugs, why it

becomes a problem and possible solutions. The main objective of this section is to measure

the “debug-ability” of a parallel code that involves synchronization constructs. A summary

of the Methodology and Framework is given by Figure 2.5.

Figure 2.5: P3I Infrastructure and Methodology

All data collected from the phases is saved to a file that is in the possession of

the organizers of the study. The collected data is ensured to be private and it is only

made available to one of the organizers of the study. The identity of the participants and

their results are kept secret and confidential. This process is “double blinded” since the

participants cannot access their results and the rest of the Delaware group does not know

who participated or for how long they stayed in the study.
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2.2.2 The Web Survey: Purpose

The web survey is the first part of the P3I and it is mandatory for all participants.

It consists of 24 general questions that range from a simple “With which programming

language are you familiar?” to more complicated questions such as “How much you know

about the fork and join parallel programming model?” In the web survey, participants will

check boxes or radial buttons to decide their level of expertise in a range of 1 (least expert

/ Never heard about it) to 5 (expert / Use frequently).

Each question has a maximum score of 5 - except for the first one that has a value of

64 - and some questions are left out of the final computation since they deal with hardware

support. An expert score in the web survey is 106. When a participant finishes the web

survey, his/her score is calculated. Afterward, a ratio is taken with respect to the expert

score. This is called the expertise level percentage. All these calculations are called “Weight

Calculations” and they will be kept intact in future iterations. Finally, the expertise level

is subtracted from one to produce the participant’s weight. This weight will be used to

filter the data by multiplying it with each participant’s time. This process amplifies the

contribution of less expert programmers to the study. These final steps are named “The

Weighting Function” and it will be modified in future iterations of the study. That being

said, P3I - in its first iteration - target low level and average programmers. It also has the

ability to “weed” out all high expertise participants. This prevents skewing of data from

the high expertise end, but it amplifies on the low end. This scheme can be considered a

“Low Expertise Weighting Function”.

2.2.3 P3I Results

The results of the study consist of the average time of all participants in each sub-

phase and sub-section. Each time data is weighted with the participant’s weight before the

average is calculated. Each participant has to run the experiments in a Sun SMP machine

with 4 processors and a modified version of the Omni Compiler. The results for the weights

4 This question asks about familiarity with OpenMP, Java, MPI, UPC, and other parallel
programming languages
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are presented in figures 2.6 and 2.7. It shows that the distribution of expertise among the

participants approaches a normal distribution. This result can be used in future iterations

to break the population into groups.

Figure 2.6: Weight of each Participant

Figure 2.8 provides the final results that have been modified by the weight’s data.

A complete discussion about the results and the weights of the participants are given in the

next section.

As shown by tables 2.6 and 2.7, the weights in this study formed a slightly skewed

normal distribution. This ensures that most of the results are weighted against a close range

of values. Moreover, the actual weights that were presented in the study are in the range of

0.42 to 0.55. This means that the data for this study was not affected much by the weights.

Also, this means that the population is not suitable for sampling since all the groups have

the same level of expertise.

As Table 2.8 shows, there is a considerable reduction of time to solution in all the

phases. However, the small sample space hinders this study from making a stronger case.

Overall, there is a dramatic reduction of the time to correct solution, and each phase also
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Figure 2.7: Histogram of the Weights

shows this reduction. In Phases 1a and 1c, this reduction is in factors of five. In this data,

the sequencing information should be considered. This information is obtained by recording

the order in which the sub sections were taken within each sub phase. This is important

because there is always a learning period in which the participants get familiar with the

code. Even in these cases, the reduction of time to solution is also present.

2.2.4 P3I Version 2

Learning from the first version of P3I, several addition were made to the second

version which includes the addition of a new metric, a finer level of monitoring, a reduction

of the study time, introduction of control groups, etc. A more detail description of these

enhancements is given below.

The P3I monitoring framework was enhanced to record the activity of the partici-

pants per minute basis. This provides a more clear view of the activities that the participants

are doing while the study is in place. Moreover, the study’s time was reduced from a week

to three three-hour-phases plus a tutorial and the phase zero. Phase zero was enhanced by

collecting the source code for each participant and having a team of expert programmers
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Figure 2.8: Weighted Average Time Data for Each Phase. In this case, there is a clear
correlation between the reduction in time to correct solution from the lock exercises and
the atomic sections.

Figure 2.9: Activity Timeline for each participant in the study
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to analyze and grade the code to compare them against the weights collected by the web

survey. Figure 2.9 and 2.10 shows the results for both the control (locks) versus experimen-

tal (atomic sections) in term of percentage spent on each exercise over time and in several

other activities (idle, compiling, other). As shown in most pictures, exercise one (the appli-

cation development) took most of the time for most participants (sans number 7), as it was

expected.

Figure 2.10: The phase’s percentage for each participant

The Source Lines of Code (SLOC) metric was added to the framework. This metric

is supposed to show the amount of effort in developing the application, In Figures 2.12,

2.13 and 2.11 shows the results for each of the phases with respect to the total average

number of lines, the group’s averages and the average SLOC for each participant. In the

graphs, it shows that the number of lines of code per phase increases with the respect of the

phase. This is expected since the exercises gets increasingly more difficult as the exercise

progresses. Figure 2.11 shows that with respect to SLOC, participants are closely correlated

with their initial weights (e.g. participant nine has the highest expertise and the average

lowest SLOCs in the group).

Another addition to the study is to collect the phase zero exercises and analyze them

to produce another expertise weight. This is done as a double check against the survey
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Figure 2.11: Total SLOC Average per Participant

Figure 2.12: Total Average for SLOC

Figure 2.13: Total SLOC Average per Group
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to validate their values. Figure 2.14 and 2.15 represents the differences between the real

weights (gathered by the survey) and the subjective weights (gathered by the analysis of

the source code). The trend shows that they matched but they were shifted up. This might

be due to the way that people see their abilities, especially students which tend to under

represent their coding skills.

Figure 2.14: A comparison between the real and subjective weights

Figure 2.15: An Absolute difference between the two difference types. The average difference
is 0.12 and the standard deviation is 0.14 which represent very low values

The final graphs (figures 2.16, 2.17, and 2.18) shows the runtime for each phase which

will be weighted with high, normal and low expertise weights. Strangely enough, atomic

sections did not represented the highest productivity construct in all cases. In phase one,

the atomic sections did not fared very well in the collection framework. The explanation

is that the phase one design puts more emphasis in creating the serial version first and
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then parallelizing in which the parallelization is trivial. Thus, the selection between the

constructs did not affect the overall time.

Figure 2.16: The total runtimes weighted by the low expertise formula

Figure 2.17: The total runtimes weighted by the normal expertise function

The objective of this upgrade is to strengthen the weaknesses of the first one and

provide a solid foundation for newer iterations.

Conclusions

Although the HPCS project is completed, the interest in productivity never took

hold. The several studies about productive languages and features, the biggest one being

the Pittsburgh Supercomputer Center study[15], have sunk into obscurity. This is a pity

since the field misses a great cross disciplinary opportunity. However, the languages and

architectures born out of the project: Cray’s Chapel, IBM X10 and IBM POWER7, became
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Figure 2.18: The total runtimes weighted by the high expertise

staples in the community and they are still maintaining research lines on High Performance

Computing (e.g. The Blue Waters Project[58]).

The need for the next-generation of productive parallel language is apparent. This

need can be summarized by the “Expertise Gap” problem which is defined as “Only a small

percentage of employees are able to produce HPC software on a deadline”[82]. In layman

terms, this translates to that the users of these systems are not the expert programmers

but scientists in other branches (physics, chemistry, anthropology, etc) which require large

amount of computational power to solve the complex interactions that their problems fea-

ture. Thus, the systems which they use must be “productive” (i.e. Easy to use and still

performance efficient). Nevertheless, due to its difficulty on being observed, productivity is

an elusive term to start with. However, the effects of hardware simplification on software

stacks are very visible. The layer that absorbs most of these shock waves is the middle-level

software which supports the high level programming constructs and provides the translation

to the hardware base.

As new designs arrive, a tug-of-war between productive high level programming con-

structs and highly efficient hardware rages. As shown in this chapter, certain constructs

are better in increasing productivity but increases the middle layer analysis overhead. This

middle layer, which includes runtime systems, toolchain and other parts of the software

stack, provide the needed gateway to marry the high level programming models with the

hardware.
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For this purpose, we selected a notoriously difficult to use architecture, but proven

to be highly efficient: the Cell Broadband Engine and we ported one of the most used and

productive Programming models, OpenMP (as shown in this chapter) to it. This effort is

called the Open Opell project at the University of Delaware [60][67][68]. In this way, we can

married a highly productive language, i.e. OpenMP, and a novel runtime system designed

to replace and optimize missing hardware features.
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Chapter 3

OPEN OPELL: AN OVERVIEW

As stated in the previous chapters, productivity and new designs are sometimes

at odds. One of the scenarios that this is more apparent is with heterogeneous designs.

These designs range from on-chip Application Specific Integrated Circuits (ASICs); like

dedicated encoder and decoder for High Definition data, to sophisticated System-on-a-Chip

(SoC). Among one of the most well examples of these designs, we have the Cell Broadband

Architecture. The framework presented in this chapter is not the sole work of the author

but a combine effort of many talented people, including the author.

3.1 The Cell Architecture

The Cell Broadband Engine (or Cell BE for short) is a project in which three of the

big computer / entertainment companies, IBM, Sony and Toshiba, worked together to create

a new chip for the seventh generation of home video game consoles[21]. The chip possesses

a heavy core, called the PowerPC Processing Element (or PPE for short), which acts as the

system’s brain. The workers for the chip are called the Synergistic Processing Elements (or

SPE for short) which are modified vector architectures which huge computational power.

Both processing elements coexist in the die with a ratio of 1 to 8 (one PPE to eight SPEs),

but more configurations are possible. Finally, all the components are interconnected by

a four-ring bus called the Element Interconnect Bus (or EIB for short). A more detailed

explanation of each of the core is provided in the next sections.
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Figure 3.1: Block Diagram of the Cell Broadband engine. This figure shows the block
diagram of the Cell B.E. and its components (PPE and SPE). It also shows the internal
structures for the SPE pipelines and a high overview graph of the interconnect bus.
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3.1.1 The PowerPC Processing Element

Commonly referred as the PPE, this element is an example of a heavy core. It is

a POWERPC chip complete with Virtual memory support, coherent caches, vector exten-

sions, two-way multithreaded, among other hardware features. The complete definition for

the PPE can found on the POWERPC Architecture Books I to III [70]. Besides being a

POWERPC core, it has certain optional features (Altivec unit, floating point reciprocate

estimate and square root, and an added cache line operation) to help it with multimedia

application processing. Some other features include a data and instruction level 1 (32 /32

KiB) cache, a unified level 2 cache (512 KiB, 8-way set associative) and a 2-bit branch

prediction hardware.

Although the PPE is an in-order machine, they have several “tricks” that allows to

reap the benefits of an out of order execution engine. Some of these are delayed execution

pipelines and the ability to issue up to eight outstanding loads[70]. On most of the current

configurations, it runs at 3.2 GHz. As the brain of the system, it runs the Operating System

and has access to all the memory spaces 1. Its purpose can be summarized as an orchestrator

of resources (these include the SPEs, their memories, the EIB and main memory, as well as

any I/O devices).

The final component of the PPE is the PowerPC Processor Storage Subsystem

(PPSS). This component handles every memory request that need to be coherent between

the PPE and the Element Interconnect Bus (EIB). An interesting note is that, although the

computational engine internal memory (referred as local storage below) does not need to be

coherent, most of the requests (which are DMA operations) to and from main memory must

be made so. The PPSS hosts the PPE’s unified level 2 cache. Moreover, it controls pacing

for the EIB and does pre-fetching for the PPU. Finally, it has access to the Resource Allo-

cator Management and the Replacement Management Tables (used by both the Cache and

the TLB). Control over both structures is handy when doing real time programming[21].

The block diagram of the PPE is shown in the lower parts of Figure 3.1.

1 Real (all physical memory), Virtual (virtual addressing space) and Effective (all of the
above plus any memory mapped I/O)
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3.1.2 The Synergistic Processing Element

Commonly referred as the SPE, this element is a simple core, plus an enhanced

memory management unit, which serves as a computational engine for the Cell. A SPE is

divided into the Synergistic Processing Unit (SPU) and its Memory Flow Controller (MFC).

The unit is a modified vector architecture which can run general purpose code (with a certain

performance penalty) but it shines when dealing with vector applications. It is an in-order,

(very limited) dual issue chip. It has a 128 times 128 bits register file, 256 KiB of local

storage, and a dual pipeline (named even and odd). An SPU can only work on data and

code which reside in its local storage (using load and store operations). Although it lacks

the advance branch prediction mechanism of the PPU, it allows branch hints to be inserted

in the code to better utilize the pipelines.

To access main memory and other local storage locations, a special channel interface

and the Memory Flow Controller are used. A side note is that the local storage of each

SPU is a non cacheable region. This means that even if it is mapped to main memory, it

will not be kept consistent / coherent across SPUs and other components of the system[21].

However, as stated before, every MFC requests will be coherent. To access main memory,

the SPU depends on a group of Direct Memory Address (DMA) operations. As classically

stated, the DMA is an asynchronous memory transfer from a remote location to a near

one[21]. In this case, the remote location is the off chip main memory or another SPE’s

local storage. In the SPU, the DMA operations can be grouped using numerical tags (with a

maximum of 32 tags available to the programmer). These tags are used to ensure completion

time or an order between the DMA transfers (using barrier and fence semantics[21]).

The DMA transfers, as well as other channel operations, i.e. signal and mailboxes;

are taken care by the Memory Flow Controller (MFC) part of the SPU. The main purpose

of this component is to ensure that data (or code) is delivered safely from and to the Local

Storage of the given SPU. It possesses its own set of registers, two command queues (one for

local SPU commands and one for outside ones), a Memory Management Unit, a Memory

Mapped I/O (MMIO) interface, and a copy of the Replacement Management Table (RMT).

Unlike the SPU, the MFC must be aware of the state of all memory spaces (virtual, effective
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and real). Thus, it must have knowledge of the virtual tables and any MMIO mapping

(including, but not limited, to the mapping of LS onto main memory space). Finally, the

MFC has a TLB and a cache for atomic operations which can be managed by PPE privileged

software[21].

A single SPU (first generation) is capable of 25.6 Gflops of peak performance in

Single Precision Mode. However, for first generation chips, the double point performance

drops considerable from 25.6 to 1.8 GFLOPS [21].

3.1.3 The Element Interconnect Bus

All the components of the Cell B.E. chips are linked together using a four data rings

/ one address ring bus type interconnect called the Element Interconnect Bus (EIB). Each

of the data rings can have up to three concurrent data transfers as long as their paths do

not overlap. Moreover, two of the data rings run clockwise and the rest run counter clock

wise. Each ring can send and receive 16 bytes of data per cycle and it runs at half of

the processor frequency. A request is processed by checking if the requester has “credits”

available to use the EIB. These credits are the available spots on the command buffer that

the EIB maintain for each requester. If a credit is found, the arbitrator puts the request on

the EIB if the following is NOT true: if the request will traverse more than half of the ring

(a trip in an opposite direction ring will be more efficient) or if the new transfer interferes

with an already issued transfer [21].

A quick calculation put the maximum bandwidth of the EIB at 204.8 GB/s [21]. Even

though the sustained bandwidth can be substantially lower, applications can still achieve

very close to the maximum, if careful programming is applied [21]. Finally, the EIB has an

extra component named the Resource Allocator Management. This component provides a

very limited Quality of Service to privileged software[21].

3.1.4 The Memory Subsystem and the Flex I/O Interface

The main memory of the system (which are Rambus XDR DRAM modules) is ac-

cessed through two XDR I/O channels. Each channel can operate up to 3.2 GHz effective

frequency (400 MHz octal data rate). Moreover, each of them can communicate with eight
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banks with a maximum size of 256 MiB, for a total of 512 MiB of main memory. Writes

that are between 16 and 128 bytes can be written directly to main memory. However, writes

that are less than 16 bytes require read-modify-write operations. The read and write part of

these operations are of higher priority than normal reads and writes since the read-modify-

write operations have a smaller number of hardware resources (buffers) compared to other

memory operations.[21].

Finally, the Cell Broadband Engine (C.B.E.) system interface is taken care by the

Flexible I/O interface. This interface is organized into 12 unidirectional 8-bit wide point to

point lanes. Five of these lanes are inbound and the rest are outbound. These lanes can be

configured into two logical interfaces named FlexIO 0 and FlexIO 1. Moreover, the number

of transmitters and receivers for each logical interfaces can be configured by software during

the C. B.E. Power-On Reset sequence. Moreover, the FLEXIO 0 can be configured for a

higher input / output bandwidth than the other one. This interface is the only interface

that support both coherent and incoherent communication protocols. Because of this, the

FLEXIO 0 is usually used to connect with other CBE chips. A typical configuration of the

Flex I/O interface has a raw bandwidth of 35 GB/s for outbound and 25 GB/s inbound

[21].

All these components form the Cell B.E. chip. The PPE, the SPE and, to some

extent, the EIB are visible to the programmers through different instructions. This allows

the programmer a deeper control to the hardware, but it is also a fertile ground for bugs.

Nowadays, the Cell processors are given as a example of systems that are a challenge to

program[21]. This is the reason why a large part of the Cell community is dedicated on

creating efficient frameworks which increase its programmability. Efforts like the Data Com-

munication and Synchronization (DaCS) and the Accelerated Library Framework (ALF)[14],

the CellSs[10], and single sources compilers from IBM and several other companies[74]; con-

centrate on giving APIs to increase the usability of the Cell chip. More information about

these approaches is given in chapter 7.
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3.2 Programming Models

Given the frameworks and its raw computational power, the Cell architecture has

become a staple on multi core architectures and it brought heterogeneous computing to a

wider audience. Currently, this architecture is used to power one of the top ten fastest super

computers in the world; IBM’s Roadrunner located in Los Alamos National Lab. Thanks

to all of this, one of the major areas of interest for the Cell community is the development

and porting of the “classical” parallel programming models, such as the Message Passing

Interface (or MPI) and OpenMP.

3.2.1 OpenOPELL and OpenMP

Listing 3.1: OpenMP Example

1 #include <s td i o . h>

2 #include <omp . h>

3 int main ( ){

4 #pragma omp p a r a l l e l

5 {

6 p r i n t f ( ”Hel lo , world ! ! ! ” ) ;

7 }

8 return 0 ;

9 }

Listing 3.2: MPI Example

1 #include <s td i o . h>

2 #include <mpi . h>

3 int main ( ){

4 MPI Init(&argc , &argv ) ;

5 p r i n t f ( ”Hel lo , world ! ! ! ” ) ;

6 MPI Final ize ( ) ;

7 return 0 ;

8 }
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According to a recent study, the parallel programming landscape is much skewed.

Ninety percent of scientific parallel applications are written using MPI and around ten per-

cent are written using OpenMP[47]. This leaves less than one percent written in a plethora

of other parallel programming languages. One of the characteristics of these parallel lan-

guages is that they are relatively easy to use and have a very concise set of constructs

to build parallel applications; even though their semantics might be interpreted in differ-

ent ways and create confusion. MPI is the de facto parallel programming standard for

distributed computing. As MPI’s name suggests, it uses the concept of messages to pass

information between different memory spaces. Such memory spaces are isolated from each

other and a given process can have direct access to a reduced set of them (usually only

one). Thus, the messages provide the only means of communications between two or more

processors that reside in distinct memory spaces. [52]

MPI consists of a group of API calls and a runtime system to distribute the tasks

to the different computers. The API can be roughly divided in management calls, com-

munication calls (point to point and collective) and data creation calls. It has been said

that (by one of the creators of MPI: William Gropp) to start programming with MPI the

programmer only needs to know six basic API calls[52]. Although it provides a concise set of

function calls and it is relatively easy to learn, it still leaves many of the underlying aspects

of parallel programming exposed to the programmer. For example, programmers still need

to explicitly manage the communication calls in pairs (for point to point communication)

since the lack of one of these results in a deadlock problem for the application 2. A “Hello,

World” example written in MPI is given by listings 3.2. There are two MPI functions (the

MPI Init and MPI Finalize functions) which take care of setting the MPI environment up

and tearing it down respectively. After the MPI Init function has returned, all the structures

are initialized across all the given processes. After the MPI Finalize returns, the number of

processes running is undefined.

2 there are non-blocking communication operations in MPI since version 2 that seek to
alleviate this problem
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(a) Allowed 1 (b) Allowed 2

(c) Allowed 3

(d) Forbidden 1 (e) Forbidden 2

(f) Forbidden 3

Figure 3.2: Allowed and forbidden OpenMP states. Any closed and encapsulated fork-joins
groups are allowed. This means that a child can never outlive its parent and the lifetimes
of threads cannot overlap between regions
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Conversely, OpenMP is used for architectures in which all the memory space is

(logically) visible to all processors. OpenMP is based on the fork-join computational model.

A master thread will “fork” a set of children threads and work with them up to a “join”

point in the future. No children (or any descendant of the master thread) will continue after

the join point. Moreover, no fork and join group are allowed to overlap unless one is from

a children of the fork and join group and it is completely enclosed by the outer fork-join

group. For a graphical representation of allowed and forbidden behaviors, please refer to

figure 3.2.

OpenMP is available for C, C++ and FORTRAN. It consists of several pragmas and

runtime function calls which are designed to support Single Program Multiple Data style of

programming, work sharing, synchronization between processors (both mutual exclusion and

ordering based) and task creation and management[1]. Due to its pragma based approach,

a serial code requires little change to make it run in parallel, as shown in example3.1 3.

Although OpenMP has been praised for its simplicity, it has been also criticized for it.

It provides little control over scheduling and work distribution which might create very

unbalanced workloads and a noticeable decrease in performance. It also has been accused

for being error prone due to some confusing constructs, i.e. flush, the lock function calls,

lastprivate variables, etc[2]. However, due to its popularity, OpenMP is a prime target for

porting across all the multi / many core architectures.

One of these project is the Open Source OpenMP on CELL (or Open OPELL for

short) developed at the University of Delaware [68]. Its main objective is to provide an open

source OpenMP framework for the Cell B.E. architecture. It is composed of an OpenMP

toolchain which produces Cell B.E. code from a single OpenMP source tree; and a runtime

that hides the heterogeneity of the architecture from the users. The framework provides

the following features: a single source compiler, software cache, partition / overlay manager

and a simple micro kernel.

3 However, to achieve high performance, a considerable amount of re-writing might be
necessary
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Figure 3.3: High Level Overview of the Open OPELL framework. The micro kernel will
take of scheduling the jobs, the single source compiler will create the binary from a single
source tree, and the software cache and partition manager will take to emulate the shared
memory model required by OpenMP
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3.2.1.1 Single Source Compilation

Due to the heterogeneity of the Cell B.E., two distinct toolchains are needed to

compile code for the architecture. This adds more complications to an already complex

programming environment. In OPELL, the OpenMP source code is read by the driver

program. The driver clones the OpenMP source for both toolchains and calls the respective

compiler to do the work. The PPU compiler continues as expected even creating a copy of

the parallel function (which is the body of the parallel region in OpenMP) and inserting

the appropriate OpenMP runtime function calls when needed. The SPU compiler has a

different set of jobs. First, it keeps the parallel functions and discards the serial part of the

source code. Second, it inserts calls to the SPU execution handler (described in the next

section) and its framework to handle the parallel calls and OpenMP runtime calls. Third,

it inserts any extra function calls necessary to keep the semantics of the program. Finally,

it creates any structures needed for the other components of the runtime system, links the

correct libraries and generates the binary. After this step is completed, the control returns

to the driver which merges both executables into a single one. Figure 3.4 shows a high level

graphical overview of the whole single source process.

3.2.1.2 Simple Execution Handler

This small piece of code4 deals with the communication between the PPU and SPU

during runtime and how runtime and parallel function calls are handled. Since each of the

SPUs have very limited memory, it is in everybody’s best interest to keep the SPU threads

very light. To achieve this, the SPU thread will be loaded only with a minimal set of the

code (the simple execution handler and a set of libraries). This SPU resident code does

not include the parallel regions of the OpenMP code nor the OpenMP runtime libraries.

Since both are needed during runtime, they are both loaded or executed on demand, but by

different mechanisms. The parallel regions are loaded and executed by another component,

i.e. the partition manager, which loads and overlays code transparently. The OpenMP

4 In this thesis, the terms “simple execution handler” and “SPU micro kernel” will be
used interchangeably
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Figure 3.4: A high level overview of the single source toolchain

runtime libraries require another framework to execute. Under this framework, there exists

an extra command buffer per thread that is used to communicate between the SPE and

PPE frameworks. Moreover, there exists a complementary PPE thread for each SPE thread

is called the mirror or shadow threads, which services all the requests from its SPE.

When a SPE thread is created5, the simple execution handler starts and goes imme-

diately to polling. When a parallel region is found by the master thread (which runs on

the PPE), a message is sent to the simple execution handler with the identifier’s ID and

its arguments’ address. When it is received, the SPU calls the code in the parallel region

(through the partition manager). The SPU continues executing the code, until an OpenMP

runtime call is found. In the SPU, this call creates a PPU request to the command buffer.

This request is composed of the operation type (e.g. limit calculations for iteration space)

and its arguments. While the SPU waits for the results, the PPU calls the runtime function

and calculates the results. The PPU saves the results back to the Command buffer and

sends a signal to the SPE to continue. Finally the SPU receives the signal and reads the

5 which happens before the application code is run
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results. The SPU thread ends polling when the PPU shadow thread sends a self terminate

signal, effectively ending the thread’s life. Figure 3.5 shows a graphical representation of

the SPE micro kernel and communication framework.

3.2.1.3 Software Cache

As stated before, the SPU component of the Cell B.E. does not have caches (at least

not across the SPU local storages) or any other way to maintain coherence. This presents

a peculiar problem for the pseudo shared memory which Open OPELL presents6. This

heterogeneity hindrance is resolved by the software cache. This framework component is

designed to work like a normal hardware cache with the following characteristics. It has 64

4-way associate sets and a cache line of 128 bytes (the most efficient size for DMA transfers).

Its total size is 32 KiB and it has a write back and write allocate update policy. As a normal

cache, each line possesses a dirty-bit vector which keeps track of the modified bytes of the

line. When the effective (global) address is found in the cache, a hit is produced and the

operation is performed, i.e. read or write.

In case the effective address is not in the cache, a miss is produced. A read miss

or write miss causes an atomic DMA operation to be issued to load the desired value from

memory and may produce a write back operation if any of the bits in the dirty bit vector

are set. The write is achieved by a sequence of atomic 128 DMA transfers in a read modify

write-back cycle (in the same manner that a processor checks a lock variable using IBM’s

Load Linked and Store conditional instructions[71]). The line is loaded and the dirty bytes

are merged with the loaded line. The merge process only touches the dirty bytes and leaves

the clean ones untouched. Then, a conditional DMA put is issued. If it returns true, the

line was correctly updated; otherwise the system tries again. The case in which two lines are

trying to flush their dirty contents to main memory is shown in figures 3.6, 3.7 and 3.8. A

write back is initiated in case of a line eviction or when the cache is forcibly flushed. Thanks

to the atomic merging (which only writes the dirty bytes back to memory) used by the write

6 Open OPELL is designed to support OpenMP, which is a shared memory programming
model
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Figure 3.5: Components of the Simple Execution handler. It shows the shadow threads
running on the PPU side for each SPU and the communication channels and flow between
them.
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back procedure certain problems, like the multiple writers and false sharing, can be avoided.

Currently, this component is being used to test the impact of weaker memory models on

multiprocessor architecture. A graphical overview of the software cache is presented by

figure 3.9.

Figure 3.6: Software Cache Merge Example Step 1: Before Write Back is Initialized

3.2.1.4 Overlay / Partition Manager

In the same manner that the software cache is used for data, the partition manager

is used for code. This small component is designed to load code on demand and manage

the code overlay space when needed. When compiling the source code, certain functions are

selected to be partitioned (not loaded with the original source code in the SPU memory).

The criteria to select these functions are based on the Function Call Graph, their size and

their runtime purpose, e.g. like parallel regions in OpenMP. Finally, the partitions are

created by the linker, descriptive structures are formed and special calling code is inserted

when appropriate. During runtime, the function call proceeds as usual (i.e. save registers,
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Figure 3.7: Software Cache Merge Example Step 2: Thread 2 succeed in the update. Thread
1 fails and tries again
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Figure 3.8: Software Cache Merge Example Step 3: Final State of the Memory Line after
Thread 1 finished

Figure 3.9: A high level overview of the Software cache structure
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load parameters, etc), up to the point of the actual call. Instead of jumping to the function,

the control is given to the partition manager runtime and several decoding steps are done

(which will be explored in Chapter 4). With information extracted from the actual symbol

address, a loading decision is made and the code is loaded into memory or not (if the code

already resides in the overlay). Then, the partition manager runtime passes control to the

function. When the function finishes, the control returns to the partition manager so any

cleaning task can be performed, like loading the caller partition if it was previously evicted.

Finally, the partition manager returns to its caller without leaving any trace of its

activities. For a more detailed explanation of the partition manager runtime, its enhance-

ments and replacement policies, please refer to Chapters 4 and 5. This thesis concentrates

on the partition manager component and its ability to support many performance enhancing

methods. The rest of this thesis will discuss the partition manager framework in detail.
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Chapter 4

PARTITION MANAGER FRAMEWORK

The partition manager framework is designed to use both static analysis and dynamic

techniques to optimize the load and replacement of pieces of code. Changes in the toolchain

includes several switches to turn on and off the different partitioning schemes, a simple

partition algorithm and the creation of new segment types for the loader. The initial

framework consists of a simple trampoline that manages the overlay buffers and make sure

that the code is loaded in the correct places at the correct times. Next we explore the

changes that were made to the toolchain to support the dynamic nature of the partitions.

4.1 Toolchain Modifications

Although this thesis concentrates on partitioning schemes and its framework, an

overview of the components that makes this possible is in order. The changes on the tool

chain were not implemented by the author of this thesis 1 but he participated in the design

for all these components. This section covers, in a high level, the most significant changes

done to the GCC compiler, and the assembler and the linker from binutils version 2.18. A

high level overview of the role of each of the toolchain components is illustrated by Figure 4.1.

As seen in this figure, the compiler analyzes the code and create the partition by inserting

the necessary labels and directives. Next, the assembler generates the necessary code for the

partition and translate the directives into their correct machine code equivalent. Finally,

the linker assigns partition identification numbers to each partition, gather each partition

under a single executable and create the partition list.

1 Except for the changes that deals with the creation of the partition graph

66



Although this work is static, this can be done by dynamically reading the binary and

modifying certain parts of the calls. However, this work is beyond the scope of this thesis.

In this way, certain information that is available during the static analysis (i.e. frequency

of calls in specific control paths) can be inferred and used to optimize the loading of code.

Figure 4.1: Toolchain Components and their respective roles

4.1.1 Compiler Changes

The GNU Compiler Collection (better known by its acronym: GCC[42]) is one of

the most famous compilers in the world. It is being used in many projects that range from

compiling applications for embedded systems to compiling high performance programs for

super computers. It is also Free Software which makes it the perfect compiler to use when

the programmer does not have enough time to write his/her own. The version used for

this thesis is 4.2 which has built-in support for OpenMP. The CELL B.E. porting of the

compiler was taken care by a third party and Dr. Ziang Hu from the University of Delaware.

The porting process consisted of adding the correct architecture files and adding/modifying
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other files such that the SPE and PPE architectures are recognized and the correct code

is produced. Aside from the normal porting process, extra features were added so that

code partitioning can be supported. These features can be divided into three categories:

command line arguments, pragma directives and code partitioning algorithms (implemented

inside the compiler). The first two are explicitly presented to the programmers. The final

feature is implemented in the internals of the compiler. This dictates the way that code

is divided given the options provided by the former two. All three features are further

discussed below.

4.1.1.1 Command Line Flags

Command line flags are used to turn on and off certain compiler features. In our case,

these flags control the partition behavior, the algorithm used and the maximum number of

instructions per partition. The first command line flag is the -fcode-partition. This option

tells the compiler that the code being compiled needs to be divided into partitions using

the compiler’s internal algorithms. In this mode, the compiler ignores the pragmas that

the user added to the source code. The next flag is -fcode-partition-manu. This flags turns

off the compiler algorithms and uses the user pragmas to do the partitioning. Finally, the

–param max-partition-insns=n limits the number of instructions per partition to n or less.

4.1.1.2 Pragma Directives

Two pragma directives have been added to the preprocessor. These pragmas are

used to control the code partitioning when the -fcode-partition-manu flag is in effect. The

first directive is #pragma partitions x funcname1, funcname2, . . . , funcnamen. This

directive tells the compiler that the functions funcname1, funcname2 all the way up to

funcnamen reside in partition x. The x parameter defines a distinct partition but it will

not necessarily be the actual partition identification number which is assigned by the linker.

You can imagine, the parameter x being the logical partition number and the assigned

linker id the partition’s physical one. If a function is not present in any of the partitioning

pragmas, it is assigned to the default partition (which always resides in memory and is given

the identification number zero).
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The final directive is #pragma keep function funcname1, funcname2, . . . ,

funcnamen. This pragma tells the compiler that functions funcname1, funcname2, up

to funcnamen need special attention when compiling. Usually, these functions reside in

different source files and that is why this directive flags them as special. As stated before, if

the compiler flag -fcode-partition is in effect, all these macros are ignored. A code example

can be seen in listing 4.1. In this example, the pragma in line 1 selects the main and the

bar functions to reside in partition zero and the pragma in line 2 puts the function foo in

partition 1.

As a final note, in all C code examples, the main function prototype is defined as

having an extra parameter, the spuid, which contains the runtime identification number of

the running SPE. The other two arguments in this function prototype represent a pointer

to the function arguments and a pointer to the environment parameters, respectively (both

located in the global memory)2.

Listing 4.1: Pragma Directives Example

1 #pragma p a r t i t i o n 0 main bar

2 #pragma p a r t i t i o n 1 foo

3 #include <s td i o . h>

4 void f oo (void ){}

5 void bar (void ){}

6 typedef unsigned long long ea t ;

7 int main ( ea t spuid , e a t argp , e a t envp ){

8 foo ( ) ;

9 bar ( ) ;

10 return 0 ;

11 }

2 Since the arguments resides outside the SPE local storage, a 64 bit pointer is passed
to the SPE to locate the arguments. The void pointer cannot be used to pass these
arguments since in the SPE, this type represents four bytes (32 bits) instead of eight
(64 bits)
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4.1.1.3 Compiler Internals

When partitioning is enabled (either by adding -fcode-partition, or -fcode-partition-

manu), the compiler calls its partitioning function. This function behaves in two different

ways according to the options passed to it (either by the command line arguments and /

or by the directives). If manual partitioning is enabled, it collects the functions and groups

them into partitions based on the pragmas that it finds. In case that the generated partition,

created by either method is greater than the side of the allocated partition memory, the

runtime prevents its loading and gracefully quits.

If automatic partitioning is enabled, it goes through several steps. In the first step,

it creates a partition for each function. Next, it approximates the times that a given code

runs. This is done based on the number of basic blocks that each function has and if they

are in a loop or not. In this way, the cost matrix is created. The cost matrix a square matrix

that have as many rows as functions have been declared in the program. Elements in this

matrix represent how costly (based on the basic block estimated runtime information) is to

call a descendant partition.

Next the elements of the cost matrix are merged according to their costs. Let say we

have an element i which calls element j with a cost x. In case that the size of i + the size of

j is less than a specified threshold (e.g. maximum size of a partition under the framework)

and the cost x is the largest in that row, the rows i and j are merged. Under this process,

two complete rows are merged and one of them, plus its corresponding column, are deleted

from the matrix. When two rows are merged, the children’s costs and the rows’ sizes are

added. This process continues until the algorithm have exhausted all the children and/or

the maximum threshold has been met for each row. This ensures that the number of inter

partition calls are minimized.

After the compiler has finished creating the partitions, it generates assembly code.

When partitioning is enabled, the resulting code includes several assembly directives that

guides the assembler to produce correct machine code. These directives are inserted when

needed, as when calling a function in another partition; or to identify a section that holds

the partitioned code. Table 4.1 shows a list of the new assembly directives.
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Table 4.1: Overview of New Assembly Directives

Directive Description
.partition pn Define the next code section to belong to

partition pn
.pm caller The following function call might be inter-

partitional
.libcallee The following function call will always tar-

get partition zero
.funcpointer The following load or store loads a function

pointer. Thus, DO NOT clean the upper
15 bits.

4.1.2 Assembler Changes

After the assembly code was generated, several new directives can be seen in the

code. The first one depicts a new section in which a given function resides. This directive is

.partition pn where pn is a distinct identifier for the partition. This directive are inserted

into the header of a function call replacing the .text directive. Functions that are assigned

to .text are going to reside in partition zero and they are always resident in memory. All

functions belonging to a partition have the same pn across all their definitions.

The next directive is .pm caller . This directive is placed right before a (or a

suspected) inter-partition call. The caller parameter denotes who is the current function3.

This directive generates some extra instructions4 that prepares a special set of arguments.

The linker dump in the Listing 4.2 shows the generated instruction for a given .pm directive

and its associated function call. The instructions in lines 2, 4 and 5 save the original values

of the three partition manager argument registers just below the current stack frame. Next,

lines 6, 8, and 9 set the partition manager arguments (offset in partition, caller and callee

identification numbers). Finally, the Partition Manager’s call occurs in line 10. The partition

manager loads the partition that contains the desired function. If the partition is already

there or the function resides in the default partition, then it adjusts the symbol address and

3 This might be redundant but makes changing the assembler easier
4 The number of extra instructions ranges from 6 to 10 according to the branch instruction
that was used
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Listing 4.2: Linker dump showing the preparation of the partition manager parameters

1 . . .
2 7278 : 24 f f c0 d0 stqd $80 ,−16($1 ) ; Save o r i g i n a l

3 ; v a l u e s j u s t

4 727 c : 24 f f 80 d1 stqd $81 ,−32($1 ) ; be low the s t a c k

5 7280: 24 f f 40 d2 stqd $82 ,−48($1 ) ; l i m i t

6 7284: 42 00 00 50 i l a $80 , 0 ; Load the p a r t i t i o n

7 ; manager arguments

8 7288: 40 80 00 d2 i l $82 , 1
9 728 c : 40 80 00 51 i l $81 , 0

10 7290: 31 0e 87 00 brasl $0 , 7438 <PM> ; Ca l l the

11 ; p a r t i t i o n manager

12 . . .

issue the call. If it is not, it initializes a transfer for the partition and proceed as before.

The next new directive is .libcallee and it is placed right before a call to a function

that resides in the default partition. The rationale for such directive is explained below.

Since partitions are highly mobile code, all accesses (e.g. loops and function calls)

inside of them are made relative to the current PC. The problem with this approach is that

calling an external function (e.g residing in another partition) does not work since partitions

can be moved to any position in the buffer. For partitioned calls, the partition manager

takes care of the relocation of the call (by adding the correct offset to the symbol name

before calling it). This works for both partitioned symbols, as well as, function residing

in the default partition since the Partition Manager will not relocate function’s addresses

that resides in the default partition. Thus any call to the default partition will be handled

correctly. A final type of call occurs when a function in the same partition occurs. In this

case, no partition manager interaction is needed since the relative call is sufficient.

A question arises: since the partition manager (PM) can call both partitioned and

un-partitioned code, why not let it take care of calling all the resident function calls? This

can easily be answered. Calling PM involves an overhead, which is anywhere from 300

to 1000 of cycles5. Calling all the resident functions through the partition manager is a

5 depending if a transfer from an external device is needed
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waste of resources. Thus, the .libcallee directive was created to alleviate this problem.

This directive tells the assembler that the following call needs to be made with absolute

addressing instructions (e.g. brasl in the Cell Broadband Engine) instead of relative ones

(e.g. brsl) since it resides in the default partition

The final directive is .funcpointer. It is used for function pointers. It marks if a

load has a function pointer as its target and generates the correct code to load it into a

register since the normal load instruction may omit the upper part of the symbol. More

often than not, these function call types are called through the partition manager.

From the new directives presented here, three affect the code generation (.pmcall,

.libcallee, and .funcpointer) and the other one (.partition pn) affects where the gener-

ated ELF segments are placed. The directives that affect code generation do this by changing

the instruction type (like in the case of .funcpointer and .libcallee) or by adding extra

instructions and replacing others (like .pmcall). A code example that shows all the direc-

tives inside an assembly file is presented in Listing 4.3. Note that the call to bar (Line

19) does not have any directive above it. The compiler interprets it as an intra-partition

function call. For all the calls that are in this category, it is safe to call them using the

relative instructions since they reside in the same partition (in this case, bar resides in the

same partition as main).

Listing 4.3: Assembly File showing the partitioning directives

1 .global bar

2 .text ; Resides in Par t i t i on zero

3 bar :

4 . . .

5 .funcpointer ; Assume tha t $3 i s a f unc . po in t e r

6 i l a $3 , bar

7 . . .

8 .global f oo

9 .partit ion p1 ; Function in Par t i t i on p1

10 foo :
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11 . . .

12 .global main

13 .text ; Par t i t i on zero func t i on

14 main :

15 . . .

16 .pmcall main ; I n t e r p a r t i t i o n e d c a l l

17 brsl $lr , f oo

18 . . .

19 brsl $lr , bar ; No PM in t e r v en t i on necessary

20 . . .

21 . l i b ca l l e e ; Par t i t i on zero func t i on c a l l

22 brsl $lr , p r i n t f ; No PM in t e r v en t i on necessary

23 . . .

4.1.3 Linker Changes

Finally, the linker assigns the partition identification number (i.e. physical id) to

each partition and assign their loading addresses and types. All partition code regions have

their symbols resolved against the same address but their attributes are set to not loadable.

This means that if you have a symbol foo which resides at the beginning of a partition,

its address will be resolved to the same address as the symbol bar which resides at the

beginning of another partition. The reason for this is to generate the Position Independent

Code (PIC) code and partially resolve the symbol addresses. The partition manager will

resolve the symbols according to where they are loaded during runtime. Since the partition

are set to not loadable, they stay in the global memory while the rest program is loaded

into the SPE local memory. Moreover, each function symbol address inside a partition is

appended with the enclosing partition id. The symbol format for a partitioned call is shown

in figure 4.2.

Next the linker creates a special structure called the partition list which contains the

binary offset for the partition regions together with their sizes. This structure is added to
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Figure 4.2: The format for a Partitioned Symbol

the final part of the data segment of the SPE binary image.

When the binary image is created, the linker uses a linker script to allocate the

required segments in the binary image and how they are loaded into memory. The partition

manager’s linker script modifies the binary image as shown in figure 4.3. The new image

has both the partition list and the overlay area added to it. The overlay area (or partition

buffer) is allocated after the interrupt table in the SPE memory and it is from where the

partition code is loaded and run.

Changes in the assembler and linker were done by Jiang Yi from the University of

Delaware.

4.1.4 Discussion and Future Work

All these efforts serve to provide the static support for the partition manager. They

are essential components that helps to reduce even further the impact of the framework with

a little bit of static analysis. The following is a list of current limitations and bugs that this

framework exhibits. No toolchain component offers section protection. This means that is

very possible for a given section (partition) to overwrite the contents of others. However, the

library protects against partitions that are too big for its buffers. Thus, partition loading

does not overwrite program sections. Nevertheless, it is possible for the user program to

corrupt itself.
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Figure 4.3: The normal and enhanced binary image for the Partition Manager. The TOE
segment is a special segment used for the interaction between the PPE and SPE binaries.
The CRT0 represents the entire C runtime code

Because of the highly mobile nature of the partition, debugging information is ren-

dered useless. Thus, debugging tools should be used with a grain of salt or not at all.

However, the debugging tools for the SPU have not reached wide acceptance. Nevertheless,

an enhancement to the debugging format (DWARF at the time of this writing) are possible

and future work will concentrate on it.

Some compiler optimization that optimized function calls should be avoided since

they might bypass the correct call to the partition manager and prevent the correct loading

of partitions (i.e. -fno-optimize-sibling-calls). The solution to this involves the addition of

prologues and epilogues to each function call. This is a similar approach used to implement

the LRU policy presented in section 5.1.1.4.
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These changes produces a binary that loads a stripped down program (without the

partitioned code) plus any necessary libraries (this includes the partition manager) into the

Cell’s SPE memory. The next chapter explains the partition manager, its extra structures

and its initial implementation.

4.2 Partition Manager and Its Framework

At the heart of the partitioning framework lies the partition manager. This function

is the one in charge of loading, correctly placing and, in general, managing the overlay space

and the partitions during runtime. The main difference between this small framework and

the GCC overlay framework is that it can manage the partitions dynamically, i.e. it can put

partitions anywhere in the overlay space. The idea behind the partition manager is similar to

the way that the instruction cache and the I-TLB works on super scalar architectures. Since

many-core architectures have these features reduced or eliminated, the partition manager

is an acceptable replacement for these methods. This chapter describes the ideas behind

the partition manager and their dynamic management of the overlay space. This section

concludes with the implementation of the partition manager on a many core architecture,

the Cell Broadband Engine. However, there is a certain terminology that needs to be

introduced in the next section.

4.2.1 Common Terminology

A function can have two types of states: temporary and permanent. The concept of

state under this framework is equivalent to registers. The permanent state of a function is

composed of the information that changes due to Partition manager interaction and must

be preserved across the function call. On the other hand, the temporary state is composed

of all the registers that are expected to be used by the calling function. If unsure this can

represent the entire register file. However, there are some guidelines that can be followed. If

all partition manager’s callees are known, the register usage can be found and an upper limit

of the number of registers to save can be calculated. Moreover, some scheduling “tricks”

can be used when writing the partition manager to reduce the number of used registers.
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The difference between the temporary and permanent states is their lifetime. The

function’s permanent state needs to be saved across its lifetime. They are usually saved into

the partition related structure. On the other hand, the function’s temporary state needs

only to be saved and restored during certain areas of the partition manager code. Thus, the

space used for the temporary state can be reused across different partition manager calls.

The partition manager requires a small number of parameters passed to it. Moreover,

one of these parameters must be a callee saved so the function can be called. Please be

aware that two of the partition argument registers are considered temporary state and the

other one is considered permanent.

Next, a high level introduction to each partition manager and its components is

introduced.

4.2.2 The Partition Manager

The main objectives of the partition manager are to ensure that the correct function

is called and that the state is correctly passed between the different function calls. Given a

group of partitions, i.e. a code’s section which were created by the compiler as independent

“codelets”6. When a partioned function is called, the partition manager acts as a trampoline

between the caller and the callee. A trampoline under this framework is defined as a ghost

function which will do its work without leaving any visible traces of its activities. The

current framework depends on four structures. Some of them are created by the compiler,

while others are created and maintained during runtime. The major components of the

partition manager can be seen in Figure 4.4.

4.2.2.1 The Partition List

This structure is created by the toolchain, more specifically by its linker (explained

in 4.1). It consists of two parts which define the partition offset on the file and the partition

size. Moreover, the partition list resides in the computational element local memory; usually

just after the program’s data section. Under this framework, a partition is defined as a set

6 a function without unstructured gotos
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Figure 4.4: A Partition Call showing all major partition manager components

of functions for which their code has been created to be Position Independent Code (PIC)7;

thus they can be moved around the memory as the framework sees fit. The actual partition

code is not loaded with the program, but left on the global memory of the machine. The

partition offset’s part of a list element shows the offset (in bytes) from the binary entry point.

In other words, the location of the partition in global memory is given by the addition of

the program entry point plus this partition offset. Finally, the size section of the entry

contains the size in bytes of the partition on the memory image. Under this model, each

of the partitions are identified by a unique identifier that index them into this list. When

a partition is required, the element is loaded using the partition list information and the

correct buffer state is set before calling the function.

7 This refers to code that was created especially to run in/from any memory location.
Shared libraries are usually of this kind.
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4.2.2.2 The Partition Stack

The Partition Stack is a meta-structure which records the calling activity between

partitions. It was designed to solve a very simple problem: how to return from a function

call which was called from another partition?

By keeping the partition stack, the framework can know who was the parent of the

current function call, load the partition back if it is required and save the function state, i.e.

registers which must be saved across partition manager calls. Although the partition code is

defined as PIC, when returning from a function call, the framework must load the partition

back to its original position. If this is not the case then a large amount of binary rewriting

and register manipulation is needed to ensure the correct execution of the function. This

will result in a much greater overhead (almost linear with the size of the function) and a

more complex manager with several dependent structures (i.e. larger memory footprint).

4.2.2.3 The Partition Buffer

The Partition Buffer is a special region of the computational local memory, in which

the partition code is swap in and out. It is designed to have a fixed value per application,

but it can be divided into sub-buffers if required. The sub-buffers can help to take advan-

tage of certain program characteristics (i.e. locality, frequency of call, etc) to reduce the

communication between the main memory and the manager. Moreover, it contains certain

state, like the current Partition index and the lifetime of the code in this partition; which is

used for book-keeping and replacement policies as presented in chapter 5. Its management

is taken care by the partition manager. A special note, this buffer is not called a cache

because other policies besides cache-like can be applied to it.

4.2.2.4 The Partition Manager Kernel

At the center of all these structures lies the Partition Manager. This small function

handles the loading and management of the partitions in the system. During initialization,

the partition manager may statically divide the partition buffer so that several partitions

can co-exist with each other. It also applies a replacement policy to the buffers if required

(as discussed in chapter 5).

80



Although, the partition manager exists outside the programmers viewpoint, it still

requires some information to be passed to it. The partition manager has argument registers

which are restored before the partitioned call is invoked. However, at least one of these

argument register must be classified as callee saved register on the architectural ABI.

Finally, a description of the partition manager calling a function is described below.

4.2.2.5 The Anatomy of a Partitioned Call

When compiling a partitioned code, code generation occurs as expected down to

the assembly phase, i.e. arguments are prepared and code for function calls are inserted.

However, the assembler generates a slightly different code for a marked partition call site.

The saving and setting of the partition argument registers and the call to the partition

manager are inserted here. During runtime, when the partition manager is called, it saves

the function’s temporary state and checks its arguments. Second, the partition manager

pushes the current partition ID and the function’s permanent state to its partition stack.

Next, the manager checks if the current call needs to be loaded or if it already resides in the

local memory by checking the partition indexes that reside in the partition buffer against

the partition index of the function call. There can be three types of calls. The first type

involves functions which do not reside in the partition buffer because they were loaded with

the binary image at the beginning. These functions have the partition index of zero and no

dynamic relocation is made on them. The second type of function call is when the function

is already present in the partition buffer. In this case, the relocation is made by adding the

dynamic entry point of the buffer to the function address. Finally, the third case is when

the function is in a partition but it does not exit in the partition buffer. In this case, the

relocation takes place as before, and a load is issued for the given partition.

After the given partition is found (either it was there or it was loaded) and the

partition buffer state is updated, the function state is restored and the function call is

invoked. The callee saved argument register is used to call the function. The rationale

behind this restriction is that the framework needs at least one free register to call the

function and that if the callee function uses this register, the function (according to the
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ABI) saves and restores this register accordingly. When the function returns, the partition

manager continues its execution to ensure that the return path of the function is restored.

After saving the function’s temporary state, the partition manager pops up its stack and

compares the current partition index with the returning partition index. If they differ then

the correct partition must be loaded and the partition buffer state must be updated. After

the return address has been validated, the function state and all argument registers are

restored to their original values and the partition manager returns.

In this way, the partition function call behaves like a ghost trampoline which ensure

that the partitions are available in memory at any point in time.

4.2.3 Cell Implementation of the Partition Framework: Version 1

This section describes the changes required to implement the partitioning framework

under the Cell Broadband Engine. For the changes on the toolchain side, please refer to

4.1. The kernel of the partition manager was written in assembly to optimize register usage

and depends heavily on several structures which implements the framework components

described above. On this version, the partition buffer is not further subdivided so the

replacement policy is trivial.

4.2.3.1 Partition List Structures and Variables

The variables associated with the partition list component of the framework are de-

fined in the linker script that accompanies the toolchain or in the structure handle of the

binary image (provided by the spu handle t structure data type). The variables declared in

the linker script are the partition list and partition size which represent the address

and the size (in bytes) of the partition list. As mentioned before, these variables are ini-

tialized and loaded by the linker at the application linking time. The partition list location

are at the end of the data section of the new binary image and it has a maximum size of

512 bytes. Under this configuration, the framework can support up to thirty two distinct

partitions.
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4.2.3.2 Partition Stack Structures and Variables

The Partition Runtime Stack is represented by a structure of the type r stack. The

C structure definition for this data type is given by listing4.4

Listing 4.4: A Partition Runtime Stack Node

1 typedef struct r s t a c k {

2 short int p a r t i t i o n i d ; Caller PID

3 part man t r gx s t o r age [ 2 ] ; Function Permanent Storage

4 struct r s t a c k ∗next ; To the next entry

5 } r s t a c k ; A Stack node

A node in the stack is created every time that the partition manager is called. A

node in this structure has the partition index of the current working partition and storage

big enough to allocate data that must survive across functions which the framework refers

to as PM permanent state which are explained in section 4.2.1. A node on the stack is pop

when the function returns to the partition manager after doing its work.

4.2.3.3 Partition Buffer Structures and Variables

As with the partition list, some of the partition buffer variables are defined in the

linker script. However, the buffer also has state which are framework variables. Although

the buffer is assigned by the linker script, the allocation can be done with any type of

memory allocator (e.g. malloc) and the buffer variable can be rewritten. The two variables

defined in the linker script are the buffer and the buffer size which define the buffer loading

address and the buffer size in bytes.

Another partition buffer variable is the current partition variable which contains the

active current partition that resides in the SPE local memory. Under this implementation,

only one buffer is allowed to exist.
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4.2.3.4 Partition Manager Support Structures, Variables and Calling Proce-

dure

The partition manager uses all the variables mentioned before and add some of its

own to the framework. Under the CBE implementation, the function’s permanent state is

represented by two registers: the linkage register which contains the original return value of

the function and the partition argument register’s original values. This register is used to

call the function from the partition manager. As the partition manager does not change the

function stack in any visible way or the environment, the stack pointer and the environment

variable are not part of the function’s permanent state. On the other hand, the temporary

state is composed of all the registers that are expected to be used by the calling function.

In the initial versions of the framework, this represented the entire register file. However,

we used some tricks (besides smart scheduling) that are useful for reducing the size of the

temporary state.

To reduce the temporary state, the partition manager must know all the registers that

are used. Although this might seem trivial, the partition manager does not have any control

(or even knowledge) on the registers used in its library calls (i.e. memcpy, main memory

transfers, timing functions, print statements, etc). To overcome this obstacle, the Cholo

libraries were created. These libraries provide an API for common functions that deals with

memory copying and transferring, timing and software based interrupts. The advantages

of these libraries is that the PM writer knows all the registers that are used in them (since

he has access to the source code and object code) and can control their allocation. Most

of the functions in the Cholo library are based or copied (with minimal changes) from one

of the standard implementation of such functions8. Thanks to this extension, the size of

temporary state can be reduced from 1.25 Kilobytes to 352 bytes only. During a partition

manager call, only one temporary state can exists. The function’s temporary state is saved

in an array called the register storage.

An important point to make here is that since the function stack and the data

8 e.g. the memcpy in the Cholo libraries is based on its implementation in the GNU C
library with minimal changes.
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segments resides in the same flat memory in the SPE memory and there is no penalty (or

benefit) to access the stack versus normal SPE memory, all the framework variables are

declared global so that the stack pointer is not modified. Finally, the original values of

the argument registers, which are defined to be the registers 80, 81 and 82 in the CBE

architecture, are saved just beyond the original function’s stack frame.

4.2.4 A Partitioned Call on CBE: Version 1

In the section 4.2.2.5, a high level overview of how a partitioned call is made was

presented. This subsection presents how a call is invoked when running on the CBE version

of the framework. Please note that this is the basic framework of the partition manager.

Advanced frameworks built upon this one are explained in section 5.

Before the partition manager is called, registers 80, 81 and 82 are filled with the

partition manager parameters. These register original contents are saved just below the

current stack frame. After the parameters have been prepared, the partition manager is

called. The manager saves the function’s temporary state which includes the original values

of 81 and 82 before doing anything else. Next, the partition identification number for the

new partition and the function address are decoded. When decoding the partition id, the

caller’s partition id plus the function’s permanent state (i.e. register 80 and the link register)

are pushed into the partition stack. In case that the callee’s partition id is zero or is the

same as the current partition id then decoding returns a value of zero, which means do not

load.

If a new partition needs to be loaded, then decoding returns the partition id of the

new partition and updates the current partition variable. The decoding for the function

symbol consists of adjustments made to the symbol address. As stated in section 4.1, the

symbol of a function that resides in a partition consists of the offset from its partition start

and its partition index on the upper seven bits. During symbol decoding, the buffer’s offset

is added to the symbol (i.e. offset) without the upper seven bits (which contains the symbol

partition’s index). This creates an absolute function pointer. However, if the symbol resides

in partition zero, nothing is added to it because the symbol address is assumed to be the
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absolute address.

After the index is decoded, the partition is loaded. Afterwards, the transient state is

restored. The function is invoked using the register 809. This whole process is depicted by

the flowchart in figure 4.5. After the function returns, the transient/temporary state10 are

saved. At this point, the partition stack is popped. This loads register 80’s original value

and the link register with the original return address (back to the caller)11 in a temporary

holder. It also pops the partition id from the caller. Since the target of the link register

might be in a partition, the partition manager needs to check the partition index from

the caller against the current partition. If the indexes are not the same then a transfer is

issued to load the correct partition and update the current partition variable. After this,

the partition manager restores the transient and the permanent states for a final time and

returns. A flowchart of this process is given by figure 4.6

A major observation can be made. The partition buffer might be sub-divided so that

it can hold multiple partitions at the same time. In this way, several code features and

characteristics can be exploited to improve performance. An extension to this design is to

dynamically divide the buffer and then manage each of the sub-buffer as a distinct partition

buffer. This includes adding several variables to the framework and replacing policies on

the sub-buffers.

9 at this point, registers 81 and 82 have been restored already to their original values
10 minus 81 and 82
11 The last value that the link register had was inside the partition manager
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Figure 4.5: A Flowchart of the first section of the partition manager call. The logic flow of
the initial section of the partition manager kernel. It checks if the partition is loaded and if
it is not, loaded and call the function
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Figure 4.6: A Flowchart of the second section of the partition manager call. The logic flow
of the return part of the partition manager kernel. It checks if the callee partition still exists
in memory, if it is not, load it. Return to the caller afterwards.
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Chapter 5

PARTITION MANAGER ENHANCEMENTS

In its original form, the partition manager wastes many opportunities to reduce the

number of long latency operations and the overlapping of computation and communication.

This chapter explores the advantages and disadvantages of certain classical hardware /

software optimization techniques when applied to the framework.

We continue to explore the partition manager space by dividing the overlay / buffer

space into different sub partitions and then applying several algorithms to reduce the number

of long latency operations in many scenarios (cache-like versus pre-fetching schemes versus

victim cache).

5.1 The N Buffer: The Lazy Reuse Approaches

All partition manager components were explained in the Chapter 4. However, as

observed in the last paragraph of that chapter, the partition buffer can be broken down into

sub-buffers. This opens many interesting possibilities on how to manage the sub-buffers to

increase performance. Even though this area is not new, these techniques are usually applied

in hardware. This chapter shows two hardware buffer management techniques applied to the

partitioning framework. The first one is the simplest one in which the buffer subdivisions

are treated as a FIFO (first in first out) structure. In this context, this technique is called

Modulus due to the operation used to select the next replacement. The second one is based

on one of the most famous (and successful) cache replacement policies: Least Recently Used

(LRU). This section describes both techniques and their implementation in the partition

manager framework. However, a look inside the N Buffer approach is in order.
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5.1.1 The N Buffer Approach

Under this approach, the buffer is broken in N pieces and all of them are managed by

the partitioning framework. Since there are many sub-buffers to select from, a replacement

technique is placed into effect to better utilize the buffer space. This technique refers on

how to choose the next sub-buffer when a new partition needs to be loaded. Moreover, the

framework behaves slightly different when loading the partition. The framework can either

take advantage of reuse (lazily reusing the already loaded partitions) or actively loading

them into the buffers. In this section, we deal with lazy reuse techniques. However, the

framework is extensible enough to add other features if required. Before talking about the

techniques that we are using, we should take a look on how partitioning the partition buffer

affects the framework components.

5.1.1.1 The Partition Buffer

The partition buffer is affected by adding an extra state. Each sub-buffer must

contain the partition index residing inside of it and an extra integer value to help achieve

advanced replacement features (i.e. the integer can represent lifetime for LRU or the next

partition index on a pre-fetching mechanism). Moreover, the partition that resides in local

memory become stateful under this model. This means that instead of just being loaded

and not-loaded, now they can be active, in-active, evicted or evicted with the opportunity of

reuse. For a description of the new states and their meanings, please refer to table 5.1.

Every partition begins in the evicted state in the main memory. When a call to a

function in that partition is issued, the partition is loaded and becomes active. From this

state the partition can become in-active, if a new partition is needed and this one resides

into a sub-buffer which is not replaced; back to evicted, if it is replaced and it doesn’t belong

to the return path of a chain of partitioned function calls; or Evicted with an Opportunity

to Reuse, in the case that a partition is kicked out but it lies on the return path of a chain

of partitioned function calls. An in-active partition may transition to evicted and EWOR

under the same conditions as an active one. An EWOR partition can only transition to an

active partition or evicted if the application requires more memory (see 5.2.1).
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Table 5.1: The Four States of a Partition

State Location Description

Evicted Main Memory Partition was not loaded into local
memory or it was loaded, evicted
and it will not be popped out from
the partition stack.

Active Local Memory Partition is loaded and it is cur-
rently in use

In-active Local Memory Partition is not being used, but still
resides in local memory

EWOR Main Memory Evicted With the Opportunity of
Reuse. This partition was evicted
from local memory but one of the
elements of the partition stack has
its partition id and it will be used
in the near future.

These states can be used to implement several levels of partitioning. A concept

similar to victim caches in the superscalar architectures can be implemented for EWOR

partitions. Under this model, when a partition transitions to an EWOR state, a special

region of code is created dynamically and the partition is copied to it. When this partition

is needed again, it is copied back to the sub-buffer and its temporary state is freed. In this

way, a load from main memory can be saved and the memory pressure is alleviated since

the extra sub-buffer is allocated on demand.

5.1.1.2 The Partition Stack

When returning from a chain the partition function calls, the partition must be

loaded into the same sub-buffers that they were called from. To achieve this, the partition

stack node adds a new component which represents the associated buffer in which this

partition originally resided. When dealing with extra replacement policies, another variable

is added to the partition stack node to save any policy information. This process is called

reallocation.
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5.1.1.3 The Modulus Method

The modulus method is the simplest one of the two lazy reuse methods. In this

method, the variable pointed to the next sub-buffer to be filled is updated using using a

First-In-First-Out (FIFO) policy. In this method, the oldest existing partition is always

replaced. The advantages of this method are that is very easy to implement since it only

requires a simple remainder (i.e. FIFO) operation to select the next sub-buffer. Moreover,

this method does surprisingly well in applications in which the code is not reused that often,

i.e. partitioned calls inside loops. Nevertheless, since it does not recognize reuse, a very

“hot”partition can be replaced before it is completely used. This might create many extra

transfers which represents anywhere from dozens to thousands of cycles lost. Because of

this, the next method takes in consideration reuse and with this information; it decides the

next sub-buffer that is replaced. An inter partitioned call using the modulus methods goes

as follows. Save the PM permanent and PM transient registers. Then decode the partition

id and the address. While decoding the partition id, push to the partition stack (together

with the caller’s sub-buffer id1) and decide if the partition needs to be loaded. If it needs

to, calculate the sub-buffer in FIFO order. Update the sub-buffer array, the next sub-buffer

variable and the current partition variables. When decoding the symbol, take the values of

the current sub buffer and the sub buffer size to ensure that the symbol address is pointing

to the correct sub-buffer. After this step, the loading of the new partition takes place. The

PM transient registers are restored and the symbol is called. After the function returns, the

PM transient2 are saved and the partition stack is popped. This puts the contents of the

PM permanent in a temporary holder. While the stack is being pop, the associated buffer

and the caller partition id are checked. If the partition is in memory and in its correct sub

buffer then no further action is needed. If the partition is still in memory, but not in the

correct sub-buffer, then the partition is copied to the correct sub buffer and the old sub

buffer is marked “available.”If the partition is not in local memory at all then it is loaded.

Finally, all registers are restored to their original contents and the function returns.

1 in the associated buffer variable
2 sans 81 and 82
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5.1.1.4 The LRU Method

The LRU method is based on the LRU method that is used in the cache systems. In

this method, every sub-buffer has a counter that keeps track of how many times this partition

is accessed. Meanwhile the rest of the sub-buffers fade to zero. The speed in which the sub-

buffers fade is proportional to the number of completed3 partitioned functions being used

in the program. Every time that a function is called, the current sub-buffer gets a value. If

the function that is being called is in a partition then all sub-buffers counters are reduced

with the exception of the current sub-buffer. If a new partition is needed, then a sub-buffer

is prepared by setting its counter to zero and changing the current sub-buffer and current

partition. When the function is called, the counter for that sub-buffer is set.

Examples on how the framework behaves for both the modulus and LRU policies

are given in listings 5.1 and figure 5.2 for modulus; and listings 5.2 and figure 5.4 for LRU.

The framework presented here uses two buffers and the partition graphs for each listings are

presented by figure 5.1 and figure 5.3, respectively. The objective of these examples is to

show how the framework states and components change over the program execution under

both of these policies.

Listing 5.1: Source code for the 2-buffer example

1 #pragma p a r t i t i o n 0 main

2 #pragma p a r t i t i o n 1 f 1 f 4 f1 and f4 resides in partition 1

3 #pragma p a r t i t i o n 2 f 2 All others: a function per

4 #pragma p a r t i t i o n 3 f 3 partition

5 #pragma p a r t i t i o n 4 f 5

6 #include <s td i o . h>

7 void f 1 ( ) { f 2 ( ) ; }

8 void f 2 ( ) { f 3 ( ) ; }

9 void f 3 ( ) { f 4 ( ) ; }

10 void f 4 ( ) { p r i n t f ( ”;−P” ) ; }

11 typedef unsigned long long e a t ;

3 A chain of functions is considered to be a single completed function under this concept
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12 int main ( e a t spuid , e a t argp , e a t envp ){

13 f1 ( ) ; Call all functions in a chain

14 return 0 ;

15 }

Figure 5.1: Partition Manager Function Graph for the Modulus Example

5.1.2 Cell Implementation of the Partition Framework: Version 2

To implement the replacement policies in the CBE, four variables were added: an

array that holds the active and inactive partitions named parts on spe; a pointer which

points to the active partition called tail and two extra variables added to the partition

stack frame, named as count and associate buffer. The associate buffer is used to

save the sub-buffer in which the replaced partition used to reside. In this way, when the

function returns, the partition can be loaded (or relocated) to the correct subbuffer. The

as count variable is used for the LRU policy to save the lifetime of the partition so that

it can be restored later on in the execution. The modulus behavior is accomplished by

adding a variable which points to the next sub-buffer to be used. This variable is updated

by using the modulus formula on all sub-buffers. This method has a huge requirement
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(a) Step 0

(b) Step 1 (c) Step 2

(d) Step 3 (e) Step 4

(f) Step 5 (g) Step 6

(h) Step 7 (i) Step 8

Figure 5.2: States of each of the partition manager components across the function calls
provided by source code in listing 5.1 using the Modulus replacement policy
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from the framework. It requires that somehow to keep track of the functions activities.

This is possible due to the profile capabilities of GCC. Two new methods are defined,

cyg profile func enter and cyg profile func exit, and the compiler inserts calls to

these methods at the beginning and at the end of every function made in the application.

This might seem like a huge overhead for the application; however, the methods are in-lined

inside the application function and the exit method consists of an empty body. In the

current implementation, the enter method just reset the counter of the current sub-buffer

to a fixed value and decrement the other sub-buffers’ counters.

Besides having the extra profiling methods, this method requires some other changes

to the partitioning framework. The most important one is the set of counters. These

counters are the base of the method and they are checked every time that a new partition

needs to be loaded. The sub-buffer which is replaced is the minimum value among the

set of counters. The sub-buffer pointed by this value becomes the receptacle for the new

partition and the current sub-buffer. Please note that the minimum value may not be a

value but a set of them. Since the first minimum is selected, it can preclude some reusing

opportunities especially if a partition is monopolizing the execution. This can be solved by

implemented a modified priority heap on top of the set of minimum values. In this case, if

the minimum set stays stable during across many function calls then when a new partition

is needed, the set is treated as a FIFO. However, this FIFO replaces the partitions based

on how long the sub-buffers have been part of the minimum set (not how long they have

been in memory). In case that the set is not stable, the replacement behaves pretty much

randomly. A sub-buffer counter fades a unit every time that a function in another partition

is called. If any function inside of the partition is invoked then the sub-buffer counter are

reset to the maximum lifetime value. As explained in section 5.1.1.2, the partition stack

must save the caller’s partition id. In this way, reallocation and victim caching5.2.1 can be

supported. A good observation here is that replacement policies only applies when calling

the partitioned function, not when returning from them. The rationale for this is that when

returning from the function, the addresses of the caller has been fixed to the associated

buffer. Thus, it is easier (and less expensive) to load the partition into that sub-buffer than
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to adjust all address in the caller with the new offset.

A partitioned call under the LRU method is similar to the one under the modulus

with the following differences. During the partition stack push, the extra variable as count4

is pushed with the element. Moreover, the sub-buffer to be replaced is decided according

to the minimum value of the sub-buffer array. When the function is called, the sub-buffer

counter is set to the maximum lifetime value. The partition stack pop happens pretty

much the same way as the pop from any other method with the following differences.

When checking the associated buffer, the associated count (i.e. as count) is checked. If the

partition is in memory and the associated buffer is correct, the associated count is considered

to be stale and discarded. If the partition is in memory but resides in a different sub-buffer,

consider the associated count stale too and discarded it. The sub-buffer inherits the counter

from the old sub-buffer. If the partition is not in memory then use the associated count

with that sub-buffer. The rest of the partition manager call continues without any changes.

Both methods have their strength and weaknesses. The overhead of the LRU method

is a big drawback, but sometimes it is needed when dealing with code that is heavily reused

(but in chains). Thanks to its simple implementation and light weight overhead, modulus

performs well in some applications, but it has the disadvantage of being disastrous when

dealing with applications that relies in code reuse. For a performance results in a couple of

metrics, please refer to 6 for a complete discussion.

Listing 5.2: Source code for the 2-buffer example

1 #pragma p a r t i t i o n 0 main

2 #pragma p a r t i t i o n 1 a A function per partition

3 #pragma p a r t i t i o n 2 b

4 #pragma p a r t i t i o n 3 c

5 #include <s td i o . h>

6 int c ( int f f ){ return ( f f −1); }

4 to keep the sub-buffer counter
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7 int b( int f f ){ return f f ∗8 ; }

8 int a ( int f f ){

9 int x ;

10 for ( x = 0 ; x < 2 ; ++x){ Call the partitions in a loop

11 f f = b( f f ) ; }

12 return c ( f f ) ;

13 }

14 typedef unsigned long long e a t ;

15 int main ( e a t spuid , e a t argp , e a t envp ){

16 a ( ) ;

17 return 0 ;

18 }

Figure 5.3: Partition Manager Function Graph for the LRU example

The methods presented here are designed to reduce the number of DMA transfers

between the partition calls. They take advantage of locality between the partition calls. In

the next chapter, several enhancements will be introduced that allows further reduction of

DMA transactions plus support for new replacement policies.
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(a) Step 0 (b) Step 1

(c) Step 2 (d) Step 3

(e) Step 4 (f) Step 5

(g) Step 6 (h) Step 7

Figure 5.4: States of each of the partition manager components across the function calls
provided by source code in listing 5.2 using the LRU replacement policy
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5.2 Partition Graph and Other Enhancements

This section concentrates more on further enhancements and replacement policies

that further reduces the number of misses. In this chapter, we explore a victim cache for

EWOR partitions, and a simple pre-fetching scheme for the partition buffer.

5.2.1 Victim Cache

Introduced by Jouppi in 1990 [61], a victim cache is a small associative cache between

the cache and its main refill path. Under our framework, this is just a small buffer which

contains partition which are known to be loaded into the near future (i.e. code involved in

a long function chain)5. These partitions are called EWOR and they were introduced in

5.1.1.1.

A high level overview of the victim cache framework is given by figure 5.5.

Figure 5.5: Victim Cache Framework

The advantage of this cache is two-fold. As stated before, the size of the partition

buffer is fixed. Nevertheless the size of the victim cache is variable. It will allocates their

5 In the original paper, this small buffer would be called the cache miss buffer, but in
this thesis, we will refer to this buffer as a victim cache since EWOR partitions are just
victims of bad replacement policies
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entries dynamically and deallocate them according to use or need (e.g. if the application

runs out of memory).

Dynamic entries are added between the partition buffers and the global memories in

the SPE’s heap. An entry in this area will consists of the code, its partition and sub-buffer

ids and a counter which counts its uses. When an EWOR partition is evicted, the entries

are checked to see if the partition is already in the heap. If there is a previous instance

of the partition, its counter is incremented. If there is no instance of this partition, new

memory is allocated, the ids are updated and the code is copied over.

If the application uses the provided memory allocation wrappers (wmalloc and wfree),

they check if the heap has enough memory over to allocate to the application requested

data. If the dynamic allocation fails, the wmalloc function will tear down the victim cache

framework and try to allocate the application memory region again. If the wrapper are not

used, the application will just return that it cannot allocate the memory without tearing

down the victim cache.

There is a drawback to this technique though. There is a trade-off between the

number of victim cache entries and the partition stack length. Since we need to know which

partition are EWOR in the partition stack, the partition stack must be traversed. However,

this is solved by using a mask to set the bit that represents the partition identifying number.

This scheme can reduce the number of code misses and it will not increase the

memory usage unless it needs to. Another method to reduce the misses is explained next

and it involves a static structure called the partition graph.

5.2.2 Prefetching

Prefetching is a very common idea used in most systems today. Under these systems,

they use compiler analysis, dynamic learning or locality ideas to prefetch application’s data

(data in this instance being code or data).

Under OPELL, prefetching is useful on predicting the next function to be called dur-

ing a function chain. Although this has been analyzed statically (and part of our approach

uses a static structure)[81], the utilization of the partition buffer is dynamically assigned.
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In the following sections, we describe the creation of the partition graph and how it fits into

our partition manager framework. The overview of the prefetching framework is given in

figure 5.6.

Figure 5.6: Prefetching Framework

5.2.3 The Partition Graph

When the static Call Function Graph (CFG)6 is created inside our compiler, this

structure is saved for later use. When the linker creates the partition list, it is also saved.

Finally, the names of the functions in the CFG are searched in the symbol table to obtain

their sizes. After the linkage has finished, all the information is brought together to create

the partition graph structure.

The partition graph is defined as PG = V,EW . The V represents the list of vertex

on the partition graph. A vertex contains its partition id, its size, its weight and its loading

6 It is static because all possible paths are consider equally
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address. The final parameter is ignored due to the way that the framework behaves. The

EW represents the list of edges weighted by the number of incident edges and its size.

When all the information is collected from the compiler, the CFG is recreated with

the sizes of each function. All cycles are kept intact except for self referential cycles (e.g.

one-level recursive functions). After this, the partition list is overlaid on top of the CFG.

All edges that are inside a partition are deleted. The edge’s weight is calculated by counting

the number of edges between two given partitions. The vertex’s weight is calculated by the

number of incident edges to the vertex from other partitions.

Figure 5.7: Creating a partition graph given a piece of source code

Afterwards, the partition graph is created by using the edge’s weight in the adjacency

matrix of the graph and the vertex’s weight inside inside the description of the partition.

The process of creating the partition graph is illustrated by figure 5.7.

During runtime, the partition buffer is filled by the called partition and its children.

The algorithm to select the children can be modified to different configurations. Subsection

5.2.3.1 presents an example configuration.
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5.2.3.1 Prefetching: Weighted Breadth First Fetch

When an partition load is activated (either by an initial load or a replacement), the

replacement policy is activated. Under the prefetching scheme, there exists two partition

types: the required partition and their children. When the required partition is loaded, the

framework will sort its children by its vertex weight times the edge weight (parent to child).

Next, the framework loads the N − 1 top children without interrupting the application.

In this case, N represents the number of sub-buffers that the partition buffer can be sub-

divided into. If the assumption is correct, then the child becomes the required partition and

its children will be loaded accordingly to the previous rules. If the required partition is not

in the buffer then the guess is wrong and the required partition must be loaded again. Since

the children partitions are loaded in a non-blocking fashion, they can overlap computation

and save time.

The sorting of the children is done before hand so it will not affect performance. The

two parameters (the vertex’s and edge’s weights) contains information about the usability

of the partition code and its relationship with its siblings. A higher number indicates that

they are more edges coming and going from the vertex and its child together with both code

sizes.

Although this technique does not reduce DMA traffic, it overlaps the computation

and communication more effectively and it can reduce misses by actively loading the children

into the sub-buffers.

All these techniques (the replacement policies and the victim caches) can be used

together to create a simple (yet effective) task management system.

5.2.4 Dynamic Code Enclaves

Dynamic Code Enclaves or DYCEs are a side effect of the usage of the partition

manager and its techniques. Thanks to its compiler support, the code created for the

partitions can be loaded anywhere in the running application and by using the ideas from

the victim cache feature, code regions can be created on the fly.
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Since the partition manager deals with address and symbol resolutions, the branches

are intercepted by the framework and redirected to the correct tasks. This redirection is

achieved by passing the partition id to the caller (which might reside in another processor

altogether).

Finally, techniques like the lazy reuse and prefetching can be used to exploit the

inherent locality of the task.

In the next chapter, several overheads and experimental results are presented for all

techniques used for this framework.
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Chapter 6

EXPERIMENTAL TESTBED AND RESULTS

The partition manager framework uses a small suite of test programs dedicated to

test its functionality and correctness. The testbed framework is called Harahel and it is

composed of several Perl scripts and test applications. The next subsections will explain

the hardware and software testbeds and presents results for each of the test programs.

6.1 Hardware Testbed

For these experiments, we use the Playstation 3’s CBE configuration. This means

a Cell processor with 6 functional SPE, 256 MiB of main memory, and 80 GiB of hard

drive space. The two disabled SPEs are used for redundancy and to support the hypervisor

functionality. Besides these changes, the CBE processor has the same facilities as high end

first generation CBE processors. We take advantage of the timing capabilities of the CBE

engine. The CBE engine has hardware time counters which ticks at a slower rate than the

main processor (in our case, they click at 79.8 MHz). Since they are hardware based, the

counters provided minimal interference with the main program. Each of the SPEs contains

a single counter register which can be accessed through our own timing facilities.

6.2 Software Testbed

For our experiments, we use a version of Linux running on the CBE, i.e. Yellow

Dog with a 2.6.16 kernel. Furthermore, we use the CBE toolchain version 1.1 but with an

upgraded GCC compiler, 4.2.0, which was ported to the CBE architecture for OpenOPELL

purposes.

The applications being tested include kernels used in many famous benchmarks.

This testbed includes the GZIP compression and decompression application which is our
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Table 6.1: Applications used in the Harahel testbed

Name Description

DSP A set of DSP kernels (a simple MAC, Codebook encoding, and
JPEG compression) used at the heart of several signal processing
applications.

GZIP The SPEC benchmark compression utility.
Jacobi A benchmark which attempts to solve a system of equations

using the Jacobi method.
Laplace A program which approximate the result of an integral using the

Laplace method.
MD A toy benchmark which simulates a molecular dynamic simula-

tion.
MGRID A simplified program used to calculate Multi grid solver for com-

puting a 3-D potential field.
Micro-Benchmark 1 Simple test of one level partitioned calls.
Micro-Benchmark 2 Simple chain of functions across multiple files.
Micro-Benchmark 3 Complete argument register set test.
Micro-Benchmark 5 Long function chain example 2.
Micro-Benchmark 6 Long function chain example 3: Longer function chain and reuse.
Micro-Benchmark 7 Long function chain example 4: Return values and reuse.
Micro-Benchmark 8 Long function chain example 5: Victim cache example.

main testing program. Besides these applications, there is also a set of micro-benchmarks

designed to test certain functionality for the partition manager. For a complete list, please

refer to 6.1.

In the next section, we will present the overhead of the framework using a very small

example.

6.3 Partition Manager Overhead

Since this framework represents an initial implementation, the main metric on the

studies presented will be the number of DMA transfer produced by an specific replacement

policy or/and partition feature. However, we are going to present the overhead for each

feature and policy.

The first version represents the original design of the partition manager in which

every register is saved and the sub-buffer is not subdivided. The improved version is with
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the reduction of saved registers but without any subdivision. The final sections represent

the policy methods with and without victim cache.

On this model, the overhead with the DMA is between 160 to 200 monitoring cycles.

Although this is a high number, these implementations are proof of concepts and they can

be greatly optimized. For this reason, we concentrate on the number of DMA transfers since

they are the most cycle consuming operation on the partition manager. Moreover, some of

these applications will not even run without the partition manager.

6.4 Partition Manager Policies and DMA Counts

Figure 6.2 and 6.1 show the relation between the number of DMA and the number

of cycles that the application takes using a unoptimized buffer (saving all register file), op-

timized one buffer (rescheduled and reduction of the number of registers saved), optimized

two buffers and optimized four buffers. For most applications, there are a correlation be-

tween a DMA’s reduction and a reduction of execution time. However, for cases in which

the number of partition can fit in the buffers, the cycles mismatch like in Synthetic case 1

and 6.

Figure 6.3 show the ratio of Partition manager calls versus the number of DMA

transfers. The X axis represents the applications tested and the ratios of calls versus one,

two and four buffers. As the graph shows, adding the extra buffers will dramatically lower

the number of DMA transfers in each partition manager call.

Figure 6.4 selects the GZIP and MGRID applications to show the advantage of

using both replacement policies. In the case of MGRID, both policies gives the same counts

because the number of partitions is very low. In the case of the GZIP compression, the LRU

policy wins over the Modulus policy. However, in the case of decompression, the Modulus

policy wins over the LRU one. This means that the policy depends on the application

behavior which opens the door to smart application selection policies in the future.

Finally, in Figure 6.5, we show that the victim cache can have drastically effects on

the number of DMA transfers on a given application (Synthetic case 8). As the graph shows,

it can produce a 88x reduction in the number of DMA transfers.
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(a) DSP (b) GZIPC (c) GZIPD (d) JACOBI

(e) LAPLACE (f) MD (g) MGRID (h) SYNTH1

(i) SYNTH2 (j) SYNTH3 (k) SYNTH5 (l) SYNTH6

(m) SYNTH7 (n) SYNTH8

Figure 6.1: DMA counts for all applications for an unoptimized one buffer, an optimized
one buffer, optimized two buffers and optimized four buffer versions
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(a) DSP (b) GZIPC (c) GZIPD (d) JACOBI

(e) LAPLACE (f) MD (g) MGRID (h) SYNTH1

(i) SYNTH2 (j) SYNTH3 (k) SYNTH5 (l) SYNTH6

(m) SYNTH7 (n) SYNTH8

Figure 6.2: Cycle counts for all applications for an unoptimized one buffer, an optimized
one buffer, optimized two buffers and optimized four buffer versions
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Figure 6.3: Ratio of Partition Manager calls versus DMA transfers

Figure 6.4: LRU versus Modulus DMA counts for selected applications

Figure 6.5: The victim cache comparison with LRU and Modulus policies
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Chapter 7

RELATED WORK

The concept of overlays has been around for a long time. They were very useful in the

first multi-users systems and in systems which has restricted memory problems. However,

advances in hardware and software technologies have relegated them out of mainstream to

less visible areas of computing (i.e. embedded systems) [89]. There were two technologies

that displaced the overlay out of existence: dynamic libraries and virtual memory[32]. One

of the most famous early implementations of both concepts can be found in the Multiplexed

Information and Computing Service (MULTICS)[12][28].

7.1 A Historical Perspective

Before virtual memory, programs were manually separated into regions of code and

data. These regions were loaded as required. This was prevalent in systems during the 1940’s

and 1950’s in which the memory hierarchy was composed of at least two levels (permanent

storage and RAM). The first virtual memory prototype was proposed in [40] for the ATLAS

system. Under this system, the concept of address and memory location was decoupled and

the address translation units were born. Virtual memory automatically partitions the code

and data into predefined pages and loads them when needed. Structures like the Translation

Look-aside Buffer[36] were put into place to take advantage of the locality of code and data

pages. Thanks for virtual memory, programs could use much more than the available

physical memory and several of them can be run in the system as time shared fashion.

During the 1960s, the virtual memory concept spread like wildfire. Commercial systems like

the IBM 360/67[19], CDC 7600[43], Burroughs 6500[55] among others implemented virtual

memory. Of course, nowadays almost every general purpose system uses virtual memory[33].
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Since then, there are several research efforts that concentrate on optimizing virtual memory

for multiple threads, like the one that uses smart pre-fetching on virtual pages based on

pattern of synchronized variables[63] and using different replacement policies[9].

Virtual memory has severe limitations for real time systems. It is not desirable for

performance sensitive applications. Moreover, programmers and users cannot even hint to

the virtual memory system about the location of their program nor influence the size of the

paging required per function or code region[33]1. Our partition approach allows the user

hints for the overlay creation and the runtime can modify the size of the code overlay buffers.

This can change per application and even per code region which makes my approach finer

grained.

Dynamic (shared) libraries are functions which are loaded on demand and are de-

signed to reduce the code image size. A way to implement these functions is to redirect

these calls to a special program (like the one pointed by the .inter segment under the ELF

program) which manages a dynamic function table. This table’s entries are function point-

ers that are populated by the special program. A function’s entry possesses a counter which

shows how many calls to this function call are in existence. When the counter reaches zero,

the entry can be reused. Consider that under this framework, the function code is not

moved around, they just reside in global memory and they are accessed by each required

process. The table is shared across many processes and threads that require these func-

tions. This saves memory footprint since the code is not replicated[93]2. As shown before,

these frameworks will not consider the locality of the code and they will not replicate to

local memory (to reduce latencies) since they posses instruction caches and virtual memory.

These systems are not designed for many core as the partition manager is since it loads

code according to its usage to their respective local (near) memory.

Finally, dynamic loading can load code on demand and unloaded it if necessary

during the application execution. This allows for dynamic optimization and bug fixing

1 Some Operating Systems and Computers allows to modify the page size but this applies
to every application on the system afterwards.

2 However, the data sections for each function are replicated for each user
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without the need of restarting the whole system[93]. Moreover, it is commonly used to

implement software plug-ins for several service based programs like Web servers[41] and

Instant messenger programs. Finally, the IBM/360 Operating systems[4] line used these

feature for its I/O subroutines among others. As before, this system does not takes care

of locality and near memory issues because they were handled by the Virtual memory

subsystem. Under the partition manager framework, these issues are taking care by the

partition manager and it can decode the appropriate memory region to load the code.

7.1.1 The Embedded Field: Where Overlays Survived

As stated before, overlays and partitions survived in the embedded field. They usually

use classical overlays for code and other interesting techniques for data. Research presented

in [76] shows a dynamic approach for overlays for code. In this paper, a dynamic compiler

creates overlays according to the state of the memory. Moreover, it automatically creates

entry points for each application. However, this framework does not try to optimize the

access patterns using locality or learned patterns as the partition manager does. Moreover,

this is for low end embedded systems. However, there is no reason why these ideas could

not apply to the computational engines of future super computers.

Another research presented in [56] shows how the concept of overlaying plus dynamic

code compacting can increase performance by almost 50% for selected application (i.e.

SPLASH2[91]). It uses a clustering algorithm (at runtime) for basic blocks very similar to

the one in used in the partition manager compiler. However, they do not use any of the

locality opportunities for reuse like the partition manager does.

7.1.2 Data Movements in High Performance Computing

Finally, there is the concept of percolation introduced under the Hybrid Technology

Multi-Threaded (HTMT) Architecture[49]. The HTMT project proposed a highly config-

urable multiple levels (in computational components and memory levels). It was proposed

at the end 1990 decades and incorporated many state of the art concepts and technologies.

The concept of percolation was introduced to better utilize resources in such a machine.

It was introduced as the ability of migrate code and data regions to fast memory for each
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component that needs it. It is called percolation because code / data regions trickle down

the hierarchy towards the processing elements. Please do not confuse this concept with the

percolation theory concept is mathematics that deal with the interconnectivity of connected

cluster in random graphs. An interesting research is conducted in [45], [46] and [44]. They

implement semi automatic data movement in explicit memory hierarchies for the Cyclops-

64. This technique is called “Tile Percolation” as it is the first of its kind to introduce the

concept of data locales under OpenMP. Both this technique and the partition manager can

be put together to implement a complete percolation engine if necessary.

7.2 Programmability for Cell B.E.

There have been many attempts to increase the programmability in the Cell B.E.

The most famous ones are the ALF and DaCS[14] frameworks and the CellSS project[10].

The ALF and DaCS frameworks are designed to facilitate the creation of tasks and data

communication respectively for the Cell B.E. The Accelerator Library Framework (ALF)

is designed to provide a user-level programming framework for people developing for the

Cell Architecture. It takes care of many low level approaches (like data transfers, task

management, data layout communication, etc). The DaCS framework provides support for

process management, accelerator topology services and several data movement schemas.

It is designed to provide a higher abstraction to the DMA engine communication. Both

frameworks can work together and they are definitely a step forward from the original Cell

B.E. primitives. They are not targeted to Cell B.E. application programmers, but to library

creators. Thus, the frameworks are designed to be lower level than expected for an OpenMP

programmer.

The Cell SuperScalar project (the CellSS) [10], and later the StarSS project[7], is

designed to automatically exploit the function parallelism of a sequential program and

distribute them across the Cell B.E. architecture. It accomplishes this with a set of pragma

based directives. It has a locality aware scheduler to better utilize the memory spaces. It

uses a very similar approach as OpenMP. However, it is restricted to task level parallelism

in comparison to OpenMP that can handle data level parallelism. Under our framework,
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the parallel functions are analogous to CellSS tasks and the partition manager is their

scheduler. Many of the required attributes of the tasks under CellSS are hidden by the

OpenMP directives and pragmas which make them more programmable.

There have been efforts to port OpenMP to the Cell B.E.. The most successful one is

the implementation in IBM’s XL compiler[74]. The implementation under the XL compiler

is analogous to the OPELL implementation with very important differences. The software

cache under the XL compiler is not configurable with respect to the number of dirty bytes

that can be monitored in the line. This allows the implementation of novel memory models

and frameworks as shown in [17]. The other difference is that the partition manager under

the XL uses static GCC-like overlays. Under OPELL, the partitions can be dynamically

loaded anywhere in the memory which is not possible under the XL compiler.

Finally, there is a plethora of work that creates new frameworks to increase the

Cell B.E. productivity. Rapidmind introduced its high performance language that aims to

improve the productivity of the Cell B.E.[72]. It has data types designed to mask the data

movement and a framework that move data across the computational components according

to which function/data type is required. However, it does not have the functionality of more

mature languages like C and C++. Another effort is the porting of R-Stream to the Cell

B.E. [65] from Reservoir Labs. It provides several data movement functions to coordinate the

application’s behavior and performance. However, this approach is still low level compared

against an OpenMP implementation. Finally, we have graphical languages, like Gedae[66],

which aims to increase the usability of the Cell B.E. but at the cost of ignoring certain

optimization opportunities. Moreover, this project is closed and proprietary unlike OPELL.

7.3 Future Directions

Another research direction worth taking a look is into Instruction Cache coloring as

represented in [81] and [54]. These research concentrates on static analysis of certain code

templates (i.e. loops, control statements, etc) to maximize their reuse in the instruction

cache. They are very powerful techniques that uses weights according to the control struc-

ture involved, i.e. loops have weights equivalent to their number of iterations, the if/else

116



condition will represent 50% of the total weight for each path, and switch statements will

have 1 / number of cases per path. With these weights, function call graph is created and

a coloring algorithm is applied to prevent conflicts in the I-Cache.

7.4 Productivity Studies

Finally, we need to make a comparison between P3I and the Pittsburgh Productivity

study[15]. The study done in Pittsburgh was bigger and with more participants and pro-

gramming languages (UPC[13], X10[35] and Java). Although they have more man power,

they did not have the weight parameters, as P3I had, to represent expertise.
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Chapter 8

CONCLUSIONS

Ideas presented in this paper show the trend of software in the many core age: the

software renaissance. Under this trend, old ideas are coming back to the plate: Overlays,

software caches, dataflow execution models, micro kernels, among others. This trend is

best shown in architectures like Cyclops-64[31] and the Cell B.E.’s SPE units. Both de-

signs exhibit explicit memory hierarchy, simple pipelines and the lack of virtual memory.

The software stacks on these architectures are in a heavily state of flux to better utilize

the hardware and increase productivity. This fertile research ground allows the reinvention

of these classic ideas. The partition manager frameworks rise from this flux. The simple

idea of having dynamic code regions is introduced in this thesis, in difference with regular

overlays, these partitions represent highly mobile code from which other framework can be

developed. In this thesis, the framework developed was to support OpenMP in a heteroge-

neous architecture. However, several research directions are still open, such as a stronger

static analysis, building on mature research such cache coloring for I-caches or dynamic

scheduling of code due to percolation constrains.

This thesis shows a framework to support the code movements across heterogeneous

accelerators components. It shows how these effort spans across all components of the

software stack. Moreover, it depicts its place on a higher abstraction framework for a

high level parallel programming language. It shows the effect of several policies dedicated

to reduce the number of high latency operations. This is just the start of the road for

many designs. The future is bright but it will require the rebirth and rethinking of many

components. That is why I called this a software renaissance in which classical concepts

will be used in novel ways and applied to million of cores that the future will bring.
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Enrique S. Quintana-Ort́ı. An extension of the starss programming model for platforms
with multiple gpus. In Proceedings of the 15th International Euro-Par Conference on
Parallel Processing, Euro-Par ’09, pages 851–862, Berlin, Heidelberg, 2009. Springer-
Verlag.

[8] Paul S. Barth, Paul S. Barth, Arvind, Rishiyur S. Nikhil, and Rishiyur S. Nikhil.
M-structures: Extending a parallel, non-strict, functional language with state, 1991.

[9] L. A. Belady. A study of replacement algorithms for a virtual-storage computer. IBM
Syst. J., 5:78–101, June 1966.

[10] Pieter Bellens, Josep M. Perez, Rosa M. Badia, and Jesus Labarta. Cellss: a pro-
gramming model for the cell be architecture. In ACM/IEEE CONFERENCE ON
SUPERCOMPUTING, page 86. ACM, 2006.

119



[11] HPC Challenge benchmarks. The global updates per second benchmarks. the random
access program. http://icl.cs.utk.edu/projectsfiles/hpcc/RandomAccess/.

[12] A. Bensoussan, C.T. Clingen, and R. C. Daley. The multics virtual memory: Concepts
and design. Communications of the ACM, 15:308–318, 1972.

[13] François Cantonnet, Yiyi Yao, Mohamed M. Zahran, and Tarek A. El-Ghazawi. Pro-
ductivity analysis of the upc language. In IPDPS. IEEE Computer Society, 2004.

[14] Jordi Caubet. Programming ibm powerxcell 8i / qs22 libspe2, alf, dacs. http:

//www.spscicomp.org/ScicomP15/slides/tutorial/programming-cell-ibm.pdf,
may 2009.

[15] Pittsburgh Super Computing Center. Pittsburgh scientists measure productiv-
ity in petascale supercomputing. http://www.psc.edu/publicinfo/news/2004/

2004-02-17_petascale.html, feb 2004.
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