A COMPARISON BETWEEN VIRTUAL CODE
MANAGEMENT TECHNIQUES

by
Joseph B. Manzano

A dissertation submitted to the Faculty of the University of Delawae in partial
ful llment of the requirements for the degree of Doctor of Philosdpy in Electrical and
Computer Engineering

Summer 2011

c 2011 Joseph B. Manzano
All Rights Reserved



A COMPARISON BETWEEN VIRTUAL CODE
MANAGEMENT TECHNIQUES

by
Joseph B. Manzano

Approved:

Kenneth E. Barner, Ph.D.
Chair of the Department of Electrical and Computer Engineering

Approved:

Babatunde Ogunnaike, Ph.D.
Interim Dean of the College of Engineering

Approved:

Charles G. Riordan, Ph.D.
Vice Provost for Graduate and Professional Education



Signed:

Signed:

Signed:

Signed:

| certify that | have read this dissertation and that in my opinion it meets the
academic and professional standard required by the University aslissertation for
the degree of Doctor of Philosophy.

Guang R. Gao, Ph.D.
Professor in charge of dissertation

| certify that | have read this dissertation and that in my opinion it meets the
academic and professional standard required by the University aglissertation for
the degree of Doctor of Philosophy.

Xiaoming Li, Ph.D.
Member of dissertation committee

| certify that | have read this dissertation and that in my opinion it meets the
academic and professional standard required by the University aglissertation for
the degree of Doctor of Philosophy.

Hui Fang, Ph.D.
Member of dissertation committee

| certify that | have read this dissertation and that in my opinion it meets the
academic and professional standard required by the University aglissertation for
the degree of Doctor of Philosophy.

Andres Marquez, Ph.D.
Member of dissertation committee



To my parents (real and imaginary) for all their support and undestanding.



ACKNOWLEDGEMENTS

As this journey ends, | would like to thank all the people that helped ® during
these years. First, | would like to thank my family, my sisters, Carolia and Gaby; and my
parents for all their support and kind words during the years, andhere have been many
years. Next, | will like to thank my best friends, Juergen RibutzkaJean Christophe Beyler
and Eunjung Park for all their help and encouraging words during #se years.

Next | would like to thank all the people in the CAPSL group for all the tme and
patience that they have had with me over the many many years thdtwas there. This list
includes, but it is not limited to Fei Chen, Weirong Zhu, Yuan Zhang, Diya Parthasarathi,
Dimitrij Krepis, Daniel Orozco, Kelly Livingston, Chen Chen, Joshua B8etterlein, Sunil
Shrestha and Stephane Zuckerman. Thanks guys for severalamimg years.

Finally, | want to thank my advisor, Dr Guang R. Gao and his wife, Pegg for all
their advice and guidance over the years and of course their suppdAs this stage is ending,
| just want to let know the people in this list and many others, that yar made this journey
fun, exciting and worth it. Thanks from the bottom of my heart to dl of you.

God bless.



TABLE OF CONTENTS

LIST OF FIGURES S R S A RS ¢
LIST OF TABLES S R R R A D 4 V4
LIST OF SOURCE CODE FRAGMENTS D 41/
ABSTRACT S R R R A S R R D 4 V]|
Chapter
1 INTRODUCTION R R R R AR |
1.1 The Power Race and Multi Core Designs & @ : . ::::::::::::::: 4
1.1.1 The Pentium FamilyLine : ::::::::::::::::::::::: b
1.1.2 The Multi Core Era: Selected Examples: : : :::::: 1000 12
1.1.3 Multi Core: IBM's POWERG6 and POWER7 Chips : : :::::::: 12
1.1.4 Multi Core: Intel's Core's Family of Processors: @ : ::::::::: 14
1.1.5 Multi Core: SunUltraSPARC T2 : : : : 111 15
1.1.6 Multi Core: The Cray XMT : @ : o0 17
1.1.7 Many Core: The Tile64 : : : ::::::::: o000 19
1.1.8 Many Core: The Cyclops-64 : : :::::::::::::00000:0:0 21
1.2 Problem Formulation: an Overview: : : : ::::::: 1011 24
1.3 Contributions : : ::: ;i 24
2 PRODUCTIVITY STUDIES S R 2
2.1 Atomic Sections: Overview : : : : .o irriirrorr oo 29
2.2 The Delaware Programmability, Productivity and Pro ciency Inqury: An
Overview: : : @ sy 1
2.2.1 P3l Infrastructure and Procedures : : : : ::::::::::::1:: 34
2.2.2 The Web Survey: Purpose : : @ ::: .. 00 rnnn 37
223 P3lResults: : sy 38
224 P3lVersion2: ::: ;i r oy 39

Vi



3 OPEN OPELL: AN OVERVIEW S R £ o

3.1 The Cell Architecture: @ : @ ::: oo rnn o 48
3.1.1 The PowerPC Processing Element: : : : ::::::::::::::: 50
3.1.2 The Synergistic Processing Element: : : : :::::::::::::: b1
3.1.3 The Element InterconnectBus : : : ::::::::::::::0000 B2
3.1.4 The Memory Subsystem and the Flex I/O Interface : : : :::::: 52

3.2 ProgrammingModels: : @ ::: oo nirrrrrrr o b4
3.2.1 OpenOPELLandOpenMP : :::::::::::::::::::::: 54

3.2.1.1 Single Source Compilation : : : ::::::::::::::: 59
3.2.1.2 Simple Execution Handler. : : :::::::::::::::: 59
3.2.1.3 SoftwareCache : :::::::::::::: 000000061
3.2.1.4 Overlay / Partition Manager : :::::::::::::::: 63
4 PARTITION MANAGER FRAMEWORK N o ¥ 4

4.1 Toolchain Modications : : : ::::::::iininiiiiiininn 67

41.1 CompilerChanges: : :::::::::::::..........:..: 68
4111 CommandlLineFlags: : ::::::::::::::::::: 69
4112 PragmaDirectives: : :::: i 69
4113 Compilerinternals: : ::: o rnr i 71

412 AssemblerChanges : :::::::::::::oonnoninnn 12

41.3 LinkerChanges: : :::::::::: ‘o ooioon o015

4.1.4 Discussion and Future Work: @ @ : ::cririrrin i 76

4.2 Partition Manager and Its Framework: @ : : @i 78
42.1 Common Terminology : : @ ::::::: ... 718
4.2.2 The PartitonManager: : : ::::::::::orrnrrnrrnn 79

4221 ThePartitonList ::::::::::::: 00000000719
4222 The PartitonStack : ::::::::: 0000 81
4223 The PartitonBuer :::::::::::::000000000 81
4.2.2.4 The Partition Manager Kernel : : :::::::::::::: 81

vii



4.2.3 Cell Implementation of the Partition Framework: Version I : : : :: 83
4.2.3.1 Partition List Structures and Variables: : : : :::::::: 83
4.2.3.2 Partition Stack Structures and Variables: : : : ::::::: 84
4.2.3.3 Partition Bu er Structures and Variables: : : : : :::::: 84

4.2.3.4 Partition Manager Support Structures, Variables and Calling
Procedure: : : ::::::::::: .00 85
4.2.4 A Partitioned Callon CBE: Version1; : : ::::::::::::::: 86
5 PARTITION MANAGER ENHANCEMENTS A A * [0
5.1 The N Buer: The Lazy Reuse Approaches : : : . :::::::::::::: 90
511 TheNBuerApproach :::::::::::::::::0::000:00:0 91
5.1.1.1 The PartitonBuer ::::::::::::::: 00009
5.1.1.2 The Partition Stack : : : :::::::::: 00000000 92
5.1.1.3 The Modulus Method : : : :: :::::::: 00 93
5114 ThelLRUMethod :::::::::::::::: 0111 94
5.1.2 Cell Implementation of the Partition Framework: Version 2 : : : :: 95
5.2 Partition Graph and Other Enhancements: : : : :::::::::::::::101
521 VictimCache : ::::::::: >+ 0 r sy sy r101
5.2.2 Prefetching : : ::: oo rrrrr o n o102
5.2.3 The Partiton Graph @ : : ;oo o103
5.2.3.1 Prefetching: Weighted Breadth First Fetch : : : : : : ::: 105
5.2.4 Dynamic Code Enclaves: : : : ::::::::::::: 0000000105
6 EXPERIMENTAL TESTBED AND RESULTS S 1 O ' 4
6.1 Hardware Testbed : : : : :::: @i 1o7
6.2 Software Testbed: : : : :::: iy nr sy o107
6.3 Partition Manager Overhead: : : : :::::::::::::::::::::::108
6.4 Partition Manager Policies and DMA Counts: @ : : @ : @@ :109

viii



7 RELATED WORK S S S A A NS I G

7.1 A Historical Perspective : @ : :::::::oororrrrnr 113
7.1.1 The Embedded Field: Where Overlays Survived : : : : ::::::: 115

7.1.2 Data Movements in High Performance Computing : : : : :::::: 115

7.2 Programmability forCell BE. : : ;o oocornr s n s 116
7.3 Future Directions @ @ : @ ;@ oooonlnninininnnnrny 11y
7.4 Productivity Studies ;o118
8 CONCLUSIONS  ::::corcorroororoororrorrororrrrrrr2119
BIBLIOGRAPHY A 240



11

1.2

1.3

1.4

1.5

1.6

1.7

1.8

21

2.2

2.3

24

LIST OF FIGURES

1.1a Examples of Type two[62] and 1.1b Type one architectureq[30: : : 3
Intel Processor frequency growth from 1973t02006: : : : :::::::: 6

The Finite Automata for a simple Two Bit Saturation Scheme. Than& to
its symmetry spurious results will not destroy the prediction scheen: : : : 8

The Finite Automata for the modi ed simple Two Bit Saturation Schene
used in the rst Pentiums. Since it is not symmetric anymore the strogly
taken path will jump to strongly taken after one jump which will makethis

path more prone to misprediction: : : : :::::::: oo i 8
Two Level Branch Predictor: @ @ : :::: 0000000009
The Agree Predictor @ : @ @ ;oo oorrrrrrn 10

The Cray XMT Super Computer. It has 128 logical threads thatlsares a 3
LIW pipeline. The memory subsystem sports extra bits per memorymd

that provides ne grained synchronization, memory monitoring, inhardware
pointer forwarding and synchronization based interrupts.: : : : :::::: 17

A Logical diagram of the Cyclops-64 Architecture : @ @ . ::::::::: 22
A New Approach to Language Design. A new language should godbgh
several phases in its development to ensure that it has sound syxtand
semantics, it ts a speci c demographic and it has a speci c place in #

eld. Moreover, optimization to the runtime libraries should be takeninto
account while developing the language. : : : @ ::::::::: .00 28

Atomic Section'sSyntax: : : ;oo 31

Code Excerpt from Phase 0: A comparison between the lock implemtation
(left) and the AS implementation (right) for the unlucky banker : : : : : : 33

P3I Infrastructure : : : ::: ;i il iLri i 34



2.5

2.6

2.7

2.8

29

2.10

2.11

2.12

2.13

2.14

2.15

2.16

2.17

2.18

3.1

3.2

P3I Infrastructure and Methodology : : @ :::::::::::::::::: 36
Weight of each Participant: : : ::::: oo rr o 38
Histogram of the Weights : : : : . : oo oo o000 39

Weighted Average Time Data for Each Phase. In this case, thesea clear
correlation between the reduction in time to correct solution fromhe lock

exercises and the atomic sections. : : : : :: i 40
Activity Timeline for each participantinthe study : : ::::::::::: 41
The phase's percentage for each participant : @ : @ :::::::::::: 42
Total SLOC Average per Participant: : ;@ ;00000 42
Total Average for SLOC: @ : :: i rnrrrnrnr o 43
Total SLOC Average per Groug @ @ @@ ::: @111 43
A comparison between the real and subjective weights : : : . : ::::: 44

An Absolute di erence between the two di erence types. Thevarage
di erence is 0.12 and the standard deviation is 0.14 which representry

lowvalues: : : ::::::::::oiiiiiiiiiiiiiiiiioiin 44
The total runtimes weighted by the low expertise formula: : : : ::::: 45
The total runtimes weighted by the normal expertise function: : : : : : : 45
The total runtimes weighted by the high expertise : : : : ::::::::: 46

Block Diagram of the Cell Broadband engine. This gure shows thdock
diagram of the Cell B.E. and its components (PPE and SPE). It also skwvs
the internal structures for the SPE pipelines and a high overview gph of

the interconnectbus.: : : ;oo r o n oo n oo 49

Allowed and forbidden OpenMP states. Any closed and encapsidet

fork-joins groups are allowed. This means that a child can never diwe its
parent and the lifetimes of threads cannot overlap between reg®n: : . : 56

Xi



3.3

3.4

3.5

3.6

3.7

3.8

3.9

4.1

4.2

4.3

4.4

4.5

4.6

5.1

High Level Overview of the Open OPELL framework. The micro kael will
take of scheduling the jobs, the single source compiler will createethinary
from a single source tree, and the software cache and partition nager will
take to emulate the shared memory model required by OpenMP: : : : : 58

Components of the Simple Execution handler. It shows the shadthreads
running on the PPU side for each SPU and the communication channels
and ow betweenthem. : :::::::::corrrrrrrriiriiln 62
Software Cache Merge Example Step 1: Before Write Back is Inlteed : : 63

Software Cache Merge Example Step 2: Thread 2 succeed in tipelate.
Thread 1 failsand triesagain: : : :::::::::::::::::::::.:. 64

Software Cache Merge Example Step 3: Final State of the Memadtine

after Thread1 nished : : : ::::::: oo 000 65
A high level overview of the Software cache structure : : : : ::::::: 65
Toolchain Components and their respectiveroles @ : : : ::::::::: 68
The format for a Partitioned Symbol @ : : @ : 000000 76

The normal and enhanced binary image for the Partition Manageihe
TOE segment is a special segment used for the interaction betwetbie PPE
and SPE binaries. The CRTO represents the entire C runtime code : : : 77

A Partition Call showing all major partition manager components: : : : : 80
A Flowchart of the rst section of the partition manager call. Thelogic ow

of the initial section of the partition manager kernel. It checks if tle

partition is loaded and if it is not, loaded and call the function : : :::: 88
A Flowchart of the second section of the partition manager call. he logic

ow of the return part of the partition manager kernel. It checksif the

callee partition still exists in memory, if it is not, load it. Return to the
callerafterwards. : : : : oo r o rn o 89

Partition Manager Function Graph for the Modulus Example : : : : ::: 95

Xii



5.2

5.3

5.4

5.5

5.6

5.7

6.1

6.2

6.3

6.4

6.5

States of each of the partition manager components acrose tlunction calls
provided by source code in listing 5.1 using the Modulus replacementliog 96

Partition Manager Function Graph for the LRU example: : : : :::::: 99

States of each of the partition manager components acrose tlunction calls
provided by source code in listing 5.2 using the LRU replacement policy 100

Victim Cache Framework : : : ::: s s n s o101
Prefetching Framework: : : : . : o cocooos s nr o103
Creating a partition graph given a piece of source code: : : : :::::: 104

DMA counts for all applications for an unoptimized one bu er, an ptimized
one bu er, optimized two bu ers and optimized four bu er versions : : : : 110

Cycle counts for all applications for an unoptimized one bu er, anptimized

one bu er, optimized two bu ers and optimized four bu er versions : : : : 111
Ratio of Partition Manager calls versus DMA transfers: @ : . ::::::: 112
LRU versus Modulus DMA counts for selected applications: : : : : ::: 112
The victim cache comparison with LRU and Modulus policies : : : : : : 112

Xiii



4.1

5.1

6.1

LIST OF TABLES

Overview of New Assembly Directives: : : @ ;@00

The Four States of a Partition

Xiv



2.1

3.1

3.2

4.1

4.2

4.3

4.4

5.1

5.2

LIST OF SOURCE CODE FRAGMENTS

Atomic Section'sExample: : : ;oo orr oo s or o 30
OpenMP Example : : ::: oo oo noronoon b4
MPIExample : : :::: o rorrorrrrrrrrrrrrrrn b4
Pragma Directives Example: @ : @ : oo on s 70
Linker dump showing the preparation of the partition manager pameters : 73

Assembly File showing the partitioning directives: : : : ::::::::::: 74
A Partition Runtime Stack Node : : :::::::::::::::::::::: 84
Source code for the 2-buerexample: @ : @ ::: i rr s 94
Source code for the 2-buerexample: @ : ;oo r oo 98

XV



ABSTRACT

During the past decade (2000 to 2010) , the multi / many core ardiectures have seen
a renaissance, due to the insatiable appetite for performance. Lismon applications and
hardware technologies have put a stop to the frequency race in(B0 Current designs can be
divided into homogeneous and heterogeneous ones. Homogendesgns are the easiest to
use since most toolchain components and system software do neéd too much of a rewrite.
On the other end of the spectrum, there are the heterogeneodssigns. These designs o er
tremendous computational raw power, but at the cost of losing ndware features that
might be necessary or even essential for certain types of systsaftware and programming
languages. An example of this architectural design is the Cell B.E.geessor which exhibits
both a heavy core and a group of simple cores designed to be its catagional engine.

Recently, this architecture has been placed in the public eye thantsbeing a central
component into one of the fastest super computers in the world. dveover, it is the main
processing unit of the Sony's Playstation 3 videogame console; theosh powerful video
console currently in the market. Even though this architecture isery well known for its
accomplishments, it is also well known for its very low programmabilityDue to this lack of
programmability, most of its system software e orts are dedicaté to increase this feature.
Among the most famous ones are ALF, DaCS, CellSs, the single sauXL compiler, the
IBM's octopiler, among others. Most of these frameworks have & designed to support
(directly or indirectly) high level parallel programming languages. Amng them, there is
an e ort called Open OPELL from the University of Delaware. This todchain / framework
tries to bring the OpenMP parallel programming model (De facto shhad memory parallel
programming paradigm) to the Cell B.E. architecture. The OPELL famework is composed
of four components: a single source toolchain, a very light SPU ketna software cache and

a partition / code overlay manager. This extra layer increases thgstem's programmability,

XVi



but it also increased the runtime system's overhead. To reduce tlewerhead, each of the
components can be further optimized. This thesis concentratea optimizing the partition
manager components by reducing the number of long latency trattions (DMA transfers)

that it produces. The contributions of this thesis are as following:

1. The development of a dynamic framework that loads and managpartitions across
function calls. In this manner, the restrictive memory problem can & alleviated and

the range of applications that can be run on the co-processing umst expanded.

2. The implementation of replacement policies that are useful to rade the number of
DMA transfers across partitions. Such replacement policies aim t@tmize the most
costly operations in the proposed framework. Such replacememi@n be of the form

of bu er divisions, rules about eviction and loading, etc.

3. A guanti cation of such replacement policies given a selected sdtapplications and
a report of the overhead of such policies. Although several policiean be given, a
guantitative study is necessary to analyze which policy is best in whicapplication

since the code can have di erent behaviors.

4. An API that can be easily ported and extended to several typesf architectures.
The problem of restricted space is not going away. The new trendeses to favor an
increasing number of cores (with local memories) instead of morertiaare features
and heavy system software. This means that frameworks like then® proposed in
this thesis will become more and more important as the wave of multi thany core

continues its ascent.

5. A productivity study that tries to de ne the elusive concept of goductivity with a

set of metrics and the introduction of expertise as weighting funicins.

Finally, the whole framework can be adapted to support task basdcameworks, by
using the partition space as a task bu er and loading the code on damd with minimal

user interaction. This type of tasks are called Dynamic Code Enclav®r DyCE.

XVii



Chapter 1

INTRODUCTION

During the last decade, multi core and many core architectures ¥& invaded all
aspects of computing. From embedded processors to high endvees and massive super-
computers, the multi / many core architectures have made theirnpgsence known. Their rise
is due to several factors; however, the most cited one is the plo@menon called \the power
wall." This \wall" refers to the lack of e ective cooling technologies to dssipate the heat
produced by higher and higher frequency chips[57]. Thus, the raim higher frequency was
abruptly stopped around 2006 with the \transformation" of the §ingle core) Pentium line
and the birth of the Core Duo family [51]. For the rest of this chapterwhen referring to
the new designs, | will be using the term multi core to refer to both any and multi core
designs, unless otherwise stated.

Nowadays, the multi core architectures have evolved into a gamuf designs and
features. Broadly, this myriad of designs can be classi ed into twoamps. The rst one
is the \Type One" architectures which describes \heavy" corésglued together in a single
die. Designs in this family includes the AMD Opteron family and all the In¢l Core Duo
line. The \Type Two" architectures refers to designs in which manysimple" coreg are put
together in a single die. Most of today designs have an upper limit of gigwith a projected

increased to twelve and sixteen in the next two years, with designsdilNehalem and Sandy

1'j.e. Cores which have many advance features such as branch preoiic speculative
execution and out of order engines

2 j.e. Cores that have simple features such as in order execution, $ingipelines, lack
of hardware memory coherence and explicit memory hierarchies;weaver, they may
possess esoteric features to increase performance such asd3sor in Memory, Full /
Empty bits, Random memory allocators, etc



bridge from Intel and AMD's twelve-core Magni-Cours chips (being troduced in late 2011
or early 2012) [5].

On the other hand, type two designs can have processing elementaunts of 64
(Tilera-64 [26]), 80 (Intel TeraFLOP Chip [59]), and 160 (Cyclops64 [3). Their raw com-
putational power allows type two designs to be used in the currentuger computers which
now have enough computational power to handle PetaFLOPS calctitans[27]. Examples
of both types of designs are given by gure 1.1. It is very common teeparate the design
only based on the sheer number of processing elements. Thusjgtesthat have processing
elements numbering in the lower tens are considered multi core anketones above are
classi ed as many core ones.

Although the rise of multi / many cores have brought a new era of coputing, due
to the massive computational power that these designs providéydy do not come without a
price. For type one architectures, the cost of maintaining the adwnce hardware features does
set a very strict limit on the number of processing elements that came glued together in a
chip or coexist in a single machine. This lesson was learned long ago by slipercomputing
community.

Most SMP and shared memory designs limit the number of core/progsors that
can co-exist on a system using shared memory design to around 64128. Using more
processors can incur in a disastrous loss of performance due tosistency / coherence
actions between the processor's caches and main memory and lortgrieies between the
farthest memory banks[48]. Some companies, like Cray with its T3Ehalenged this number
by producing systems that were \incoherent" in hardware but hae some programming safe
nets that provides memory consistency if the programmer requget[18]. This foreshadows
the current trends that are appearing in the market nowadays.

Conversely, type two design's simplicity sends destructive wavesward to the soft-
ware development stack. Since many of the features that prognaers, system software
designers and operating systems depended on are gone, moshefdbftware components of
current systems require a \re-imagining"” of their parts. Problemssuch as restricted mem-

ory space, ILP exploitation and data locality and layout, which were xed thanks to these



Intel Pentium 4 Northwood

m Truce Cache

(b) TeraFLOPS

Figure 1.1: 1.1a Examples of Type two[62] and 1.1b Type one architerts[30]



advanced hardware features, have risen anew and are hauntingggrammers and system
software designers alike. This whole collection of problems (plus sowoiassical ones) can
be summarized by characterizing the \productivity'® of a computer system.

It is a common knowledge that parallel programming is di cult[79]. The asiest
parallel programming languages, like OpenMP and MPI, still presenti@ult problems
to the users (both programmers and compilers) such as e cient da decomposition and
layout, workload distribution, deadlock / livelock avoidance, priority inversion, e ective
synchronization, among others. Thus, parallel programming hasxays been associated with
low productivity environments. This has been taken in considerationy major players in the
industry, such as IBM, Sun and Cray. An example of the renewed iettest in productivity
was the High Productivity Computer Systems (HPCS) project[29]unded by DARPA. A
discussion about productivity in High Performance Computing can b®und on chapter 2.
Next, we examine one of the major reasons that multi / many coreas become the major

force in the market: Power.

1.1 The Power Race and Multi Core Designs
The current generation of programmers is faced with unique oppganities in this

new era of multi-core systems. New systems are coming into play whitave an increased
number of cores but a shrinking of \heavy" hardware features. Ush a trend results in a
plethora of multi core machines but a dearth of multi-core environents and languages. This
is due to the dependency of many of the low level software stacksthese hardware features.
This change came to the mainstream computing at the beginning ofithdecade (2000's)
when chip manufacturers especially, Intel[50], changed their fregpcy race for multi core
and \green" chips. This move marked the o cial start of the multi core / many core era in
mainstream computing. This gave the chip manufacturers a free g&to extend their models

with more cores and cut o many of the \extra" baggage that manychips had. However,

3 In this thesis, productivity will be de ned as the ability to produce suciently e cient
code in a reasonable amount of time by an average programmer



this also involved a change on the way that main stream computing dees concepts such
as productivity[37].

As any computer engineer knows, the concept of productivity s@es to be a very uid
one. On one hand, we have performance being represented asecside, memory footprint
and power utilization (lower is better). Peak performance is still impibant but it can take a
second place when dealing with real time systems, in which a loss in pemfiance is accept-
able as long as the quantum interval is respected. On the other lgnHigh Performance
Computing (HPC) plays a completely di erent game. On these systesn the total number
of Floating Point operations per second (FLOPS) is king. These syshs and the applica-
tions written for them are created to exploit the most of the curret technology to reach
the next computational barrier. As of the writing of this thesis, ths barrier stands on the
PetaFLOPS (10°) range and there are many proposals to reach the next one (Exa)the
not-so-distant future [78]. However, HPC, in particular, and the est of the computing eld
are changing. In HPC, and the general purpose eld, another nr&t is being added: power.
Power was one of the major factors that put the nail in the co n ofthe Pentium-4 line. To
gain a bit of perspective, we should take a view at features that madhe Pentium-4 such

a power-hungry platform.

1.1.1 The Pentium Family Line

One of the perfect examples of the power trend is the Intel familyf enicroprocessors.
The rst Pentium microprocessors represented a jump in the gers purpose processors.
They o ered advance features such as SuperScalar desfigné4 bit external databus, an
improved oating units, among others. However, this also startedhe famous frequency
race in which all major manufactures participated. In the case ofilel, all the iterations of
their Pentium family show an almost exponential increase on frequeynfrom its introduction
in 1993 to 2006, as represented in gure 1.2. The Pentium line spamhthree generations
of hardware design. These are the P5, the P6 and the Netburstchitecture. The evolution

on these designs was represented by the addition of several éeas to increase single thread

4 Dynamic multiple issue techniques using principles presented in [80]



performance. One of the most cited features is the extension bEtpipeline (later christened

the hyper-pipeline) and the introduction of SuperScalar designs.¢e the out of order

enginey.
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Figure 1.2: Intel Processor frequency growth from 1973 to 2006
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The hyper-pipeline represented an increase on the number of stagof the normal

execution pipeline. This grew from 5 for the original Pentium to 14 orhie Pro to 31 on the

Prescott core. This change had a tremendous e ect on hardwadesign. First, it allowed the

frequency to jJump up between designs. Second, the cores mustdble to reduce the amount

of pipeline's ushes that occur since they represent the greateperformance degradation

factor due to ushing such a long pipeline. For example, on a typicalocle in SPEC, there

is a branch every four to six instructions[53]. If you have a 31 stagepeline, it will be

continually ushed and stallec®. Third, a longer pipeline has an average lower Instruction

Per Cycle (IPC) than a shorter one. Nevertheless, the lower IPCan be masked by the

higher operating frequency and the extensive hardware framekanside the cores.

5 Due to Intel's secrecy about the designs of their cores, the followirnformation was
extracted from [39] which was extracted using a combination of mmibenchmarks,

white papers and reference manuals

6 This is a very simple example since each instruction in the Pentium Core decoded
into several micro operations and the reorder bu er, simultane@amulti threading and
the branch prediction will keep the pipeline busy, but the idea still hols



Due to the branch cost, Intel engineers dedicated a great amduof e ort to cre-
ate very e cient Branch predictor schemes which alleviate the brach costs. Some basic
concepts need to be explained. When dealing with predicting a brandwo speci c pieces
of information need to be known: do we need to jump and where tomp to. On the
Intel architecture (even in the new ones), the second questionasswered by a hardware
structure called the Branch Target Bu er. This bu er is designed b keep all the targets
for all recently taken branches. In other words, it is a cache forénch targets. The answer
for the former question (i.e. do we need to jump) is a bit more compler explain .

The Pentium family of processors can be seen as an example of thel@ion of
branch prediction schemes. Every chips in this family have two set$ predictors. One is
the static predictor which enters in e ect when no information abotithe branch is available
(i.e. the rst time that is encountered). In this case, the predicto is very simple and it
predicts only based on the direction of the branch (i.e. forward brehes are not taken
and backward branches are taken). If a branch has been loggetbithe branch prediction
hardware, then the dynamic prediction part of the framework ta&s e ect. This dynamic
prediction di ers greatly across members of this processor family.

The rst members of the family (Pentium 1) used a simple (yet slightly nodi ed) 2-
bit saturation counter in which branches are predicted based on aur state Finite Automata
and the times that they were taken before. Figure 1.3 and 1.4 regent the FA for the simple
two bit saturation scheme and the modi ed one. In the simple methqda guess must be
correct at least twice to enter the steady state of the FA. This ges the FA a symmetrical
view. In the modied one, the steady state for the not taken partautomatically jumps
back to the taken path after a single wrong prediction. Both methads are the simplest ones
used to dynamically predict the branches. However, the modi ed twbit saturation scheme
has a disastrous handicap. Due to the asymmetry of the FA, not kan branches are three
times more likely to be miss-predicted as taken branches. Howeveven the original 2-bit

saturation counter scheme is defeated when using some form oégaiative taken / not taken

’ Be aware that when talking about static and dynamic branch prediabn, | am referring
to conditional branches
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Figure 1.3: The Finite Automata for a simple Two Bit Saturation Scheme Thanks to its
symmetry spurious results will not destroy the prediction schema
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Figure 1.4: The Finite Automata for the modi ed simple Two Bit Saturation Scheme used
in the rst Pentiums. Since it is not symmetric anymore the strongly aiken path will jump
to strongly taken after one jump which will make this path more proa to misprediction



branch[3]. Because of this, the next members of the family (the MM>Pro, Pentium 2 and
Pentium 3) used a two level adaptive predictor. Figure 1.5 shows a higverview of the
predictor and their respective components. This predictor was st proposed in [92]. The
main idea is that each branch has a branch history which keeps its ocencesn times in
the past. When a branch is predicted the history is checked and us® select one of several
saturation counters in a table called the Pattern history table. Thigable has 2 entries,
each of which contains a two-bit saturation counter. In this way, &h of the counters learns
about their own n-bit pattern. A recurrent sequence of taken / ot taken behavior for a

given branch is correctly predicted after a short learning process

Branch History Register

— ()] —

L

00 01 5 10

Pattern History Table

Figure 1.5: Two Level Branch Predictor

A major disadvantage of this method is the size of the Pattern histg table which
grows exponentially with respect to the history bitsn for each branch. This was solved
by making the Pattern history table and the branch history registe shared across all the

branches. However, this added a new indexing function and the dslity of interference
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Figure 1.6: The Agree Predictor

between branches. Since the table is shared and limited, it is very gidde that the index-
ing function aliases two branches together. This is called interferes and it can be very
detrimental if two branches have opposite outcomes. A solution @posed in [85] uses the
method called the \Agree Predictor”". Figure 1.6 shows a high level ik diagram of this
predictor. In this case, each branch has what is called the biasing bithich suggests the
trend of a given branch (and all their aliases). Conversely, the glabpattern table predicts
if the biasing bit is correct or not. Now, each of the branches can V& a local two-bit
saturation counter which will produce the biasing bit. This is compaiwith the prediction
of the global pattern table (with a XOR) and a prediction value is gemated. Thanks to

this method, negative interfaces are replaced with positive interiences (which do not incur
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any penalty).
Another important part of the pipeline is the addition of the Out of Order engine.

Out of order engines are used to schedule several concurrentringtions to distinct pipelines
without respecting a \strict" program order. However, all hazads (data, control and struc-
tural) are respected to ensure the correct execution of a givemogram. The out of order
engine accomplishes this by register renaming (called the Register Alidion Table (RAT),
multiple pipelines, reservation stations and a structure called the Rder Bu er (ROB).
During the rst stage of the Pentium pipeline, the instructions are firther translated into
the micro-operations (or uops for short). The decoding method @wetty much the same for
all of the Pentium family except on the number of decoding units anche function of each.
After the decoding is completed the uops go to the RAT and be renad with temporary
registers. During the next step, the uops reserves an entry ohe ROB and any available
operands are copied to the structure if available. Input registeiig this case can fall into
three categories: the ones in which the inputs are in the permanemggisters, the ones that
have the value in a ROB entry; and the ones in which the value is not réq yet. Next, the
\ready" uops are selected to go through the reservation statierand the execution ports for
each of the execution units. A ready uop is one which has all their depdencies resolved.
After the uops have been executed they enter a stage called retiwent in which temporary
registers are written back to permanent registers and uops aretired from the ROB in
order. Besides these nominal stages, there are stages whictetalire of the prediction and
speculation (as described above) and some stages that are jussidned to pass the data
from one part of the pipeline to another[77].

The out of order engine and the hyper-pipeline were introduced in éhPentium line
starting with Pentium Pro onward. The rst Pentium design lacked the out of order engine.
Instead, it used the concept of instruction pairing to feed its two ipelines (named u and
v) which was mostly done by the programmer / toolchain. The di ereses between the
pipelines and the out of order engines of the subsequent genemasiovere mostly on the
number and size of these features. The increase of the pipeline'sgin(together with

the abilities of the ALU to \multiply" their frequencies for certain instructions) allowed
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an unprecedented increase in performance during the Pentium linestime. However, this
came with the price of harder hits on the branches miss predictionan increase on the
thermal and power requirements and an overall reduction of perimnance per watt [87].
Intel and AMD de ne the Thermal Design Power (TDP) metric to address the max-
imum amount of power, when running non-synthetic benchmarkshat the cooling system
needs to dissipate. During 2006, the TDP of selected chips (like thed3sler XE Pentium 4's
avor) reached as high as 130 watts[22]. As a side note, the mostvgey hungry component
of a typical computer is not the CPU but the graphic card with maximum power usage (not
TDP) of 286 watts (for ATI Radeon HD 4870 X2 [20]). During that yea, Intel abandoned
their frequency race and their Netburst architecture to a moretseamlined architecture and

multiple core$.

1.1.2 The Multi Core Era: Selected Examples

As the 2000s decade came to a close, the hardware designs got lgimgnd more
streamlined. Pipelines became shorter, reorder engines got smakard complex cores began
to recede to allow simpler (albeit more numerous) ones. Moreovedvances in fabrication
technology allowed smaller gates to be created and more compomsetat be crammed inside
a chip. In the current generation, chips with 45 nm gate sizes arernmon and new chips
with 32 nm were introduced in early 2011[23]. In the current marketylulti core chips are
on the range of two to sixteen, rarely venturing into the thirty tworange. On the other
hand, many core designs start at around 40 cores and grows upsivrom there[25]. In these
designs, the cores are much simpler. Several examples for botlssilaations are presented

below.

1.1.3 Multi Core: IBM's POWER6 and POWER7 Chips
IBM, especially with its POWER series, has been in the multi core arerfar a long

time. Due to that its main selling factor is servers (which require a higamount of through

8 The Pentium D represented the last hooray of the Netburst architcture in which it
married the Netburst and multiple core design. However, it still hadhe power and
heat problems exhibit by its ancestors.
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put), IBM developed processors which have several cores to denmultiple requests. Their
chips have standard features such as dual cores and two-way @ianeous Multi Threading,
for a total of four logical threads per processor. Larger coreunts are created by using the
Multi-Chip Module packing technology to \fake" four and eight desigs. Similar techniques
were used in the early days of the Intel's Core chip family [39].

Up to the POWERS5+, IBM continued with the trend of heavier chips with a plethora
of (very power hungry) hardware features and long pipelines. THROWERS was notorious
for its 23 stages pipeline, out of order engine, register renamingdaits power consumption.
Running from 2 GHz to 3 GHz, it wasn't the speed demon that was exped. After
major revisions on the design, the next generation (POWERG6) wain with the following
features: a higher frequency, an (almost) exclusion of the out ofder engine, a reduction of
the pipeline stages from 23 to 13 and more streamlined pipeline stagb&jor changes to the
design also included several components running at half or a fractiof the processor core
frequency (e.g. caches runs at half the frequency), a simpli cahoof the branch prediction
hardware (from 3 BHT to one and a simpli ed scheme) and an increasm cache size by a
factor of 4. Even though the power pro le of the POWERS5 and POWIRG6 are practically
the same, the frequency of the POWERG6 chips can be twice of theiOWWERS counterparts
(up to 5 GHz). Details about both designs can be seen in [83] and [64].

For the next generation of POWER chips, IBM plans to create a degigthat is
concentrated on increasing the number of threads per processbhe POWER7 line consists
of dual, quad and octo cores. Each of them is capable of 4-way sinaméous multithreaded.
This achieves 32 logical threads in a single processor. Moreoveis tthip has an aggressive
out of order engine and 32 MiB L3 cache of embedded DRAM. The piped® in each core
runs with a reduced frequency compared to POWERG6 ones (from 4GHz in POWERG to
4.14 GHz in POWERY7). Several extra features include the dynamic ahge of frequency

and selectively switching on and o cores based on workload [84].
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1.1.4 Multi Core: Intel's Core's Family of Processors

After the Netburst design was abandoned, Intel took a gandet &he Pentium-M line
(their low power mobile processors) and re-designed them for muttbore. This was the birth
of the Core family of processors. These processors are markega loeduction of the pipeline
lengths (from 31 to 14 on the rst generation Cores) with an undstandable decrease in
frequency, a simpler branch prediction and no (on almost all modelgjyper Threading.
However, they kept the out of order engine, continued using its tel SpeedStep power (a
feature in which frequency decreases or increases according twkioad) technology and
they have provided distributed and distinct Level 1 caches but shed Level 2 ones.

The rst lines of processors in this family are the Core Solo and Duoms. Introduced
in 2006, they are based on the Pentium M design and they have a vdoy Thermal Design
Power; anywhere from 9 to 31 watts and frequency ranging from0b GHz to 2.33 GHz.
The only di erence between the two processor's avors is the nunao of actual cores being
used. The Core duo supports two cores and the Solo only one. Whesing the Solo design
one of the cores is disabled; otherwise, the designs are identical. n8adisadvantages of
this rst generation include only 32-bit architecture support; a sligpt degradation for single
thread application and oating point; and higher memory latency tha its contemporary
processors.

The next product in the line was the Core 2. These processors cam&® dual and
qguad core and have several improvements over the Core line. Ithamced the pipeline to
handle four uops per cycles (in contrast to the 3 for the Core orfednd the execution units
have been expanded from 64 to 128 bits. It also has native suppéot 64-bit and support
for the SSE3 instruction set. The Thermal Power Design for thesghips ranged from 10
watts to 150 watts with frequencies ranging from 1.8 GHz to 3.2 GHa4t is important to
note that even though the upper limits of the Core 2 line (codenamedent eld Extreme
Edition) has a higher TDP as the most power hungry Pentium 4, we atalking about quad

cores (each capable of 2 virtual threads) instead of single onesie®f the major bottlenecks

® However, the four instructions are not arbitrary, they have to ke of a speci c type to
be decoded at the same time.
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of this design was that all the cores shared a single bus interconnfg9].

The next Intel line is the Core i7 processor (together with Core i3 @anCore i5).
These chips are based on the Nehalem architecture. Nehalem arebiure's major change
is the replacement of the front side bus with a point-to-point netwd (christened Intel
QuickPath!®) which has better scalability properties than the serializing bus, thimtegration
of the DRAM controller on the processor and the return of Hyperfireading to the Intel
main line processoré. Other new features are an increase on the number of parallel $op
that can be executed concurrently, i.e. 128 uops in ight; a new saad level predictor
for branches; the addition of a shared Level 3 cache; and the iottuction of the SSE4.2
instruction set[39].

Besides the extensions and enhancements done to the cores,dtip power features
are worth a look too. Besides the Intel SpeedStep (i.e. Clock gatijpdhe new Nehalem
designs have the TurboBoost Mode. Under this mode, under-utilidecore are turned o
and their work re-distributed to other cores in the processor. Ténother cores on the chip
get a frequency boost to compensate for the extra work. Thiseljuency boost continues
until the TDP of the machine is reached. Currently, the Nehalem dé&m supports 4 and
8 cores natively (in contrast to the Core 2 Quad which used two Duabre processor in a

single Multi Chip Module (MCM)).

1.1.5 Multi Core: Sun UltraSPARC T2

Sun Microsystems are well known on the server markets for theih@® Multithreaded
(CMTSs). The latest one was the UltraSPARC T2 which concentratesn the idea of Simul-
taneous Multi threading (SMT). In these types of chips, Thread &vel Parallelism (TLP)
is considered to be a major factor for performance instead of tnsction Level Parallelism
(ILP). This trend is re ected in their chip designs. The UltraSPARC T1 and T2 lack

complex out of order engines in favor of resource duplication forraecycle-context-switch

10 | ong overdue, AMD has their Hyper Transport point-to-point inteconnect introduced
in their OPTERON line around 2003

111t is true that HT was available during the Core era before this. Howeer, the chips
that used it were very high end chips reserved for gamers, HPC avroputer experts
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between logical threads. This allows the integrations of numerousres and logical threads
on a single die. The UltraSPARC T1 had support for 32 logical threadsinning on 8 hard-
ware cores. The T2 increased the number of logical threads frora ® 64. In a nutshell, an
UltraSPARC T2 chip has eight physical SPARC cores which contain twoteger pipelines,
one oating point pipeline and one memory pipeline. Each of them caphlbof eight logical
threads; a shared 4 MiB Level 2 cache with 16-way associative amadif dual channel Fully
Bu ered DIMM (FBDIMM) memory controllers. Another major impro vement is the inte-
gration of the oating point pipeline into the core and the doubling of he execution units
per core. An extra pipeline stage (called pick) is added to the core gt instructions from
its two threads can be executed every clock cycle. Even with the @gration of the oating
point unit and the addition of the new stage, the number of pipeline ages is still below
other cores in this list: eight for the integer data path and 12 for tb oating point path.
During execution, the logical threads are statically assigned to ora two groups. This
means that during the Fetch stage, any instruction from the 8 treads may be chosen (only
one instruction per cycle because the I-cache has only one portowever, after they are
assigned to a thread group, a single instruction from each group isosen per cycle for ex-
ecution. This process happens on the Pick state of the pipeline. TB®ARC core supports
a limited amount of speculation and it comes into three avors: load gzulation, condi-
tional branch and oating point traps. Speculated loads are assued to be level 1 cache
hits. Speculated conditional branches are assumed to be nongak Finally, the Floating
point pipeline will speculate the trap for speculated oating point opgations. Since a failed
speculated operation will cause a ush of the pipeline, each threaa ¢the core keeps track
of their speculated instructions[86].

All the cores in the processor communicate with the eight banks die¢ 4 MiB Level 2
cache and the I/O by an 8 by 9 crossbar. The total bandwidth for wites in the crossbar is 90
GB /sec and for reads is 180 GB / sec. Since each port is distinct faaah core and the paths
from the cores to the cache and vice versa are separate, thead e sixteen simultaneous
requests between the cores and the caches; eight load and /arstrequests and eight data

returns, acknowledgments and / or invalidations. When arbitrationis needed, priority is
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given to the oldest requestor to maintain fairness.

Other interesting features is the integration of a network contriter and a PCI-Express
controller on the processor and the addition of a cryptographic un Although its power
features are not as advanced as other processors, its powanscmnption is relatively low:

84 Watts on average with cores running at 1.4 GHz[86].

1.1.6 Multi Core: The Cray XMT
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Figure 1.7: The Cray XMT Super Computer. It has 128 logical threalthat shares a 3
LIW pipeline. The memory subsystem sports extra bits per memoryond that provides
ne grained synchronization, memory monitoring, in-hardware poier forwarding and syn-
chronization based interrupts.

Chip Multi Threading is not a new idea. There have been machines whidave
massive number of logical threads sharing a single hardware pipelireeg( Denalcor HEP,

Tera MTA1 and MTA2, etc [38]). One of the current designs that taks this concept
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to the extreme is the Cray XMT. A high level overview of a Cray XMT sgtem can be
found in gure 1.7. The Cray XMT (which stands for eXtreme Multi-Threading) is the
latest generation of Cray / Tera multithreaded architecture. Itsprocessor, named the
ThreadStorm, contains support for 128 threads sharing a singleohg Instruction Word
(LIW) pipeline. The XMT system supports to up of 8192 ThreadStams forming up to a 64
terabytes of shared memory space. The 128 Simultaneous multiéaded (SMT) processor
allows the overlapping of several logical threads when waiting for Igiatency operations.
Each of the ThreadStorm threads has a distinct register le, combl register, program
counter and several other registers which represents its statalthough, the ThreadStorm
has great performance when running multiple threads, its single tead performance is less
than spectacular. This is alleviated by a very powerful parallelizing ocopiler, a custom-
designed parallel Operating System (called MTK), a parallel le systa (the Lustre le
system[34]), and a high performance runtime.

The ThreadStorm pipelines are fed in a classical LIW way, i.e. the comgr stati-
cally schedules the instructions. A ThreadStorm can achieve 1.5 GBPS running at 500
MHz. Although the ThreadStorm pipeline is very interesting, there g other aspects of the
architecture that deserve some consideration. The memory antet network for instance
present considerable di erences from typical systems. The Menyosubsystem is designed
for applications which exhibit little to no locality. Each node on the sys#m has up to 8
GiB of memory attached to it*?. All memories form a global shared address space. Each
addressable word in the memory has extra bits that represent dirent states. These states
are used for ne grained synchronization (akin to the Data ow M stuctures concepts|8]),
forwarding pointers and user de ned traps. Moreover, the addss of a memory word is
scrambled uniformly across all physical banks across the systeifhis reduces contention
across the banks. All these features allow very fast ne grainegrghronization, e cient
traversal of pointer based structures and a normalized accestelacy for memory operations.
This provides very good advantages for irregular applications whiakxhibit unpredictable

behavior and access patterns [16].

12 However, the concept of local or nearby memory is hidden from tipgogrammer
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The nodes of the Cray XMT are based on the boards for the Cray XTand XT5.
They are using AMD's Torrenza Open Socket technologies and thensa supporting infras-
tructure used for the XT machines. The nodes are arranged as B 3orus connected using
the proprietary Cray SeaStar2 network. This switch sports an ebedded PowerPC which
manages two DMA engines. The SeaStar2 chip takes care of comination between the
cores connected by the HyperTransport[88] and the inter-nodemmunication with six high-
speed links. The network provides 30 to 90 millions of memory requedbr 3D topologies

composed of 1000 to 4000 processors[16].

1.1.7 Many Core: The Tile64

Although Cray's XMT takes the idea of CMT to new heights, other manfactures
based their designs on a large numbers of simple cores connectedhigh speed networks.
Some of these designs concentrate on improving the networks wgbveral structures and
topologies.

On September 2007, the Tilera Corporation introduced the Tile64 ghto the market.
This is a many core composed of 64 processing elements, called Tilesnged in a 2D Mesh
(eight by eight). The chip has connections to several I/O componés (Gigabit Ethernet,
PCle, etc) and four DRAM controllers around the mesh's peripheryThe DRAM interfaces
and the 1/0 components provide bandwidth up to 200 Gbps and in exss of 40 Gbps,
respectively, for o -chip communication.

A tile is described as the core and its associated cache hierarchy pilas intercon-
nection network switch and a DMA controller. Each of the cores syports up to 800 MHz
frequency, three way Very Long Instruction Word (VLIW) and virtual memory. A Tile64
chip can run a serial operation system on each of their cores or an8yetric Multi Proces-
sor Operation System (like SMP Linux) on a group of cores. The Tile6zhips is di erent
from other many core designs by their cache hierarchies, which mi@iim a coherent shared
memory; and their ve distinct mesh networks.

The rst two levels of the cache hierarchy on the Tile64 chips behavée normal

Level 1 and Level 2 caches, which accounts for almost 5 MiB of ongimemory. However,
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Tile64 presents a virtualized Level 3 which is composed by the aggaéign of all Level 2
caches. To e ciently access other tile caches (i.e. data in the virtiaed level 3 cache),
there are a group of DMA controllers and special network links.

Inter tile communications is achieved by ve distinct physical channs. Although
having all the networks as physical links instead of virtualizing themaoainds counter-intuitive
(i.e. more wires equals more cost, possible more interference, mewd state, etc), advances
in fabrication (which makes the addition of extra links almost free) ashthe reduction of over-
all latency and contention are given as the main reasons to createetphysical networks[90].
The network design is called iMesh and it has ve links: the User DynamMetwork (UDN),
the 1/0O Dynamic Network (IDN), the Static Network (STN), the Me mory Dynamic Network
(MDN), and the Tile Dynamic Network (TDN). Each tile uses a fully conrected all-to-all
ve-way crossbar to communicate between the network links andhe processor engine. From
the ve link types, four are dynamic networks. This means that edt message is encapsu-
lated (i.e. packetized) and routed across the network in a \ re andorget” fashion. These
dynamic packets are routed using a dimension-ordered wormholéame. For latency, each
of these packets can be processed in a cycle, if the packet is gotrgjght; or two, if it needs
to make a turn in a switch. In the case of the static network, the ph is reserved so that
a header is not required. Moreover, there is an extra controller &h will change the route
if needed. Due to these features, the Static Network can be usede ciently stream data
from a tile to another by just setting up a route between the two othem. Like the STN
fabric, each of the other four networks has speci ¢ functions. Re 1/0 Dynamic Network
(IDN) provides a fast and dedicated access to the I/O interfaced the tile chip. Moreover,
it provides a certain \level isolation" since it is also used for system dnhypervisor calls.
In this way, the system tra ¢ does not interfere with user tra c a nd vice-versa; reducing
the O.S. and system software noise. As its hame implies, the Memoryriamic Network
(MDN) is used to interface between the tiles and the four o -chip DRM controllers. The
Tile Dynamic network (TDN) is used as extension of the memory systeand it is used for
tile to tile cache transfers. This network is crucial to implement the wtualized level 3 cache.

To prevent deadlocks, the request for the cache transfer is ted through the TDN but the
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responses are routed through the MDN. Finally, the Tile64 chip hax&nsive clock gating
features to ensure lower power consumption and according to itsolshure, it consumes 15

to 22 watts at 700 MHz with all its cores running[24].

1.1.8 Many Core: The Cyclops-64

The Cyclops-64 architecture is the brain child of IBM's Cray Award winer Monty
Denneau. It is a many core architecture that has 80 processingralents connected by a high
speed crossbar. Each processing element has two integer cdnasiisg a single oating point
pipeline and a single crossbar port. Moreover, each element has 8RAM banks of 30 KiB
which total to 4.7 MiB of on-chip memory3. Besides the on-chip memory, the architecture
supports up to 1 GiB of o -chip DRAM. The Cyclops-64 chip, or C64 clp for short, also
has connections to a host interface which is used to access exé¢devices. Finally, the chip
has a device called the A-switch which is used to communicate with theighbor chips. A
group of C64 chips are arranged into a 3D mesh network. A Cyclopd-system supports up
to 13284 chips which provides more than 2 million concurrent threg@4]. A block diagram
for the Cyclops64 chip is given by Figure 1.8. Each of the componeritthe C64 chip is
described in more details in the subsections below.

Each 64-bit integer core runs at 500 MHz with a RISC-like ISA. A cores a simple
single in-order processaét which uses 32-bit instruction words. Each of the cores can handle
concurrently branches and integer operations but they sharelar facilities like the oating
point pipeline, the crossbar port and the instruction caché®. Each core has a 64 64-bit
register le and a set of special registers. Each processor (i.e.ngutational element) is
capable of achieving a peak performance of 1 GigaFLOPS (while usirg tfused multiply
add operation) which means that the chip can achieve a peak of 80 @k}.OPS[31].

13 The terms KiB and MiB are used to indicate that these are power of 2 etrics, i.e. 2°
and 20 respectively, and to avoid confusion when using the terms Kilo and iga which
can be either base two or ten according to context

14 There are very limited out of order features on each core which hslfp execute unrelated
instructions while waiting for memory operations (loads) to return.

15 The Instruction Cache is shared by ve processing elements
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Figure 1.8: A Logical diagram of the Cyclops-64 Architecture

A C64 chip has two networks: the intrachip crossbar and the A switccontroller
which provides interchip communication. The crossbar have 96 psrtand connects all
the internal components of the chip. Communications to o -chip mmory banks and the
interleaved global address space are processed by the crossWach ensures equal latency
to all operations (sans contention). As shown in [95], the chip has @uential Consistency
memory model as long as all memory tra ¢ goes through the crosah A crossbar port
can support up to 4 GiB/sec. This gives a total of 384 GiB/sec for th whole crossbar
network[31].

The A switch deals with communication between neighbor chips. It coects with
up to six chip neighbors in a 3D mesh network. At every cycle, the A #eh can transfer 8
bytes in a single direction on each of its links [31].

The on-chip and o -chip memory spaces provide an explicit three leienemory
hierarchy. The rst level is composed of a fast access memory whits possible since

each core can access a region of their SRAM bank without going thgh the crossbar
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controller. This space is called the Scratch pad memory and it can bercgured at boot
time. Moreover, this space is considered private to its connectedres®. The rest of
the SRAM bank is part of the interleaved global SRAM which is acces#bby all cores.
Finally, we have the DRAM memory space which is the o -chip memory whbh has the
longest latency. Access to global SRAM and DRAM are Sequentially @sistent. However,
accesses to Scratch pad are not[95].

The chip does not have any hardware data cache, does not suppartual memory or
DMA engines for intra-chip communication. All memory accesses niuse orchestrated by
the programmer (or runtime system). Application development fothe Cyclops64 is helped
by an easy-to-use tool-chain, a micro-kernel and a high performae runtime system. Some
other important features of the architecture includes: hardwar support for barriers, a light
weight threading model, called Tiny Threads, and several atomic pritives used to perform
operations in memory. The nal system (composed of 24 by 24 by 2édes) will be capable

of over one petaFLOP of computing power [31].

All these designs show the way that processor and interconne&chnologies work
together to ensure the habitation of dozen of processing elem&ntHowever, we must in-
troduce the other camp of parallel computing design: heterogemes designs. Under these
designs, several di erent architectural types come togethemaa single die. The major fea-
ture of these designs, their heterogeneity, it is also their major akness. Coordinating
all the elements of the design is a very di cult task to do either autonatically or by the
programmer. This reduces the productivity of a system greatly ahthe need for software
infrastructure is essential for the survival of the design. In Chaer 3.3, the architecture
used in this study and its software infrastructure are introducedHowever, before we jump
to this, we need to introduce the questions that this thesis tries tanswer; and we introduce

the elusive concept of productivity to the readers (Chapter 2).

18 However it can be access by other cores if needed
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1.2 Problem Formulation: an Overview

Thanks to current trends, many of the old problems of yesteryes have come back
to haunt system designers and programmers. One of these probdeis how to utilize e -
ciently utilize the limited memory which each of the accelerator / co-fcessor units have?
Moreover, when a design is proposed, how to e ectively optimize $ua design so that it
can provide the maximum performance available?

Many frameworks have been designed to answer these questioseveral of them
are mentioned when in Chapter 7. This thesis answers the rst quésn by proposing a
framework that loads code on demand. This solution is not novel sidhe concept of
overlays and partitions were used before the advent of virtual meory. However, their im-
plementation to the heterogeneous architectures is a novel idddoreover, the overlays and
partitions introduced here have a much ner granularity and a widerange of uses than the
ones provided by classical overlays, embedded systems overlaysven by virtual memory.
The second question is answered by several replacements meghtdtht aim to minimize
long latency operations. The next sections and chapters introdedoth the problems and

the proposed solutions further.

1.3 Contributions

This thesis's framework was designed to increase programmability ihet Cell B.E.
architecture. In its current iteration, many optimization e orts are under way for each com-
ponent. Two of the most performance-heavy components andetharget of many of these
optimization e orts are the partition manager and the software cahe. Both of these com-
ponents use Direct Memory Accesses (a.k.a. DMAS) transfers kida Thus, the objective
of all these e orts is to minimize the number of DMA transactions pegiven application.
This thesis main objective is to present a framework which providesigort for dynamic
migrating code for many core architectures using the partition mager framework. To this
purpose some code overlaying techniques are presented. Theshniques range from divi-
sion of the available overlay space through di erent replacement poes. The contributions

of this thesis are as follows.
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1. The development of a framework that loads and manages partitis across function
calls. In this manner, the restricted memory problem can be alleviadleand the range

of applications that can be run on the co-processing unit is expartle

2. The implementation of replacement policies that are useful to rade the number of
DMA transfers across partitions. Such replacement policies aim t@tmize the most
costly operations in the proposed framework. Such replacememisn be of the form

of bu er divisions, rules about eviction and loading, etc.

3. A quanti cation of such replacement policies given a selected sdtapplications and a
report of the overhead of such policies. Several policies can be giket a quantitative
study is necessary to analyze which policy is best for which applicatismce the code

can have di erent behaviors.

4. An API which can be easily ported and extended to several types architectures.
The problem of restricted space is not going away. The new trendeses to favor an
increasing number of cores (with local memories) instead of morerthavare features
and heavy system software. This means that frameworks like then® proposed in
this thesis will become more and more important as the wave of multi thany core

continues its ascent.

5. A productivity study which tries to de ne the elusive concept of poductivity with a

set of metrics and the introduction of expertise as weighting funicns.

This thesis is organized as follows. The next chapter (2) introduceke concept
of productivity and their place in High Performance Computing. Chafer 3 has a short
overview on the Cell Broadband engine architecture and the Operp@Ill framework. Chap-
ter 4 presents the changes to the toolchain and a very brief ovesw of the partition manager

framework. Chapter 5 shows the lazy reused (cache like) replaaarpolicies and shows the
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replacement policies with pre-fetching methods and introduces thgartition graph struc-
ture. Chapter 6 presents the experimental framework and tdstd. Chapter 7 shows related

work to this thesis. Chapter 8 presents the conclusions drawn frothis work.
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Chapter 2

PRODUCTIVITY STUDIES

\While computer performance has improved dramatically, real proakctivity
in terms of the science accomplished with these ever-faster ma@snrhas not
kept pace. Indeed, scientists are nding it increasingly costly andirhe con-
suming to write, port, or rewrite their software to take advantag of the new
hardware. While machine performance remains a critical productiyitdriver for
high-performance computing applications, software developmetime increas-
ingly dominates hardware speed as the primary productivity bottleeck” [37]

As new generations of multi / many core designs rise and fall, an oldglslem raises
its head: productivity. In layman terms, productivity refers to the production of a unit
of work in a speci ed amount of time. Under the High Performance Goputing (HPC)
eld, this objective is harder to achieve due to the challenges impasdy the new design
decisions which move many classical hardware features (i.e. cohereaches, hardware
virtual memory, automatic data layout and movement, etc) to thesoftware stack. As a
result of these challenges, the High Productivity Computing SystertHPCS) project led
by DARPA was created. This is not much di erent than current projects which deal with
hardware / software co-design issues like the Ubiquitous High Pemfisance Computing
(UHPC) initiative, also lead by DARPA[29].

With all these considerations in mind, emergent parallel programmingiodels need
to be carefully crafted to take advantage of the underlying hardave architecture and be
intuitive enough to be accepted by seasoned and novice progranmmalike. One of the se-
lected groups for the HPCS project is the IBM's Productive EasyetUse Reliable Computer
Systems (PERCYS) initiative. This group created several method® tempirically measure
the productivity of selected parallel languages or languages' feats. These methods be-

came fundamental on their overview of language design. A grapHhicapresentation of such
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a design is given by gure 2.1. Under this approach, a language muse kevaluated in
several aspects and revised accordingly. Some of these aspiiside economic aspects,
performance capabilities and programmability. The method that wadeveloped to measure

the productivity of the language from a programmability point of viewis the productivity

study.
Feasibility Study 1
Language {| Design Economic and Cost analysis of| :@
e new language or features.
Academic / Research needs
L
o — Language
’0‘ FeaSIblhty Study 2 * emsmms Implementations

Productivity Studies Prototypes

Im.pact on Programmers Tool Chains and
Time for development Tegression tests
u : u EEEEEEEEN ’

-___.--"' NeWLe_mguage
4" Version 1

[ 1
Language e p @ R
Implementations [— =
Optimizations and Feasibility Study 3
Hardware Support == Productivity Studies
Performance gains or losses

Figure 2.1: A New Approach to Language Design. A new language shlibgo through
several phases in its development to ensure that it has sound sgxtand semantics, it ts a
speci ¢ demographic and it has a speci c place in the eld. Moreoveptimization to the
runtime libraries should be taken into account while developing the langge.

A productive study involves using a speci ed metric to calculate the noductivity of
a programming language design. This being the parallel programmingpeessiveness (with
Source Lines of Codg or its time to a correct solution. To put together such e ort growps
of diverse specialists need to be assembled. These include sociolgsithropologist and
computer scientists. The structure of the study gives groups @leople several problems to
solve given a high performance parallel language. Each of the grewgpe closely monitored

in their resource usage and time management.

1 A awed metric in which the work is equated to the number of lines of ate produced
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One of the most di cult aspects of parallel programming is synchroization. These
features are designed to restrict the famous data race problemvimich two or more concur-
rent memory operations (and at least one of them is a write) can aot each other resulting
value. This creates non determinism that is not acceptable by mospglications and al-
gorithms?. In modern programming models, the synchronization primitives takthe form
of lock / unlock operations and critical sections. An e ect of theseonstructs in produc-
tivity is that they put excessive resource management requiremsnon the programmer.
Thus, the probability that logical errors appear increases. Morger, according to which
programming model is used, these constructs will have hidden co®gb keep consistency
and coherence of their protected data and internal structur&]. Such overhead limits
the scalable parallelism that could be achieved. For these reasonspmic Sections (A.S.)
were proposed to provide a more intuitive way to synchronize regisof code with minimal
performance overhead [94]. The construct was implemented in thel@&hguage and it be-
haves like an acquire / release region under entry consistency[78]far as their consistency
actions are concerned. Moreover, it provides the mutual exclusi@nd atomicity required
by the region. This construct was implemented in the OpenMEN framework using the
Omni source-to-source compiler. More detailed explanation aboétS. can be found on
subsection 2.1. Using this new construct, we developed a produdinstudy (The Delaware
Programmability, Productivity and Pro ciency Inquiry or P3l) to me asure empirically its
e ect on time to correct solution. One of this study salient featurds the introduction of
weights to the framework which will prune to the data according totie study's point of
interest. This section shows the productivity study framework adh initial results. However,

an short overview of Atomic Sections is required.

2 There are some algorithms that allows certain amount of error in tirecomputation for
which the cost of synchronization might be too expensive and / or &éhprobability of
the data race occurring is very low[11]
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2.1 Atomic Sections: Overview

An Atomic Section is a construct that was jointly proposed by Zhangt al[94] and
their colleagues at IBM. This construct has two implementations. Qs of them was cre-
ated for the IBM's X10 language [35]. Atomic Sections' second implentation is under
the OpenMP_XN programming model developed by the University of Delaware. Du®
OpenMP's status on the industry and the plethora of resources anable for it, OpenMP
is an excellent platform to test new parallel programming construst For these reasons,
OpenMP was selected as a testbed for the development of this nexattire. The OpenMP
implementation containing A.S. became known as OpenMRN or OpenMP with eXteN-
sions. From now on, every time that the term Atomic Sections is usethe implementation
under OpenMP_XN should be assumed, unless stated otherwise.

An Atomic Section is de ned as a section of code that is intended to bexecuted
atomically, and be mutually exclusive from other competing atomic opations. The term
\competing"” in this case is very similar to the way that competing acceses are presented
under the Entry Consistency memory model[73]. Atomic Sections thare competing should
be guarded against each other but they should not interfere withhe ones that do not
compete with them. The OpenMP standard o ers two extreme cases when it comes to
interference and synchronization. Its critical section constragrovides a global lock (or a
statically named lock) that ensures that only a critical section is runing and the others
are waiting, regardless of the e ects of their execution. On the bér hand, OpenMP's lock
functions put the responsibility on the programmer to detect if thecode interferes (data

race) with other protected blocks of code, and to lock it according his/her judgment.

Listing 2.1: Atomic Section's Example

#oragma omp parallel for private (b)
for (i = 0; i < 10; ++i) f
b = rand()%256;

#pragma omp atomic_sec

3 OpenMP also o ers the atomic directive but this construct is extreraly restricted. It
is limited for read-modify-write cycles and for a simple group of operans
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Atomic Sections provide the middle ground in which the programmer isde of lock
management and the compiler prepares the code to run the sectom a non-interfering
manner. The syntax and a code example of Atomic Sections are me®d in Figure 2.2
and Listings 2.1. Each Atomic Section's instance is associated with awsttured block of
code. This block is de ned as a piece of code that has only one entrgipt and one exit
point. For a more in depth explanation please refer to [94]. During thereation of this
construct, another aspect became apparent: how will progranars react to this construct?
Therefore, the Delaware group developed P3I to have an idea albdlbe construct impact
on programmers and to create a methodology / framework templatfor future studies.

#pragma omp aiomic sec |Clause Clause ...| newline
strctured block

The clause 1s one of the following:
. cl(vy, vy ... v,) ==> Consistency List and v 1s a
shared element

.on(ly, b, ... 1) ==> Atomic section’s Locks and I
are locks that will be associated with this Atomic
Section

. Structured block 1s an executable statement (can be
compound), with a single entry at the top and a sin-
gle exit at the bottom

It 1s Highly recommended that both clauses are not used by the
programmer

Figure 2.2: Atomic Section's Syntax
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2.2 The Delaware Programmability, Productivity and Pro ci ency Inquiry: An

Overview

The Delaware Programmability, Productivity and Pro ciency Inquiry was designed
to empirically measure the impact of a language or language featune grogrammers. Some
of the main questions that this study aims to answer are: How much pact will the new
language / feature have on the programmer? How will the feature éanguage a ect each
application development phase? Other important questions abouhé study methodology
are raised: Is there any way to ensure a correct distribution of osample or to pre- Iter
the results such that the data we consider relevant (i.e. novice araverage programmers)
have more weights than others? This version of the study answdréhese questions and
provided a solid platform for future work and iterations.

The rst P3I version had a total of fteen participants. This part icipants were
carefully chosen from the University of Delaware Electrical and Caoater Engineering de-
partment based on their familiarity with the eld. The participants attended two meetings
in which a pre-study exercise was given and the methodology is expkdhto the partici-
pants. The study is presented and accessed through a web inteé called the Web Hub. In
the web hub, the participants can review, download and Il the di eeent parts of the study.
The study, as well as the web hub, is divided into four phases. Thest phase, dubbed
phase 0, contains the web survey, web log and a programming ex&c The rest of the
phases contain the web log and the programming exercise. The wed i® designed to be an
End-of-Phase check in which the participants log in when they havempleted the phase.
A subjective ending time is saved when the participant complete thedo

After Phase 0, there are three more phases which represent ttee of the study. For
a complete description of all phases and the data collection infragtiture, refer to Section
2.2.1. A code excerpt from Phase 0 is presented in Figure 2.3. It prats the code involving
a bank transaction using lock / unlock OpenMP construct and AtomicSection construct.

This study's main metric is the time to correct solution, which is calculagd thanks
to the data collection infrastructure explained in section 2.2.1. As ated before, this study

is not designed to measure performance (even though that will beeof its objectives in
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omp init lock(&(tmp- vold deposit{long int

>lock) ) ; depo, int ID})
{
vold deposit({long int struct customers.*tmp;
depo, int ID) #pragma omp atomic sec
{ {

struct customers *tmp; tmp = found(ID);

tmp = found(ID); tmp->balance += depo;

omp set lock (& (tmp- }
>lock)) ; 1

{

tmp =

tmp-»kbalance += depo;
}
omp unset lock (& (tmp-
>lock)) ;

}

omp destroy lock (&(tmp-
>lock)) ;

Figure 2.3: Code Excerpt from Phase 0: A comparison between thekomplementation
(left) and the AS implementation (right) for the unlucky banker
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future iterations). The Web Survey is used to calculate the weighthat will be used in this
study. Its structure, purpose and results will be presented in sgons 2.2.2 and 2.2.3. The
programming exercises in each of the phases are designed to putgpammers in di erent
contexts that appear in the HPC domains. These situations can beescribed as developing
a complete parallel application, debugging a parallel code that deadks and parallelizing
a serial application. Finally, all the results will be Itered with the weights such that the
nal data will be a ected by the level of expertise of the participarts, represented by the

weight calculated in the web survey phase.

2.2.1 P3l Infrastructure and Procedures

Figure 2.4 provides a picture depicting the structure of the main pa&gof the study

and each of its parts.

Figure 2.4: P3I Infrastructure
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The study's three main phases are named phase l1a, 1b and 1c. Epbhse has the
same structure as the one presented above. The rst of thesdgses is named the GSO
exercise. In this exercise, the participants are presented with ggothetical case in which
a Gram Schmidt Ortho-normalization[69] is required. The whole applit@n must be com-
pleted from a given pseudo-code and then parallelized using OpenMN. The participants
are given a high level pseudo-code of the application, helper functsoand a skeleton C code
for them to work on. A successful run implies that the provided clo& function returns true
when testing the resulting vectors. Two versions of the le are redred for the application
to complete successfully: one with atomic sections and one with locKehis speci ¢ exercise
was developed to test the programmer's abilities in designing, paralleig and debugging
an application.

The second phase, Phase 1b, is dubbed The Random Access Pnogré is based
on the Random Access exercise which is used to test memory bandwidystems. The
program contains a large table that is randomly accessed and upddt At the end of the
execution the table is checked for consistency. If the number of@s surpasses one percent,
the test has failed. The synchronization in this case is applied to eacandom access of
the elements in the table. Intuitively, the number of errors that midpt appear in the nal
table reduces considerably when the table is made large enough. Thmakes the use of
synchronization constructs less desirable for this program sincesmall percentage of error
is tolerated. In this phase, the subjects are given a serial versiofh the program and are
asked to parallelize it with OpenMPXN. As before, two versions are required to complete
this phase (locks and Atomic Sections). An extra version can be cplated and it consists
of the program without any synchronization constructs. This exeise simulates the scenario
in which programmers need to promote serial codes to parallel implentations.

Finally, phase 1c is called The Radix Sort Algorithm[6] and it is an implemeation
of the famous algorithm. The participants are given a buggy parallemplementation of
this algorithm. There are three bugs in the algorithm that relate to gneral programming,
parallelization and deadlocks. All three bugs are highly dependent énwhen one is found

and solved, the others become apparent. As before, a lock and Aemic Section version
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are required. The extra questions in this section involve the identiation of the bugs, why it
becomes a problem and possible solutions. The main objective of thegtson is to measure
the \debug-ability" of a parallel code that involves synchronizationconstructs. A summary

of the Methodology and Framework is given by Figure 2.5.

Figure 2.5: P3I Infrastructure and Methodology

All data collected from the phases is saved to a le that is in the poss&on of
the organizers of the study. The collected data is ensured to beiyate and it is only
made available to one of the organizers of the study. The identity dfie participants and
their results are kept secret and con dential. This process is \ddale blinded" since the
participants cannot access their results and the rest of the Delave group does not know

who participated or for how long they stayed in the study.
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2.2.2 The Web Survey: Purpose

The web survey is the rst part of the P3l and it is mandatory for all participants.
It consists of 24 general questions that range from a simple \With lmch programming
language are you familiar?" to more complicated questions such asdW much you know
about the fork and join parallel programming model?" In the web swey, participants will
check boxes or radial buttons to decide their level of expertise inrange of 1 (least expert
/ Never heard about it) to 5 (expert / Use frequently).

Each question has a maximum score of 5 - except for the rst oneahhas a value of
6% - and some questions are left out of the nal computation since tlyedeal with hardware
support. An expert score in the web survey is 106. When a participa nishes the web
survey, his/her score is calculated. Afterward, a ratio is taken wit respect to the expert
score. This is called the expertise level percentage. All these cédtions are called \Weight
Calculations" and they will be kept intact in future iterations. Finally, the expertise level
is subtracted from one to produce the participant's weight. This wght will be used to
Iter the data by multiplying it with each participant's time. This proces s ampli es the
contribution of less expert programmers to the study. These Hrasteps are named \The
Weighting Function" and it will be modi ed in future iterations of the study. That being
said, P3I - in its rst iteration - target low level and average prograamers. It also has the
ability to \weed" out all high expertise participants. This prevents kewing of data from
the high expertise end, but it ampli es on the low end. This scheme cdme considered a

\Low Expertise Weighting Function".

2.2.3 P3l Results

The results of the study consist of the average time of all participés in each sub-
phase and sub-section. Each time data is weighted with the participgs weight before the
average is calculated. Each participant has to run the experimenis a Sun SMP machine

with 4 processors and a modi ed version of the Omni Compiler. The salts for the weights

4 This question asks about familiarity with OpenMP, Java, MPI, UPC, aml other parallel
programming languages
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are presented in gures 2.6 and 2.7. It shows that the distributionfoexpertise among the
participants approaches a normal distribution. This result can besed in future iterations

to break the population into groups.

Figure 2.6: Weight of each Participant

Figure 2.8 provides the nal results that have been modi ed by the wight's data.
A complete discussion about the results and the weights of the panipants are given in the
next section.

As shown by tables 2.6 and 2.7, the weights in this study formed a sligjhtskewed
normal distribution. This ensures that most of the results are welged against a close range
of values. Moreover, the actual weights that were presented ihd study are in the range of
0.42 to 0.55. This means that the data for this study was not a ectét much by the weights.
Also, this means that the population is not suitable for sampling sincellahe groups have
the same level of expertise.

As Table 2.8 shows, there is a considerable reduction of time to solutian all the
phases. However, the small sample space hinders this study frorakimg a stronger case.

Overall, there is a dramatic reduction of the time to correct solutionand each phase also
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Figure 2.7: Histogram of the Weights

shows this reduction. In Phases la and 1c, this reduction is in facsoof ve. In this data,
the sequencing information should be considered. This informationabtained by recording
the order in which the sub sections were taken within each sub phasehis is important
because there is always a learning period in which the participants gimiliar with the

code. Even in these cases, the reduction of time to solution is als@gent.

2.2.4 P3l Version 2

Learning from the rst version of P3Il, several addition were madeéo the second
version which includes the addition of a new metric, a ner level of matoring, a reduction
of the study time, introduction of control groups, etc. A more dail description of these
enhancements is given below.

The P3l monitoring framework was enhanced to record the activitpf the partici-
pants per minute basis. This provides a more clear view of the activisehat the participants
are doing while the study is in place. Moreover, the study's time wasdeced from a week
to three three-hour-phases plus a tutorial and the phase zerBhase zero was enhanced by

collecting the source code for each participant and having a team efpert programmers

39



Figure 2.8: Weighted Average Time Data for Each Phase. In this casthere is a clear
correlation between the reduction in time to correct solution fromhe lock exercises and
the atomic sections.

Figure 2.9: Activity Timeline for each participant in the study
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to analyze and grade the code to compare them against the weiglatsllected by the web
survey. Figure 2.9 and 2.10 shows the results for both the contr@bcks) versus experimen-
tal (atomic sections) in term of percentage spent on each exeeigver time and in several
other activities (idle, compiling, other). As shown in most pictures, »ercise one (the appli-
cation development) took most of the time for most participants @ns number 7), as it was

expected.

Figure 2.10: The phase's percentage for each participant

The Source Lines of Code (SLOC) metric was added to the frameworThis metric
is supposed to show the amount of e ort in developing the applicationn Figures 2.12,
2.13 and 2.11 shows the results for each of the phases with respecthe total average
number of lines, the group's averages and the average SLOC foclegarticipant. In the
graphs, it shows that the number of lines of code per phase increasith the respect of the
phase. This is expected since the exercises gets increasingly maoild as the exercise
progresses. Figure 2.11 shows that with respect to SLOC, partieits are closely correlated
with their initial weights (e.g. participant nine has the highest experise and the average
lowest SLOCs in the group).

Another addition to the study is to collect the phase zero exercisesd analyze them

to produce another expertise weight. This is done as a double chemffainst the survey
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Figure 2.11: Total SLOC Average per Participant

Figure 2.12: Total Average for SLOC

Figure 2.13: Total SLOC Average per Group
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to validate their values. Figure 2.14 and 2.15 represents the di erees between the real
weights (gathered by the survey) and the subjective weights (teered by the analysis of
the source code). The trend shows that they matched but theyese shifted up. This might
be due to the way that people see their abilities, especially studentdieh tend to under

represent their coding skills.

Figure 2.14: A comparison between the real and subjective weights

Figure 2.15: An Absolute di erence between the two di erence type The average di erence
is 0.12 and the standard deviation is 0.14 which represent very low vaki

The nal graphs ( gures 2.16, 2.17, and 2.18) shows the runtime f@ach phase which
will be weighted with high, normal and low expertise weights. Strangieenough, atomic
sections did not represented the highest productivity construdn all cases. In phase one,
the atomic sections did not fared very well in the collection framewkr The explanation

is that the phase one design puts more emphasis in creating the skerarsion rst and
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then parallelizing in which the parallelization is trivial. Thus, the selectionbetween the

constructs did not a ect the overall time.

Figure 2.16: The total runtimes weighted by the low expertise fornia

Figure 2.17: The total runtimes weighted by the normal expertiseuhction

The objective of this upgrade is to strengthen the weaknessestbé rst one and

provide a solid foundation for newer iterations.

Conclusions

Although the HPCS project is completed, the interest in productiviy never took
hold. The several studies about productive languages and featgr the biggest one being
the Pittsburgh Supercomputer Center study[15], have sunk intobscurity. This is a pity
since the eld misses a great cross disciplinary opportunity. Howavethe languages and

architectures born out of the project: Cray's Chapel, IBM X10 ad IBM POWER7, became
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Figure 2.18: The total runtimes weighted by the high expertise

staples in the community and they are still maintaining research linesxdHigh Performance
Computing (e.g. The Blue Waters Project[58]).

The need for the next-generation of productive parallel language apparent. This
need can be summarized by the \Expertise Gap" problem which is dead as \Only a small
percentage of employees are able to produce HPC software on adi@e"[82]. In layman
terms, this translates to that the users of these systems aretnthe expert programmers
but scientists in other branches (physics, chemistry, anthropaly, etc) which require large
amount of computational power to solve the complex interactionshat their problems fea-
ture. Thus, the systems which they use must be \productive" (i.e.Easy to use and still
performance e cient). Nevertheless, due to its di culty on being dbserved, productivity is
an elusive term to start with. However, the e ects of hardware sipli cation on software
stacks are very visible. The layer that absorbs most of these skogaves is the middle-level
software which supports the high level programming constructsid provides the translation
to the hardware base.

As new designs arrive, a tug-of-war between productive high ley@ogramming con-
structs and highly e cient hardware rages. As shown in this chapte certain constructs
are better in increasing productivity but increases the middle layerralysis overhead. This
middle layer, which includes runtime systems, toolchain and other par of the software
stack, provide the needed gateway to marry the high level prograning models with the

hardware.
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For this purpose, we selected a notoriously di cult to use architeaire, but proven
to be highly e cient: the Cell Broadband Engine and we ported one ofhe most used and
productive Programming models, OpenMP (as shown in this chaptetd it. This e ort is
called the Open Opell project at the University of Delaware [60][67][68h this way, we can
married a highly productive language, i.e. OpenMP, and a novel runtiensystem designed

to replace and optimize missing hardware features.
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Chapter 3

OPEN OPELL: AN OVERVIEW

As stated in the previous chapters, productivity and new designsr& sometimes
at odds. One of the scenarios that this is more apparent is with hetgeneous designs.
These designs range from on-chip Application Specic IntegrateditCuits (ASICs); like
dedicated encoder and decoder for High De nition data, to sophisated System-on-a-Chip
(SoC). Among one of the most well examples of these designs, weehthe Cell Broadband
Architecture. The framework presented in this chapter is not thesole work of the author

but a combine e ort of many talented people, including the author.

3.1 The Cell Architecture

The Cell Broadband Engine (or Cell BE for short) is a project in whictthree of the
big computer / entertainment companies, IBM, Sony and Toshiba, arked together to create
a new chip for the seventh generation of home video game consolds[Zhe chip possesses
a heavy core, called the PowerPC Processing Element (or PPE forost), which acts as the
system's brain. The workers for the chip are called the Synergistiadtessing Elements (or
SPE for short) which are modi ed vector architectures which hugeomputational power.
Both processing elements coexist in the die with a ratio of 1 to 8 (onePE to eight SPES),
but more con gurations are possible. Finally, all the components arinterconnected by
a four-ring bus called the Element Interconnect Bus (or EIB for gbrt). A more detailed

explanation of each of the core is provided in the next sections.
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Figure 3.1: Block Diagram of the Cell Broadband engine. This gure slws the block
diagram of the Cell B.E. and its components (PPE and SPE). It also slws the internal
structures for the SPE pipelines and a high overview graph of the mtconnect bus.
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3.1.1 The PowerPC Processing Element

Commonly referred as the PPE, this element is an example of a heawyre. It is
a POWERPC chip complete with Virtual memory support, coherent cehes, vector exten-
sions, two-way multithreaded, among other hardware feature3he complete de nition for
the PPE can found on the POWERPC Architecture Books | to Il [70]. Besides being a
POWERPC core, it has certain optional features (Altivec unit, oating point reciprocate
estimate and square root, and an added cache line operation) tolpné with multimedia
application processing. Some other features include a data and msition level 1 (32 /32
KiB) cache, a unied level 2 cache (512 KiB, 8-way set associativehd a 2-bit branch
prediction hardware.

Although the PPE is an in-order machine, they have several \tricksthat allows to
reap the bene ts of an out of order execution engine. Some of deeare delayed execution
pipelines and the ability to issue up to eight outstanding loads[70]. On rabof the current
con gurations, it runs at 3.2 GHz. As the brain of the system, it rurs the Operating System
and has access to all the memory spackslts purpose can be summarized as an orchestrator
of resources (these include the SPEs, their memories, the EIB améin memory, as well as
any 1/0O devices).

The nal component of the PPE is the PowerPC Processor StoragBubsystem
(PPSS). This component handles every memory request that netmlbe coherent between
the PPE and the Element Interconnect Bus (EIB). An interesting ote is that, although the
computational engine internal memory (referred as local storagelow) does not need to be
coherent, most of the requests (which are DMA operations) to drfrom main memory must
be made so. The PPSS hosts the PPE's uni ed level 2 cache. Moregve controls pacing
for the EIB and does pre-fetching for the PPU. Finally, it has accasto the Resource Allo-
cator Management and the Replacement Management Tables (udegboth the Cache and
the TLB). Control over both structures is handy when doing reatime programming[21].

The block diagram of the PPE is shown in the lower parts of Figure 3.1.

1 Real (all physical memory), Virtual (virtual addressing space) rad E ective (all of the
above plus any memory mapped 1/O)
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3.1.2 The Synergistic Processing Element

Commonly referred as the SPE, this element is a simple core, plus arhanced
memory management unit, which serves as a computational engirae the Cell. A SPE is
divided into the Synergistic Processing Unit (SPU) and its Memory FlowController (MFC).
The unitis a modi ed vector architecture which can run general pyyose code (with a certain
performance penalty) but it shines when dealing with vector applicains. It is an in-order,
(very limited) dual issue chip. It has a 128 times 128 bits register 1e256 KiB of local
storage, and a dual pipeline (named even and odd). An SPU can onlpnk on data and
code which reside in its local storage (using load and store operasyn Although it lacks
the advance branch prediction mechanism of the PPU, it allows brahdints to be inserted
in the code to better utilize the pipelines.

To access main memory and other local storage locations, a speck@nnel interface
and the Memory Flow Controller are used. A side note is that the locatorage of each
SPU is a non cacheable region. This means that even if it is mapped to imanemory, it
will not be kept consistent / coherent across SPUs and other corpents of the system[21].
However, as stated before, every MFC requests will be coherefo access main memory,
the SPU depends on a group of Direct Memory Address (DMA) opdrans. As classically
stated, the DMA is an asynchronous memory transfer from a rertelocation to a near
one[21]. In this case, the remote location is the o chip main memory @nother SPE's
local storage. In the SPU, the DMA operations can be grouped ugimumerical tags (with a
maximum of 32 tags available to the programmer). These tags areaakto ensure completion
time or an order between the DMA transfers (using barrier and fe® semantics[21]).

The DMA transfers, as well as other channel operations, i.e. sigrend mailboxes;
are taken care by the Memory Flow Controller (MFC) part of the SPUThe main purpose
of this component is to ensure that data (or code) is delivered sbfdrom and to the Local
Storage of the given SPU. It possesses its own set of registeng) tommand queues (one for
local SPU commands and one for outside ones), a Memory Managemménit, a Memory
Mapped I/0 (MMIO) interface, and a copy of the Replacement Mangement Table (RMT).

Unlike the SPU, the MFC must be aware of the state of all memory spas (virtual, e ective
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and real). Thus, it must have knowledge of the virtual tables and anMMIO mapping
(including, but not limited, to the mapping of LS onto main memory spae). Finally, the
MFC has a TLB and a cache for atomic operations which can be manaigey PPE privileged
software[21].

A single SPU (rst generation) is capable of 25.6 G ops of peak penfimance in
Single Precision Mode. However, for rst generation chips, the dble point performance

drops considerable from 25.6 to 1.8 GFLOPS [21].

3.1.3 The Element Interconnect Bus

All the components of the Cell B.E. chips are linked together using adir data rings
/ one address ring bus type interconnect called the Element Intesanect Bus (EIB). Each
of the data rings can have up to three concurrent data transferas long as their paths do
not overlap. Moreover, two of the data rings run clockwise and theest run counter clock
wise. Each ring can send and receive 16 bytes of data per cycle anduihs at half of
the processor frequency. A request is processed by checkinghé tequester has \credits"
available to use the EIB. These credits are the available spots on tbemmand bu er that
the EIB maintain for each requester. If a credit is found, the arbrator puts the request on
the EIB if the following is NOT true: if the request will traverse more han half of the ring
(a trip in an opposite direction ring will be more e cient) or if the new transfer interferes
with an already issued transfer [21].

A quick calculation put the maximum bandwidth of the EIB at 204.8 GB/s[21]. Even
though the sustained bandwidth can be substantially lower, applicains can still achieve
very close to the maximum, if careful programming is applied [21]. Finallyhe EIB has an
extra component named the Resource Allocator Management. Tht®emponent provides a

very limited Quality of Service to privileged software[21].

3.1.4 The Memory Subsystem and the Flex I/O Interface
The main memory of the system (which are Rambus XDR DRAM modules} ac-
cessed through two XDR I/O channels. Each channel can operatg to 3.2 GHz e ective

frequency (400 MHz octal data rate). Moreover, each of thenac communicate with eight
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banks with a maximum size of 256 MiB, for a total of 512 MiB of main menmmga Writes
that are between 16 and 128 bytes can be written directly to main mery. However, writes
that are less than 16 bytes require read-modify-write operation3 he read and write part of
these operations are of higher priority than normal reads and was since the read-modify-
write operations have a smaller number of hardware resources @s) compared to other
memory operations.[21].

Finally, the Cell Broadband Engine (C.B.E.) system interface is takenare by the
Flexible 1/0O interface. This interface is organized into 12 unidirectioal 8-bit wide point to
point lanes. Five of these lanes are inbound and the rest are outol These lanes can be
con gured into two logical interfaces named FlexIQ0 and FlexlO_1. Moreover, the number
of transmitters and receivers for each logical interfaces can benagured by software during
the C. B.E. Power-On Reset sequence. Moreover, the FLEXIO can be con gured for a
higher input / output bandwidth than the other one. This interface is the only interface
that support both coherent and incoherent communication protools. Because of this, the
FLEXIO _0 is usually used to connect with other CBE chips. A typical con guraon of the
Flex 1/0 interface has a raw bandwidth of 35 GB/s for outbound and25 GB/s inbound
[21].

All these components form the Cell B.E. chip. The PPE, the SPE andp some
extent, the EIB are visible to the programmers through di erent irstructions. This allows
the programmer a deeper control to the hardware, but it is also aiftile ground for bugs.
Nowadays, the Cell processors are given as a example of systehad are a challenge to
program[21]. This is the reason why a large part of the Cell communitig dedicated on
creating e cient frameworks which increase its programmability. E orts like the Data Com-
munication and Synchronization (DaCS) and the Accelerated LibrgrFramework (ALF)[14],
the CellSs[10], and single sources compilers from IBM and severalesthbompanies[74]; con-
centrate on giving APIs to increase the usability of the Cell chip. M@ information about

these approaches is given in chapter 7.

52



© 00 N o o b~ wWw DN P

o N o o B~ W N PP

3.2 Programming Models

Given the frameworks and its raw computational power, the Cell ahitecture has
become a staple on multi core architectures and it brought hetegeneous computing to a
wider audience. Currently, this architecture is used to power ond the top ten fastest super
computers in the world; IBM's Roadrunner located in Los Alamos Natiwal Lab. Thanks
to all of this, one of the major areas of interest for the Cell comnmity is the development
and porting of the \classical" parallel programming models, such asi¢ Message Passing

Interface (or MPI) and OpenMP .

3.2.1 OpenOPELL and OpenMP

Listing 3.1: OpenMP Example

#include <stdio.h>
#include <omp.h>
int main()f
#pragma omp parallel
f
printf("Hello, _world!!!");
g
return O;
g
Listing 3.2: MPI Example
#include <stdio.h>
#include <mpi.h>
int main()f
MPI _Init(&argc, &argv);
printf("Hello, _world!!!");
MPI _Finalize ();
return O;
g
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According to a recent study, the parallel programming landscape msuch skewed.
Ninety percent of scienti ¢ parallel applications are written using MP and around ten per-
cent are written using OpenMP[47]. This leaves less than one percewitten in a plethora
of other parallel programming languages. One of the characteitd of these parallel lan-
guages is that they are relatively easy to use and have a very coeciet of constructs
to build parallel applications; even though their semantics might be ietrpreted in di er-
ent ways and create confusion. MPI is the de facto parallel programing standard for
distributed computing. As MPI's hame suggests, it uses the condepf messages to pass
information between di erent memory spaces. Such memory spacare isolated from each
other and a given process can have direct access to a reducedadehem (usually only
one). Thus, the messages provide the only means of communicasidretween two or more
processors that reside in distinct memory spaces. [52]

MPI consists of a group of API calls and a runtime system to distribw@ the tasks
to the di erent computers. The API can be roughly divided in managment calls, com-
munication calls (point to point and collective) and data creation calls.Ilt has been said
that (by one of the creators of MPI: William Gropp) to start programming with MPI the
programmer only needs to know six basic API calls[52]. Although it prades a concise set of
function calls and it is relatively easy to learn, it still leaves many of theinderlying aspects
of parallel programming exposed to the programmer. For exampletogrammers still need
to explicitly manage the communication calls in pairs (for point to point ommunication)
since the lack of one of these results in a deadlock problem for thephgation 2. A \Hello,
World" example written in MPI is given by listings 3.2. There are two MPI Linctions (the
MPI _Init and MPI _Finalize functions) which take care of setting the MPI environment p
and tearing it down respectively. After the MPLInit function has returned, all the structures
are initialized across all the given processes. After the MPHinalize returns, the number of

processes running is unde ned.

2 there are non-blocking communication operations in MPI since versi® that seek to
alleviate this problem
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(a) Allowed 1 (b) Allowed 2

(c) Allowed 3

(d) Forbidden 1 (e) Forbidden 2

(f) Forbidden 3

Figure 3.2: Allowed and forbidden OpenMP states. Any closed and expsulated fork-joins
groups are allowed. This means that a child can never outlive its parteand the lifetimes
of threads cannot overlap between regions
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Conversely, OpenMP is used for architectures in which all the mempoispace is
(logically) visible to all processors. OpenMP is based on the fork-joaomputational model.
A master thread will \fork" a set of children threads and work with them up to a \join"
point in the future. No children (or any descendant of the masteriread) will continue after
the join point. Moreover, no fork and join group are allowed to ovéap unless one is from
a children of the fork and join group and it is completely enclosed by ¢éhouter fork-join
group. For a graphical representation of allowed and forbidden baviors, please refer to
gure 3.2.

OpenMP is available for C, C++ and FORTRAN. It consists of several pagmas and
runtime function calls which are designed to support Single Program Wtiple Data style of
programming, work sharing, synchronization between processd¢both mutual exclusion and
ordering based) and task creation and management[1]. Due to itsgggma based approach,
a serial code requires little change to make it run in parallel, as shown @xample3.13,
Although OpenMP has been praised for its simplicity, it has been alsoiticized for it.
It provides little control over scheduling and work distribution which might create very
unbalanced workloads and a noticeable decrease in performandeal$o has been accused
for being error prone due to some confusing constructs, i.e. usthe lock function calls,
lastprivate variables, etc[2]. However, due to its popularity, OpenM is a prime target for
porting across all the multi / many core architectures.

One of these project is the Open Source OpenMP on CELL (or OpenPELL for
short) developed at the University of Delaware [68]. Its main objeiet is to provide an open
source OpenMP framework for the Cell B.E. architecture. It is coposed of an OpenMP
toolchain which produces Cell B.E. code from a single OpenMP sourged; and a runtime
that hides the heterogeneity of the architecture from the usersThe framework provides
the following features: a single source compiler, software cachartjion / overlay manager

and a simple micro kernel.

3 However, to achieve high performance, a considerable amount efwriting might be
necessary
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Figure 3.3: High Level Overview of the Open OPELL framework. The iwro kernel will

take of scheduling the jobs, the single source compiler will createetbinary from a single
source tree, and the software cache and partition manager willka to emulate the shared
memory model required by OpenMP
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3.2.1.1 Single Source Compilation

Due to the heterogeneity of the Cell B.E., two distinct toolchains areeeded to
compile code for the architecture. This adds more complications tmalready complex
programming environment. In OPELL, the OpenMP source code is ad by the driver
program. The driver clones the OpenMP source for both toolchaired calls the respective
compiler to do the work. The PPU compiler continues as expected evereating a copy of
the parallel function (which is the body of the parallel region in OpenM) and inserting
the appropriate OpenMP runtime function calls when needed. The &Pcompiler has a
di erent set of jobs. First, it keeps the parallel functions and disards the serial part of the
source code. Second, it inserts calls to the SPU execution handldegcribed in the next
section) and its framework to handle the parallel calls and OpenMP ntime calls. Third,
it inserts any extra function calls necessary to keep the semantio the program. Finally,
it creates any structures needed for the other components dfet runtime system, links the
correct libraries and generates the binary. After this step is congted, the control returns
to the driver which merges both executables into a single one. Figuse4 shows a high level

graphical overview of the whole single source process.

3.2.1.2 Simple Execution Handler

This small piece of codedeals with the communication between the PPU and SPU
during runtime and how runtime and parallel function calls are handledSince each of the
SPUs have very limited memory, it is in everybody's best interest to ke the SPU threads
very light. To achieve this, the SPU thread will be loaded only with a miniral set of the
code (the simple execution handler and a set of libraries). This SPUsident code does
not include the parallel regions of the OpenMP code nor the OpenMRumtime libraries.
Since both are needed during runtime, they are both loaded or ex¢ed on demand, but by
di erent mechanisms. The parallel regions are loaded and executbg another component,

i.e. the partition manager, which loads and overlays code transpawty. The OpenMP

4 In this thesis, the terms \simple execution handler" and \SPU micro &rnel" will be
used interchangeably
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Figure 3.4: A high level overview of the single source toolchain

runtime libraries require another framework to execute. Under th framework, there exists
an extra command bu er per thread that is used to communicate keeen the SPE and
PPE frameworks. Moreover, there exists a complementary PPEribad for each SPE thread
is called the mirror or shadow threads, which services all the reqte$rom its SPE.

When a SPE thread is createt] the simple execution handler starts and goes imme-
diately to polling. When a parallel region is found by the master threagwhich runs on
the PPE), a message is sent to the simple execution handler with theeii er's ID and
its arguments' address. When it is received, the SPU calls the codethre parallel region
(through the partition manager). The SPU continues executing ta code, until an OpenMP
runtime call is found. In the SPU, this call creates a PPU request tthe command bu er.
This request is composed of the operation type (e.g. limit calculatiorier iteration space)
and its arguments. While the SPU waits for the results, the PPU callshe runtime function
and calculates the results. The PPU saves the results back to theo@mand bu er and

sends a signal to the SPE to continue. Finally the SPU receives the r1s&d) and reads the

5 which happens before the application code is run
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results. The SPU thread ends polling when the PPU shadow threadrgks a self terminate
signal, e ectively ending the thread's life. Figure 3.5 shows a graphiceepresentation of

the SPE micro kernel and communication framework.

3.2.1.3 Software Cache

As stated before, the SPU component of the Cell B.E. does not legaches (at least
not across the SPU local storages) or any other way to maintain leerence. This presents
a peculiar problem for the pseudo shared memory which Open OPELLlesentS. This
heterogeneity hindrance is resolved by the software cache. Thiarhework component is
designed to work like a normal hardware cache with the following clemteristics. It has 64
4-way associate sets and a cache line of 128 bytes (the most e disize for DMA transfers).
Its total size is 32 KiB and it has a write back and write allocate updatgolicy. As a normal
cache, each line possesses a dirty-bit vector which keeps trackhef modi ed bytes of the
line. When the e ective (global) address is found in the cache, a hit isrpduced and the
operation is performed, i.e. read or write.

In case the e ective address is not in the cache, a miss is produced.read miss
or write miss causes an atomic DMA operation to be issued to load thegsired value from
memory and may produce a write back operation if any of the bits in #dirty bit vector
are set. The write is achieved by a sequence of atomic 128 DMA tréars in a read modify
write-back cycle (in the same manner that a processor checks ako@riable using IBM's
Load Linked and Store conditional instructions[71]). The line is loadednd the dirty bytes
are merged with the loaded line. The merge process only touches thiy bytes and leaves
the clean ones untouched. Then, a conditional DMA put is issued. ilf returns true, the
line was correctly updated; otherwise the system tries again. Thase in which two lines are
trying to ush their dirty contents to main memory is shown in gures 3.6, 3.7 and 3.8. A
write back is initiated in case of a line eviction or when the cache is fortypushed. Thanks

to the atomic merging (which only writes the dirty bytes back to memry) used by the write

6 Open OPELL is designed to support OpenMP, which is a shared memasyogramming
model
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Figure 3.5: Components of the Simple Execution handler. It showsedhshadow threads
running on the PPU side for each SPU and the communication channelad ow between
them.
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back procedure certain problems, like the multiple writers and falséaring, can be avoided.
Currently, this component is being used to test the impact of weakenemory models on
multiprocessor architecture. A graphical overview of the softwa cache is presented by

gure 3.9.

Figure 3.6: Software Cache Merge Example Step 1: Before Write Rais Initialized

3.2.1.4 Overlay / Partition Manager
In the same manner that the software cache is used for data, tipartition manager

is used for code. This small component is designed to load code on dethand manage
the code overlay space when needed. When compiling the sourceec@ertain functions are
selected to be partitioned (not loaded with the original source coda the SPU memory).

The criteria to select these functions are based on the Function {C&raph, their size and

their runtime purpose, e.g. like parallel regions in OpenMP. Finally, thepartitions are

created by the linker, descriptive structures are formed and spal calling code is inserted

when appropriate. During runtime, the function call proceeds assual (i.e. save registers,
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Figure 3.7: Software Cache Merge Example Step 2: Thread 2 suctiethe update. Thread
1 fails and tries again
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Figure 3.8: Software Cache Merge Example Step 3: Final State ofttMemory Line after
Thread 1 nished

Figure 3.9: A high level overview of the Software cache structure
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load parameters, etc), up to the point of the actual call. Insteadf jumping to the function,
the control is given to the partition manager runtime and several e@coding steps are done
(which will be explored in Chapter 4). With information extracted fran the actual symbol
address, a loading decision is made and the code is loaded into memamat (if the code
already resides in the overlay). Then, the partition manager runtim passes control to the
function. When the function nishes, the control returns to the partition manager so any
cleaning task can be performed, like loading the caller partition if it wagreviously evicted.
Finally, the partition manager returns to its caller without leaving anytrace of its
activities. For a more detailed explanation of the partition manageruntime, its enhance-
ments and replacement policies, please refer to Chapters 4 and Sislthesis concentrates
on the partition manager component and its ability to support many prformance enhancing

methods. The rest of this thesis will discuss the partition manageramework in detail.
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Chapter 4

PARTITION MANAGER FRAMEWORK

The partition manager framework is designed to use both static alyasis and dynamic
techniques to optimize the load and replacement of pieces of codéda@ges in the toolchain
includes several switches to turn on and o the dierent partitioning schemes, a simple
partition algorithm and the creation of new segment types for the kder. The initial
framework consists of a simple trampoline that manages the overlay ers and make sure
that the code is loaded in the correct places at the correct times. et we explore the

changes that were made to the toolchain to support the dynamic tae of the partitions.

4.1 Toolchain Modi cations

Although this thesis concentrates on partitioning schemes and itsaimework, an
overview of the components that makes this possible is in order. Tlshanges on the tool
chain were not implemented by the author of this thesi$ but he patrticipated in the design
for all these components. This section covers, in a high level, the shigni cant changes
done to the GCC compiler, and the assembler and the linker from biriig version 2.18. A
high level overview of the role of each of the toolchain componentslisstrated by Figure 4.1.
As seen in this gure, the compiler analyzes the code and create tpartition by inserting
the necessary labels and directives. Next, the assembler genesahe necessary code for the
partition and translate the directives into their correct machine cde equivalent. Finally,
the linker assigns partition identi cation numbers to each partition, gather each partition

under a single executable and create the partition list.

1 Except for the changes that deals with the creation of the partitio graph
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Although this work is static, this can be done by dynamically reading t@ binary and
modifying certain parts of the calls. However, this work is beyond #hscope of this thesis.
In this way, certain information that is available during the static andysis (i.e. frequency

of calls in speci c control paths) can be inferred and used to optinezthe loading of code.

Figure 4.1: Toolchain Components and their respective roles

4.1.1 Compiler Changes

The GNU Compiler Collection (better known by its acronym: GCC[42]) is we of
the most famous compilers in the world. It is being used in many projecthat range from
compiling applications for embedded systems to compiling high perfoamce programs for
super computers. It is also Free Software which makes it the pasfecompiler to use when
the programmer does not have enough time to write his/her own. TEhversion used for
this thesis is 4.2 which has built-in support for OpenMP. The CELL B.E. prting of the
compiler was taken care by a third party and Dr. Ziang Hu from the Uversity of Delaware.

The porting process consisted of adding the correct architecturles and adding/modifying
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other les such that the SPE and PPE architectures are recognideand the correct code
is produced. Aside from the normal porting process, extra feaes were added so that
code partitioning can be supported. These features can be dividedo three categories:
command line arguments, pragma directives and code partitioning aigthms (implemented
inside the compiler). The rst two are explicitly presented to the prgrammers. The nal
feature is implemented in the internals of the compiler. This dictateshe way that code
is divided given the options provided by the former two. All three feares are further

discussed below.

4.1.1.1 Command Line Flags

Command line ags are used to turn on and o certain compiler featwes. In our case,
these ags control the partition behavior, the algorithm used andhe maximum number of
instructions per partition. The rst command line ag is the -fcode-partition. This option
tells the compiler that the code being compiled needs to be divided intagtitions using
the compiler's internal algorithms. In this mode, the compiler ignorethe pragmas that
the user added to the source code. The next ag Kcode-partition-manu This ags turns
o the compiler algorithms and uses the user pragmas to do the patibning. Finally, the

{param max-partition-insns=n limits the number of instructions per partition to n or less.

4.1.1.2 Pragma Directives

Two pragma directives have been added to the preprocessor. $hepragmas are
used to control the code partitioning when thefcode-partition-manu ag is in e ect. The
rst directive is #pragma partitions x funcnameq, funcname,, ..., funcname,. This
directive tells the compiler that the functionsfuncname,, funcname, all the way up to
funcname, reside in partition x. The x parameter de nes a distinct partition but it will
not necessarily be the actual partition identi cation number which isassigned by the linker.
You can imagine, the parameterx being the logical partition number and the assigned
linker id the partition's physical one. If a function is not present in ag of the partitioning
pragmas, it is assigned to the default partition (which always residés memory and is given

the identi cation number zero).
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The nal directive is #pragma keep _function funcname,;, funcname,, ...,
funcname,. This pragma tells the compiler that functionsfuncname;, funcname,, up
to funcname, need special attention when compiling. Usually, these functions r@s in
di erent source les and that is why this directive ags them as speml. As stated before, if
the compiler ag -fcode-partition is in e ect, all these macros are ignored. A code example
can be seen in listing 4.1. In this example, the pragma in line 1 selects tmain and the
bar functions to reside in partition zero and the pragma in line 2 putshie function foo in
partition 1.

As a nal note, in all C code examples, the main function prototype isle ned as
having an extra parameter, thespuid which contains the runtime identi cation number of
the running SPE. The other two arguments in this function prototpe represent a pointer
to the function arguments and a pointer to the environment paramters, respectively (both

located in the global memoryj.

Listing 4.1: Pragma Directives Example

#Hragma partition 0 main bar

#pragma partition 1 foo

#include <stdio.h>

void foo (void )fg

void bar(void )fg

typedef unsigned long long eat;

int main(ea.t spuid, ea.t argp , ea.t envp )f
foo ();
bar ();

return O;

2 Since the arguments resides outside the SPE local storage, a 64gwinter is passed
to the SPE to locate the arguments. The void pointer cannot be udeto pass these
arguments since in the SPE, this type represents four bytes (32d) instead of eight
(64 bits)
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4.1.1.3 Compiler Internals

When partitioning is enabled (either by adding-fcode-partition, or -fcode-partition-
manu), the compiler calls its partitioning function. This function behaves intwo di erent
ways according to the options passed to it (either by the command &narguments and /
or by the directives). If manual partitioning is enabled, it collects tle functions and groups
them into partitions based on the pragmas that it nds. In case thathe generated patrtition,
created by either method is greater than the side of the allocatedagition memory, the
runtime prevents its loading and gracefully quits.

If automatic partitioning is enabled, it goes through several stepdn the rst step,
it creates a partition for each function. Next, it approximates thetimes that a given code
runs. This is done based on the number of basic blocks that each ¢tion has and if they
are in a loop or not. In this way, the cost matrix is created. The coshatrix a square matrix
that have as many rows as functions have been declared in the pr@m. Elements in this
matrix represent how costly (based on the basic block estimatedntime information) is to
call a descendant patrtition.

Next the elements of the cost matrix are merged according to thetosts. Let say we
have an element which calls elemenf with a cost x. In case that the size of + the size of
] is less than a speci ed threshold (e.g. maximum size of a partition undthe framework)
and the costx is the largest in that row, the rowsi and | are merged. Under this process,
two complete rows are merged and one of them, plus its corresporgcolumn, are deleted
from the matrix. When two rows are merged, the children's costs drthe rows' sizes are
added. This process continues until the algorithm have exhaustedl the children and/or
the maximum threshold has been met for each row. This ensures ttiae number of inter
partition calls are minimized.

After the compiler has nished creating the partitions, it generate assembly code.
When partitioning is enabled, the resulting code includes several assly directives that
guides the assembler to produce correct machine code. Thesedives are inserted when
needed, as when calling a function in another partition; or to identifya section that holds

the partitioned code. Table 4.1 shows a list of the new assembly direets.
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Table 4.1: Overview of New Assembly Directives

Directive Description

Jpartition pn | De ne the next code section to belong tqg
partition pn

.pm caller The following function call might be inter-
partitional

Jibcallee The following function call will always tar-

get partition zero
funcpointer | The following load or store loads a functior
pointer. Thus, DO NOT clean the upper
15 bits.

4.1.2 Assembler Changes

After the assembly code was generated, several new directiveg de seen in the
code. The rst one depicts a new section in which a given function rides. This directive is
Jpartition pn wherepn is a distinct identi er for the partition. This directive are inserted
into the header of a function call replacing thetext directive. Functions that are assigned
to .text are going to reside in partition zero and they are always resident in mery. All
functions belonging to a partition have the sam@n across all their de nitions.

The next directive is .pm caller . This directive is placed right before a (or a
suspected) inter-partition call. Thecaller parameter denotes who is the current functioh
This directive generates some extra instructiofishat prepares a special set of arguments.
The linker dump in the Listing 4.2 shows the generated instruction fa given.pm directive
and its associated function call. The instructions in lines 2, 4 and 5 sathe original values
of the three partition manager argument registers just below theurrent stack frame. Next,
lines 6, 8, and 9 set the partition manager arguments (o set in paition, caller and callee
identi cation numbers). Finally, the Partition Manager's call occursin line 10. The partition
manager loads the partition that contains the desired function. Ithe partition is already

there or the function resides in the default partition, then it adjuss the symbol address and

3 This might be redundant but makes changing the assembler easier

4 The number of extra instructions ranges from 6 to 10 according the branch instruction
that was used
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Listing 4.2: Linker dump showing the preparation of the partition maager parameters

7278: 24 ff cO0 doO stqd $80, 16(%$1) ; Save original

; values just
727¢c: 24 ff 80 di stqd $81, 32(%1) ; below the stack
7280: 24 ff 40 d2 stqd $82 , 48($1) ; limit

7284: 42 00 00 50 ila $80 ,0 ; Load the partition
; manager arguments

7288: 40 80 00 d2 il $82 ,1

728¢c: 40 80 00 51 il $81 ,0

7290: 31 0e 87 00 brasl  $0 ,7438 <PM> ; Call the
; partition manager

issue the call. If it is not, it initializes a transfer for the partition and proceed as before.

The next new directive is.libcallee and it is placed right before a call to a function
that resides in the default partition. The rationale for such directie is explained below.

Since partitions are highly mobile code, all accesses (e.g. loops anacfion calls)
inside of them are made relative to the current PC. The problem withhis approach is that
calling an external function (e.g residing in another partition) doesat work since partitions
can be moved to any position in the bu er. For partitioned calls, the prtition manager
takes care of the relocation of the call (by adding the correct oet to the symbol name
before calling it). This works for both partitioned symbols, as well asfunction residing
in the default partition since the Partition Manager will not relocate tinction's addresses
that resides in the default partition. Thus any call to the default patition will be handled
correctly. A nal type of call occurs when a function in the same pdition occurs. In this
case, no partition manager interaction is needed since the relativallcs su cient.

A question arises: since the partition manager (PM) can call both pgtioned and
un-partitioned code, why not let it take care of calling all the residenfunction calls? This
can easily be answered. Calling PM involves an overhead, which is anynd from 300

to 1000 of cycles Calling all the resident functions through the partition manager is a

5 depending if a transfer from an external device is needed
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waste of resources. Thus, thdibcallee directive was created to alleviate this problem.
This directive tells the assembler that the following call needs to be mda with absolute
addressing instructions (e.g. brasl in the Cell Broadband Engine)stead of relative ones
(e.g. brsl) since it resides in the default partition

The nal directive is .funcpointer . It is used for function pointers. It marks if a
load has a function pointer as its target and generates the cortemode to load it into a
register since the normal load instruction may omit the upper part fothe symbol. More
often than not, these function call types are called through theastition manager.

From the new directives presented here, three a ect the code rggration (.pmcall ,
Jibcallee , and .funcpointer ) and the other one (partition pn ) a ects where the gener-
ated ELF segments are placed. The directives that a ect code geration do this by changing
the instruction type (like in the case of.funcpointer and .libcallee ) or by adding extra
instructions and replacing others (likepmcall ). A code example that shows all the direc-
tives inside an assembly le is presented in Listing 4.3. Note that the tao bar (Line
19) does not have any directive above it. The compiler interprets itsaan intra-partition
function call. For all the calls that are in this category, it is safe to dhthem using the
relative instructions since they reside in the same patrtition (in this g, bar resides in the

same partition asmain ).

Listing 4.3: Assembly File showing the partitioning directives

.global bar
.text ; Resides in Partition zero
bar:
.funcpointer ; Assume that $3 is a func. pointer
ila $3 , bar
.global foo
.partition pl ; Function in Partition pl
foo:
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11
12
13
14
15
16
17
18
19
20
21
22
23

.global main
.text ;. Partition zero function
main :
.pmcall main ; Interpartitioned call
brsl $Ir ,foo
brsl $Ir ,bar ; No PM intervention necessary
.libcallee : Partition zero function call
brsl $Ir ,printf ; No PM intervention necessary

4.1.3 Linker Changes

Finally, the linker assigns the partition identi cation number (i.e. physcal id) to
each partition and assign their loading addresses and types. All pidon code regions have
their symbols resolved against the same address but their attribes are set to not loadable.
This means that if you have a symbofoo which resides at the beginning of a partition,
its address will be resolved to the same address as the symbal which resides at the
beginning of another partition. The reason for this is to generatene Position Independent
Code (PIC) code and partially resolve the symbol addresses. Tharption manager will
resolve the symbols according to where they are loaded during rime. Since the partition
are set to not loadable, they stay in the global memory while the regirogram is loaded
into the SPE local memory. Moreover, each function symbol add® inside a partition is
appended with the enclosing partition id. The symbol format for a paitioned call is shown
in gure 4.2.

Next the linker creates a special structure called the partition list Wich contains the

binary o set for the partition regions together with their sizes. Ths structure is added to
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Figure 4.2: The format for a Partitioned Symbol

the nal part of the data segment of the SPE binary image.

When the binary image is created, the linker uses a linker script to allate the
required segments in the binary image and how they are loaded into mery. The partition
manager's linker script modi es the binary image as shown in gure 4.3The new image
has both the partition list and the overlay area added to it. The ovday area (or partition
bu er) is allocated after the interrupt table in the SPE memory and itis from where the
partition code is loaded and run.

Changes in the assembler and linker were done by Jiang Yi from the idersity of

Delaware.

4.1.4 Discussion and Future Work

All these e orts serve to provide the static support for the parition manager. They
are essential components that helps to reduce even further timepact of the framework with
a little bit of static analysis. The following is a list of current limitations and bugs that this
framework exhibits. No toolchain component o ers section protéion. This means that is
very possible for a given section (partition) to overwrite the contas of others. However, the
library protects against partitions that are too big for its bu ers. Thus, partition loading
does not overwrite program sections. Nevertheless, it is possibte the user program to

corrupt itself.
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Figure 4.3: The normal and enhanced binary image for the Partition Bhager. The TOE
segment is a special segment used for the interaction between #RRE and SPE binaries.
The CRTO represents the entire C runtime code

Because of the highly mobile nature of the partition, debugging inforation is ren-
dered useless. Thus, debugging tools should be used with a grain @f sr not at all.
However, the debugging tools for the SPU have not reached widecaptance. Nevertheless,
an enhancement to the debugging format (DWARF at the time of thisvriting) are possible
and future work will concentrate on it.

Some compiler optimization that optimized function calls should be avoad since
they might bypass the correct call to the partition manager and gvent the correct loading
of partitions (i.e. -fno-optimize-sibling-cally. The solution to this involves the addition of
prologues and epilogues to each function call. This is a similar approacsed to implement

the LRU policy presented in section 5.1.1.4.
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These changes produces a binary that loads a stripped down pragr (without the
partitioned code) plus any necessary libraries (this includes the gdion manager) into the
Cell's SPE memory. The next chapter explains the partition manageits extra structures

and its initial implementation.

4.2 Partition Manager and Its Framework

At the heart of the partitioning framework lies the partition manage. This function
is the one in charge of loading, correctly placing and, in general, maag the overlay space
and the partitions during runtime. The main di erence between this sall framework and
the GCC overlay framework is that it can manage the partitions dynaically, i.e. it can put
partitions anywhere in the overlay space. The idea behind the pariith manager is similar to
the way that the instruction cache and the I-TLB works on super@alar architectures. Since
many-core architectures have these features reduced or elinied the partition manager
is an acceptable replacement for these methods. This chapter ciéses the ideas behind
the partition manager and their dynamic management of the overlagpace. This section
concludes with the implementation of the partition manager on a mangore architecture,
the Cell Broadband Engine. However, there is a certain terminologthat needs to be

introduced in the next section.

4.2.1 Common Terminology

A function can have two types of states: temporary and permane The concept of
state under this framework is equivalent to registers. The permant state of a function is
composed of the information that changes due to Partition manag@nteraction and must
be preserved across the function call. On the other hand, the tporary state is composed
of all the registers that are expected to be used by the calling fuian. If unsure this can
represent the entire register le. However, there are some gulohes that can be followed. If
all partition manager's callees are known, the register usage canfoand and an upper limit
of the number of registers to save can be calculated. Moreoveonee scheduling \tricks"

can be used when writing the partition manager to reduce the numbef used registers.
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The di erence between the temporary and permanent states is ¢ir lifetime. The
function's permanent state needs to be saved across its lifetimehdy are usually saved into
the partition related structure. On the other hand, the functioris temporary state needs
only to be saved and restored during certain areas of the partitiamanager code. Thus, the
space used for the temporary state can be reused across dirgrpartition manager calls.

The partition manager requires a small number of parameters passto it. Moreover,
one of these parameters must be eallee savedso the function can be called. Please be
aware that two of the partition argument registers are considedetemporary state and the
other one is considered permanent.

Next, a high level introduction to each partition manager and its comonents is

introduced.

4.2.2 The Partition Manager

The main objectives of the partition manager are to ensure that #hcorrect function
is called and that the state is correctly passed between the di erefunction calls. Given a
group of partitions, i.e. a code's section which were created by therapiler as independent
\codelets"®. When a partioned function is called, the partition manager acts asteampoline
between the caller and the callee. A trampoline under this framewoi& de ned as a ghost
function which will do its work without leaving any visible traces of its ativities. The
current framework depends on four structures. Some of thenneacreated by the compiler,
while others are created and maintained during runtime. The majoromponents of the

partition manager can be seen in Figure 4.4.

4.2.2.1 The Partition List

This structure is created by the toolchain, more speci cally by its linkr (explained
in 4.1). It consists of two parts which de ne the partition o set on the le and the partition
size. Moreover, the patrtition list resides in the computational elemelocal memory; usually

just after the program's data section. Under this framework, aautition is de ned as a set

6 a function without unstructured goto's
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Figure 4.4: A Partition Call showing all major partition manager compaents

of functions for which their code has been created to be Positiondependent Code (PIC};
thus they can be moved around the memory as the framework seesThe actual partition

code is not loaded with the program, but left on the global memory dhe machine. The
partition o set's part of a list element shows the o set (in bytes) from the binary entry point.
In other words, the location of the partition in global memory is giverby the addition of
the program entry point plus this partition o set. Finally, the size section of the entry
contains the size in bytes of the partition on the memory image. Undehis model, each
of the partitions are identi ed by a unique identi er that index them into this list. When
a partition is required, the element is loaded using the partition list infonation and the

correct bu er state is set before calling the function.

” This refers to code that was created especially to run in/from any emory location.
Shared libraries are usually of this kind.
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4.2.2.2 The Partition Stack

The Partition Stack is a meta-structure which records the calling divity between
partitions. It was designed to solve a very simple problem: how to n&tn from a function
call which was called from another partition?

By keeping the partition stack, the framework can know who was #hparent of the
current function call, load the partition back if it is required and savehe function state, i.e.
registers which must be saved across partition manager calls. Altgh the partition code is
de ned as PIC, when returning from a function call, the frameworkmust load the partition
back to its original position. If this is not the case then a large amourof binary rewriting
and register manipulation is needed to ensure the correct executiof the function. This
will result in a much greater overhead (almost linear with the size of #hfunction) and a

more complex manager with several dependent structures (i.e. ga&r memory footprint).

4.2.2.3 The Partition Bu er

The Partition Bu er is a special region of the computational local meory, in which
the partition code is swap in and out. It is designed to have a xed vakiper application,
but it can be divided into sub-bu ers if required. The sub-bu ers ca help to take advan-
tage of certain program characteristics (i.e. locality, frequencyf @all, etc) to reduce the
communication between the main memory and the manager. Moreoyé contains certain
state, like the current Partition index and the lifetime of the code in his partition; which is
used for book-keeping and replacement policies as presented inptea5. Its management
is taken care by the partition manager. A special note, this bu er isot called a cache

because other policies besides cache-like can be applied to it.

4.2.2.4 The Partition Manager Kernel

At the center of all these structures lies the Partition Manager. Tis small function
handles the loading and management of the partitions in the systeruring initialization,
the partition manager may statically divide the partition bu er so that several partitions
can co-exist with each other. It also applies a replacement policy tbe bu ers if required

(as discussed in chapter 5).
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Although, the partition manager exists outside the programmersiewpoint, it still
requires some information to be passed to it. The partition managéas argument registers
which are restored before the partitioned call is invoked. Howeveat least one of these
argument register must be classi ed asallee saved register on the architectural ABI.

Finally, a description of the partition manager calling a function is desibed below.

4.2.2.5 The Anatomy of a Partitioned Call

When compiling a partitioned code, code generation occurs as exgecdown to
the assembly phase, i.e. arguments are prepared and code forcfion calls are inserted.
However, the assembler generates a slightly di erent code for a rkad partition call site.
The saving and setting of the partition argument registers and theall to the partition
manager are inserted here. During runtime, when the partition mager is called, it saves
the function's temporary state and checks its arguments. Seahnthe partition manager
pushes the current partition ID and the function's permanent stee to its partition stack.
Next, the manager checks if the current call needs to be loadedibit already resides in the
local memory by checking the partition indexes that reside in the p#tion bu er against
the partition index of the function call. There can be three types otalls. The rst type
involves functions which do not reside in the partition bu er becauséhey were loaded with
the binary image at the beginning. These functions have the partitioindex of zero and no
dynamic relocation is made on them. The second type of function c&lwhen the function
is already present in the partition bu er. In this case, the relocatia is made by adding the
dynamic entry point of the bu er to the function address. Finally, the third case is when
the function is in a partition but it does not exit in the partition bu er. In this case, the
relocation takes place as before, and a load is issued for the givemtigan.

After the given partition is found (either it was there or it was loadegl and the
partition bu er state is updated, the function state is restored ad the function call is
invoked. The callee saved argument register is used to call the function. The rationale
behind this restriction is that the framework needs at least one feeregister to call the

function and that if the callee function uses this register, the furion (according to the
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ABI) saves and restores this register accordingly. When the futh@n returns, the partition
manager continues its execution to ensure that the return pathfahe function is restored.
After saving the function's temporary state, the partition mana@r pops up its stack and
compares the current partition index with the returning partition index. If they di er then
the correct partition must be loaded and the partition bu er state must be updated. After
the return address has been validated, the function state and argument registers are
restored to their original values and the partition manager returs.

In this way, the partition function call behaves like a ghost trampolie which ensure

that the partitions are available in memory at any point in time.

4.2.3 Cell Implementation of the Partition Framework: Vers ion 1

This section describes the changes required to implement the paiditing framework
under the Cell Broadband Engine. For the changes on the toolchaside, please refer to
4.1. The kernel of the partition manager was written in assembly topdimize register usage
and depends heavily on several structures which implements theiinework components
described above. On this version, the partition bu er is not furthe subdivided so the

replacement policy is trivial.

4.2.3.1 Partition List Structures and Variables

The variables associated with the partition list component of the frmework are de-
ned in the linker script that accompanies the toolchain or in the streture handle of the
binary image (provided by thespuhandlet structure data type). The variables declared in
the linker script are the __partition _list and __partition _size which represent the address
and the size (in bytes) of the partition list. As mentioned before, tese variables are ini-
tialized and loaded by the linker at the application linking time. The partiion list location
are at the end of the data section of the new binary image and it hasmmaximum size of
512 bytes. Under this con guration, the framework can supportip to thirty two distinct

partitions.
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4.2.3.2 Partition Stack Structures and Variables
The Partition Runtime Stack is represented by a structure of theyipe r_stack The

C structure de nition for this data type is given by listing4.4

Listing 4.4: A Partition Runtime Stack Node

typedef struct __r_stackf
short int partition _id; Caller PID
part_man_t rgx _storage [2]; Function Permanent Storage

struct __r_stack next; To the nextentry

g r_stack; A Stack node

A node in the stack is created every time that the partition managers called. A
node in this structure has the partition index of the current workig partition and storage
big enough to allocate data that must survive across functions wiidhe framework refers
to as PM permanent statewhich are explained in section 4.2.1. A node on the stack is pop

when the function returns to the partition manager after doing itswork.

4.2.3.3 Partition Bu er Structures and Variables

As with the partition list, some of the partition bu er variables are dened in the
linker script. However, the bu er also has state which are framewk variables. Although
the bu er is assigned by the linker script, the allocation can be doneithh any type of
memory allocator (e.g. malloc) and the bu er variable can be rewritte. The two variables
de ned in the linker script are the _bu er and the _bu er _size which de ne the bu er loading
address and the bu er size in bytes.

Another partition bu er variable is the current_partition variable which contains the
active current partition that resides in the SPE local memory. Undethis implementation,

only one bu er is allowed to exist.
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4.2.3.4 Partition Manager Support Structures, Variables a nd Calling Proce-
dure

The partition manager uses all the variables mentioned before andicasome of its
own to the framework. Under the CBE implementation, the functiots permanent state is
represented by two registers: the linkage register which contaittge original return value of
the function and the partition argument register's original values.This register is used to
call the function from the partition manager. As the partition manaer does not change the
function stack in any visible way or the environment, the stack poimr and the environment
variable are not part of the function's permanent state. On the dter hand, the temporary
state is composed of all the registers that are expected to be dday the calling function.
In the initial versions of the framework, this represented the ek register le. However,
we used some tricks (besides smart scheduling) that are useful fieducing the size of the
temporary state.

To reduce the temporary state, the partition manager must knowll the registers that
are used. Although this might seem trivial, the partition manager daenot have any control
(or even knowledge) on the registers used in its library calls (i.e. mepys main memory
transfers, timing functions, print statements, etc). To overcme this obstacle, the Cholo
libraries were created. These libraries provide an API for commonrfations that deals with
memory copying and transferring, timing and software based intempts. The advantages
of these libraries is that the PM writer knows all the registers that ee used in them (since
he has access to the source code and object code) and can obntreir allocation. Most
of the functions in the Cholo library are based or copied (with minimallanges) from one
of the standard implementation of such functiorfs Thanks to this extension, the size of
temporary state can be reduced from 1.25 Kilobytes to 352 bytes only. During a paiitin
manager call, only one temporary state can exists. The function'smporary state is saved
in an array called theregister_storage

An important point to make here is that since the function stack andthe data

8 e.g. the memcpy in the Cholo libraries is based on its implementation in tH@NU C
library with minimal changes.
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segments resides in the same at memory in the SPE memory and tlkeis no penalty (or
benet) to access the stack versus normal SPE memory, all theafnework variables are
declared global so that the stack pointer is not modi ed. Finally, theoriginal values of
the argument registers, which are de ned to be the registers 881 and 82 in the CBE

architecture, are saved just beyond the original function's st&ddrame.

4.2.4 A Partitioned Call on CBE: Version 1

In the section 4.2.2.5, a high level overview of how a partitioned call isade was
presented. This subsection presents how a call is invoked when ming on the CBE version
of the framework. Please note that this is the basic framework ohé partition manager.
Advanced frameworks built upon this one are explained in section 5.

Before the partition manager is called, registers 80, 81 and 82 arkled with the
partition manager parameters. These register original contentsre saved just below the
current stack frame. After the parameters have been prepatethe partition manager is
called. The manager saves the function's temporary state which indes the original values
of 81 and 82 before doing anything else. Next, the partition identiation number for the
new partition and the function address are decoded. When decodithe partition id, the
caller's partition id plus the function's permanent state (i.e. registeB0 and the link register)
are pushed into the partition stack. In case that the callee's partibn id is zero or is the
same as the current partition id then decoding returns a value of me which means do not
load.

If a new partition needs to be loaded, then decoding returns the gdion id of the
new partition and updates the current partition variable. The decding for the function
symbol consists of adjustments made to the symbol address. stated in section 4.1, the
symbol of a function that resides in a partition consists of the o gefrom its partition start
and its partition index on the upper seven bits. During symbol decaulg, the bu er's o set
is added to the symbol (i.e. o set) without the upper seven bits (with contains the symbol
partition's index). This creates an absolute function pointer. Howeer, if the symbol resides

in partition zero, nothing is added to it because the symbol address assumed to be the
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absolute address.

After the index is decoded, the partition is loaded. Afterwards, th transient state is
restored. The function is invoked using the register 80 This whole process is depicted by
the owchart in gure 4.5. After the function returns, the transient/temporary state'® are
saved. At this point, the partition stack is popped. This loads regigr 80's original value
and the link register with the original return address (back to the aller)!! in a temporary
holder. It also pops the partition id from the caller. Since the targebf the link register
might be in a partition, the partition manager needs to check the paition index from
the caller against the current partition. If the indexes are not thesame then a transfer is
issued to load the correct partition and update the current partion variable. After this,
the partition manager restores the transient and the permanerdtates for a nal time and
returns. A owchart of this process is given by gure 4.6

A major observation can be made. The partition bu er might be suldivided so that
it can hold multiple partitions at the same time. In this way, several cde features and
characteristics can be exploited to improve performance. An extgion to this design is to
dynamically divide the bu er and then manage each of the sub-bu eas a distinct partition
bu er. This includes adding several variables to the framework andeplacing policies on

the sub-bu ers.

9 at this point, registers 81 and 82 have been restored already toeih original values
10 minus 81 and 82
11 The last value that the link register had was inside the partition managy
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Figure 4.5: A Flowchart of the rst section of the partition managercall. The logic ow of
the initial section of the partition manager kernel. It checks if the prtition is loaded and if
it is not, loaded and call the function
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Figure 4.6: A Flowchart of the second section of the partition manag call. The logic ow
of the return part of the partition manager kernel. It checks if tke callee partition still exists
in memory, if it is not, load it. Return to the caller afterwards.

88



Chapter 5

PARTITION MANAGER ENHANCEMENTS

In its original form, the partition manager wastes many opportuniies to reduce the
number of long latency operations and the overlapping of computiah and communication.
This chapter explores the advantages and disadvantages of eemt classical hardware /
software optimization techniques when applied to the framework.

We continue to explore the partition manager space by dividing the eviay / bu er
space into di erent sub partitions and then applying several algoritms to reduce the number
of long latency operations in many scenarios (cache-like versus-fe&ching schemes versus

victim cache).

5.1 The N Buer: The Lazy Reuse Approaches

All partition manager components were explained in the Chapter 4. divever, as
observed in the last paragraph of that chapter, the partition buer can be broken down into
sub-bu ers. This opens many interesting possibilities on how to maga the sub-bu ers to
increase performance. Even though this area is not new, thesehtriques are usually applied
in hardware. This chapter shows two hardware bu er managemertechniques applied to the
partitioning framework. The rst one is the simplest one in which the ln er subdivisions
are treated as a FIFO (rst in rst out) structure. In this conte xt, this technique is called
Modulus due to the operation used to select the next replacement. The sed one is based
on one of the most famous (and successful) cache replacemenicpes: Least Recently Used
(LRU). This section describes both techniques and their implemertian in the partition

manager framework. However, a look inside the N Bu er approach is order.
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5.1.1 The N Bu er Approach

Under this approach, the bu er is broken in N pieces and all of themra managed by
the partitioning framework. Since there are many sub-bu ers toedect from, a replacement
technique is placed into e ect to better utilize the bu er space. Thistechnique refers on
how to choose the next sub-bu er when a new partition needs to beaded. Moreover, the
framework behaves slightly di erent when loading the partition. Theframework can either
take advantage of reuse (lazily reusing the already loaded partitishor actively loading
them into the bu ers. In this section, we deal with lazy reuse techiques. However, the
framework is extensible enough to add other features if requireBefore talking about the
techniques that we are using, we should take a look on how partitiorgrthe partition bu er

a ects the framework components.

5.1.1.1 The Partition Bu er

The partition bu er is aected by adding an extra state. Each subbu er must
contain the partition index residing inside of it and an extra integer Ve to help achieve
advanced replacement features (i.e. the integer can represengtiine for LRU or the next
partition index on a pre-fetching mechanism). Moreover, the paition that resides in local
memory become stateful under this model. This means that insteauf just being loaded
and not-loaded, now they can bactive, in-active, evicted or evicted with the opportunity of
reuse For a description of the new states and their meanings, pleaseeefo table 5.1.

Every partition begins in the evicted state in the main memory. When a call to a
function in that partition is issued, the partition is loaded and becomgactive. From this
state the partition can becomein-active, if a new partition is needed and this one resides
into a sub-bu er which is not replaced; back teevicted if it is replaced and it doesn't belong
to the return path of a chain of partitioned function calls; orEvicted with an Opportunity
to Reuse in the case that a partition is kicked out but it lies on the return pathof a chain
of partitioned function calls. An in-active partition may transition to evicted and EWOR
under the same conditions as an active one. AEWOR partition can only transition to an

active partition or evicted if the application requires more memory (see 5.2.1
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Table 5.1: The Four States of a Partition

| State | Location Description |

Evicted | Main Memory | Partition was not loaded into local
memory or it was loaded, evicted
and it will not be popped out from
the partition stack.

Active | Local Memory | Partition is loaded and it is cur-
rently in use

In-active | Local Memory | Partition is not being used, but still
resides in local memory

EWOR | Main Memory | Evicted With the Opportunity of
Reuse. This partition was evicted
from local memory but one of the|
elements of the partition stack has
its partition id and it will be used
in the near future.

These states can be used to implement several levels of partitionind\ concept
similar to victim caches in the superscalar architectures can be implemted for EWOR
partitions. Under this model, when a partition transitions to anEWOR state, a special
region of code is created dynamically and the partition is copied to it. Yén this partition
is needed again, it is copied back to the sub-bu er and its temporarstate is freed. In this
way, a load from main memory can be saved and the memory pressisealleviated since

the extra sub-bu er is allocated on demand.

5.1.1.2 The Partition Stack

When returning from a chain the partition function calls, the partition must be
loaded into the same sub-bu ers that they were called from. To aakwve this, the partition
stack node adds a new component which represents the assodabe er in which this
partition originally resided. When dealing with extra replacement policie another variable
is added to the partition stack node to save any policy information. Ais process is called

reallocation.
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5.1.1.3 The Modulus Method

The modulus method is the simplest one of the two lazy reuse methods. In this
method, the variable pointed to the next sub-bu er to be lled is updated using using a
First-In-First-Out (FIFO) policy. In this method, the oldest existing partition is always
replaced. The advantages of this method are that is very easy to plement since it only
requires a simple remainder (i.e. FIFO) operation to select the nextls-bu er. Moreover,
this method does surprisingly well in applications in which the code is no¢used that often,
i.e. partitioned calls inside loops. Nevertheless, since it does not rgoze reuse, a very
\hot"partition can be replaced before it is completely used. This mighcreate many extra
transfers which represents anywhere from dozens to thousandf cycles lost. Because of
this, the next method takes in consideration reuse and with this infmation; it decides the
next sub-bu er that is replaced. An inter partitioned call using themodulus methods goes
as follows. Save thé®M permanentand PM transient registers. Then decode the partition
id and the address. While decoding the partition id, push to the partibn stack (together
with the caller's sub-bu er id') and decide if the partition needs to be loaded. If it needs
to, calculate the sub-bu er in FIFO order. Update the sub-bu erarray, the next sub-bu er
variable and the current partition variables. When decoding the sybol, take the values of
the current sub bu er and the sub bu er size to ensure that the gmbol address is pointing
to the correct sub-bu er. After this step, the loading of the newpartition takes place. The
PM transient registers are restored and the symbol is called. After the functioeturns, the
PM transient? are saved and the partition stack is popped. This puts the contesitof the
PM permanentin a temporary holder. While the stack is being pop, the associated leu
and the caller partition id are checked. If the partition is in memory ad in its correct sub
bu er then no further action is needed. If the partition is still in menory, but not in the
correct sub-bu er, then the partition is copied to the correct sb bu er and the old sub
bu er is marked \available."If the partition is not in local memory at all then it is loaded.

Finally, all registers are restored to their original contents and t& function returns.

1 in the associated bu er variable
2 sans 81 and 82
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5.1.1.4 The LRU Method

The LRU method is based on the LRU method that is used in the cache systenis
this method, every sub-bu er has a counter that keeps track dfow many times this partition
is accessed. Meanwhile the rest of the sub-bu ers fade to zerohel'speed in which the sub-
bu ers fade is proportional to the number of completedl partitioned functions being used
in the program. Every time that a function is called, the current sukbu er gets a value. If
the function that is being called is in a partition then all sub-bu ers cainters are reduced
with the exception of the current sub-bu er. If a new partition is reeded, then a sub-bu er
is prepared by setting its counter to zero and changing the curresub-bu er and current
partition. When the function is called, the counter for that sub-buer is set.

Examples on how the framework behaves for both the modulus andRU policies
are given in listings 5.1 and gure 5.2 for modulus; and listings 5.2 and ge 5.4 for LRU.
The framework presented here uses two bu ers and the partitiographs for each listings are
presented by gure 5.1 and gure 5.3, respectively. The objectivef these examples is to
show how the framework states and components change over firegram execution under

both of these policies.

Listing 5.1: Source code for the 2-bu er example

#Hpragma partition 0 main

#Hpragma partition 1 f1 f4 1 and f4 resides in partition 1
#Hragma partition 2 f2  All others: a function per
#Hpragma partition 3 f3  partition

#pragma partition 4 f5

#include <stdio.h>

void f1() ff2();g

void f2() ff3();g

void f3() ff4();g

void f4() f printf("; P"); g

typedef unsigned long long __ea.t;

3 A chain of functions is considered to be a single completed functionder this concept
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15

int main(_-_ea.t spuid, __ea.t argp, --ea.t envp)f

f1(); Call all functions in a chain
return O;
g
Figure 5.1: Partition Manager Function Graph for the Modulus Examfe
5.1.2 Cell Implementation of the Partition Framework: Vers ion 2

To implement the replacement policies in the CBE, four variables weredded: an
array that holds the active and inactive partitions namedparts _on_spe; a pointer which
points to the active partition called tail and two extra variables addd to the partition
stack frame, namedas_count and associate_buer . The associate_buer is used to
save the sub-bu er in which the replaced partition used to reside.nlthis way, when the
function returns, the partition can be loaded (or relocated) to tk correct subbu er. The
as_count variable is used for the LRU policy to save the lifetime of the partition @ that
it can be restored later on in the execution. The modulus behavior iceomplished by
adding a variable which points to the next sub-bu er to be used. Thiwvariable is updated

by using the modulus formula on all sub-bu ers. This method has a lge requirement
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(a) Step 0

(b) Step 1 (c) Step 2
(d) Step 3 (e) Step 4
(f) Step 5 (g) Step 6
(h) Step 7 (i) Step 8

Figure 5.2: States of each of the partition manager componentsrass the function calls
provided by source code in listing 5.1 usingsthe Modulus replacementlicg



from the framework. It requires that somehow to keep track ofhie functions activities.
This is possible due to the pro le capabilities of GCC. Two new methodsra de ned,

__cyg_prole _func _enter and __cyg_prole _func _exit, and the compiler inserts calls to
these methods at the beginning and at the end of every function & in the application.

This might seem like a huge overhead for the application; however,gmmethods are in-lined
inside the application function and the exit method consists of an emypbody. In the

current implementation, the enter method just reset the counteof the current sub-bu er

to a xed value and decrement the other sub-bu ers' counters.

Besides having the extra pro ling methods, this method requires s@ other changes
to the partitioning framework. The most important one is the set ofcounters. These
counters are the base of the method and they are checked evénge that a new partition
needs to be loaded. The sub-bu er which is replaced is the minimum vaamong the
set of counters. The sub-bu er pointed by this value becomes theceptacle for the new
partition and the current sub-bu er. Please note that the minimumvalue may not be a
value but a set of them. Since the rst minimum is selected, it can pr&aade some reusing
opportunities especially if a partition is monopolizing the execution. Tis can be solved by
implemented a modi ed priority heap on top of the set of minimum valuesin this case, if
the minimum set stays stable during across many function calls thenhen a new partition
is needed, the set is treated as a FIFO. However, this FIFO replacéhe partitions based
on how long the sub-bu ers have been part of the minimum set (notdw long they have
been in memory). In case that the set is not stable, the replacemdrehaves pretty much
randomly. A sub-bu er counter fades a unit every time that a funton in another partition
is called. If any function inside of the partition is invoked then the sulbu er counter are
reset to the maximum lifetime value. As explained in section 5.1.1.2, thepition stack
must save the caller's partition id. In this way, reallocation and victim eching5.2.1 can be
supported. A good observation here is that replacement policieslpmapplies when calling
the partitioned function, not when returning from them. The rationale for this is that when
returning from the function, the addresses of the caller has beexed to the associated

bu er. Thus, it is easier (and less expensive) to load the partition ird that sub-bu er than
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to adjust all address in the caller with the new o set.

A partitioned call under the LRU method is similar to the one under themodulus
with the following di erences. During the partition stack push, the tra variable as_count *
is pushed with the element. Moreover, the sub-bu er to be repladeis decided according
to the minimum value of the sub-bu er array. When the function is céed, the sub-bu er
counter is set to the maximum lifetime value. The partition stack pop appens pretty
much the same way as the pop from any other method with the followgndi erences.
When checking the associated bu er, the associated count (i.as_count ) is checked. If the
partition is in memory and the associated bu er is correct, the asstated count is considered
to be stale and discarded. If the partition is in memory but resides in @ erent sub-bu er,
consider the associated count stale too and discarded it. The shb-er inherits the counter
from the old sub-bu er. If the partition is not in memory then use the associated count

with that sub-bu er. The rest of the partition manager call continues without any changes.

Both methods have their strength and weaknesses. The overte## the LRU method
is a big drawback, but sometimes it is needed when dealing with code ths heavily reused
(but in chains). Thanks to its simple implementation and light weight ovehead, modulus
performs well in some applications, but it has the disadvantage of ing disastrous when
dealing with applications that relies in code reuse. For a performancesults in a couple of

metrics, please refer to 6 for a complete discussion.

Listing 5.2: Source code for the 2-bu er example

#pragma partition 0 main

#pragma partition 1 a A function per partition
#poragma partition 2 b

#poragma partition 3 c

#include <stdio.h>

int c(int ff)f return (ff 1); g

4 to keep the sub-bu er counter
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16
17
18

int b(int ff)f return

ff)f

ff 8; ¢

int a(int

int Xx;

for (x = 0; x < 2; +x) f
ff = b(ff); g

c(ff);

Call the partitions in a loop

return

g
typedef unsigned long long __ea.t;
int main(__ea.t spuid,

a();

return O;

__ea_t argp, -_ea.t envp)f

Figure 5.3: Partition Manager Function Graph for the LRU example

The methods presented here are designed to reduce the numbeDMA transfers
between the partition calls. They take advantage of locality betweethe partition calls. In
the next chapter, several enhancements will be introduced thatlows further reduction of

DMA transactions plus support for new replacement policies.
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(a) Step O (b) Step 1

(c) Step 2 (d) Step 3
(e) Step 4 (f) Step 5
(g) Step 6 (h) Step 7

Figure 5.4: States of each of the partition manager componentsrass the function calls
provided by source code in listing 5.2 using the LRU replacement policy
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5.2 Partition Graph and Other Enhancements
This section concentrates more on further enhancements andol@cement policies
that further reduces the number of misses. In this chapter, wexglore a victim cache for

EWOR partitions, and a simple pre-fetching scheme for the partitiotou er.

5.2.1 Victim Cache

Introduced by Jouppi in 1990 [61], a victim cache is a small associativache between
the cache and its main re Il path. Under our framework, this is justa small bu er which
contains partition which are known to be loaded into the near futuréi.e. code involved in
a long function chainf. These partitions are called EWOR and they were introduced in
51.1.1.

A high level overview of the victim cache framework is given by gure.5.

Figure 5.5: Victim Cache Framework

The advantage of this cache is two-fold. As stated before, the sipf the partition

bu er is xed. Nevertheless the size of the victim cache is variable.t will allocates their

5 In the original paper, this small bu er would be called the cache missueer, but in
this thesis, we will refer to this bu er as a victim cache since EWOR péitions are just
victims of bad replacement policies
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entries dynamically and deallocate them according to use or need (eif the application
runs out of memory).

Dynamic entries are added between the partition bu ers and the ghal memories in
the SPE's heap. An entry in this area will consists of the code, its pion and sub-bu er
ids and a counter which counts its uses. When an EWOR patrtition is evex, the entries
are checked to see if the partition is already in the heap. If there is @evious instance
of the partition, its counter is incremented. If there is no instancef this partition, new
memory is allocated, the ids are updated and the code is copied over.

If the application uses the provided memory allocation wrappers (watioc and wfree),
they check if the heap has enough memory over to allocate to thepdipgation requested
data. If the dynamic allocation fails, the wmalloc function will tear dow the victim cache
framework and try to allocate the application memory region again.f the wrapper are not
used, the application will just return that it cannot allocate the menory without tearing
down the victim cache.

There is a drawback to this technique though. There is a trade-o &tween the
number of victim cache entries and the partition stack length. Sincee need to know which
partition are EWOR in the partition stack, the partition stack must b e traversed. However,
this is solved by using a mask to set the bit that represents the patibn identifying number.

This scheme can reduce the number of code misses and it will not irase the
memory usage unless it needs to. Another method to reduce the s@s is explained next

and it involves a static structure called the partition graph.

5.2.2 Prefetching

Prefetching is a very common idea used in most systems today. Unéleese systems,
they use compiler analysis, dynamic learning or locality ideas to prefét application's data
(data in this instance being code or data).

Under OPELL, prefetching is useful on predicting the next functio to be called dur-
ing a function chain. Although this has been analyzed statically (andast of our approach

uses a static structure)[81], the utilization of the partition bu er is dynamically assigned.
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In the following sections, we describe the creation of the partitiorrgph and how it ts into
our partition manager framework. The overview of the prefetchonp framework is given in

gure 5.6.

Figure 5.6: Prefetching Framework

5.2.3 The Partition Graph

When the static Call Function Graph (CFG)® is created inside our compiler, this
structure is saved for later use. When the linker creates the paion list, it is also saved.
Finally, the names of the functions in the CFG are searched in the syl table to obtain
their sizes. After the linkage has nished, all the information is broght together to create
the partition graph structure.

The partition graph is de ned asP G = V;Ey. The V represents the list of vertex

on the partition graph. A vertex contains its partition id, its size, itsweight and its loading

6 It is static because all possible paths are consider equally
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address. The nal parameter is ignored due to the way that the &mework behaves. The
Ew represents the list of edges weighted by the number of incident edgand its size.
When all the information is collected from the compiler, the CFG is reeated with
the sizes of each function. All cycles are kept intact except forlseeferential cycles (e.g.
one-level recursive functions). After this, the partition list is ovdaid on top of the CFG.
All edges that are inside a partition are deleted. The edge's weight ialculated by counting
the number of edges between two given partitions. The vertex's igét is calculated by the

number of incident edges to the vertex from other partitions.

Figure 5.7: Creating a partition graph given a piece of source code

Afterwards, the partition graph is created by using the edge's weigjin the adjacency
matrix of the graph and the vertex's weight inside inside the descrign of the partition.
The process of creating the partition graph is illustrated by gure .

During runtime, the partition bu er is lled by the called partition and it s children.
The algorithm to select the children can be modi ed to di erent con gurations. Subsection

5.2.3.1 presents an example con guration.
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5.2.3.1 Prefetching: Weighted Breadth First Fetch

When an patrtition load is activated (either by an initial load or a replaceent), the
replacement policy is activated. Under the prefetching scheme,dte exists two partition
types: the required partition and their children. When the requiredoartition is loaded, the
framework will sort its children by its vertex weight times the edge wght (parent to child).
Next, the framework loads theN 1 top children without interrupting the application.
In this case,N represents the number of sub-bu ers that the partition bu er an be sub-
divided into. If the assumption is correct, then the child becomes #required partition and
its children will be loaded accordingly to the previous rules. If the regred partition is not
in the bu er then the guess is wrong and the required partition musbe loaded again. Since
the children partitions are loaded in a non-blocking fashion, they caoverlap computation
and save time.

The sorting of the children is done before hand so it will not a ect pédormance. The
two parameters (the vertex's and edge's weights) contains infoation about the usability
of the partition code and its relationship with its siblings. A higher numier indicates that
they are more edges coming and going from the vertex and its childgether with both code
sizes.

Although this technique does not reduce DMA tra c, it overlaps the computation
and communication more e ectively and it can reduce misses by actlydoading the children
into the sub-bu ers.

All these techniques (the replacement policies and the victim cachesan be used

together to create a simple (yet e ective) task management sysn.

5.2.4 Dynamic Code Enclaves

Dynamic Code Enclaves or DYCEs are a side e ect of the usage of tpartition
manager and its techniques. Thanks to its compiler support, the de created for the
partitions can be loaded anywhere in the running application and by ug) the ideas from

the victim cache feature, code regions can be created on the .
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Since the partition manager deals with address and symbol resoluig) the branches
are intercepted by the framework and redirected to the corredasks. This redirection is
achieved by passing the partition id to the caller (which might reside inreother processor
altogether).

Finally, techniques like the lazy reuse and prefetching can be used éaploit the
inherent locality of the task.

In the next chapter, several overheads and experimental rdtsuare presented for all

techniques used for this framework.
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Chapter 6

EXPERIMENTAL TESTBED AND RESULTS

The partition manager framework uses a small suite of test progres dedicated to
test its functionality and correctness. The testbed framework isalled Harahel and it is
composed of several Perl scripts and test applications. The nestibsections will explain

the hardware and software testbeds and presents results fach of the test programs.

6.1 Hardware Testbed

For these experiments, we use the Playstation 3's CBE con guratio This means
a Cell processor with 6 functional SPE, 256 MiB of main memory, andd8GiB of hard
drive space. The two disabled SPEs are used for redundancy andstgoport the hypervisor
functionality. Besides these changes, the CBE processor has Hane facilities as high end
rst generation CBE processors. We take advantage of the timingapabilities of the CBE
engine. The CBE engine has hardware time counters which ticks at ser rate than the
main processor (in our case, they click at 79.8 MHz). Since they ararbdware based, the
counters provided minimal interference with the main program. Edcof the SPEs contains

a single counter register which can be accessed through our ownitighfacilities.

6.2 Software Testbed

For our experiments, we use a version of Linux running on the CBE, i.eYellow
Dog with a 2.6.16 kernel. Furthermore, we use the CBE toolchain vésa 1.1 but with an
upgraded GCC compiler, 4.2.0, which was ported to the CBE architaate for OpenOPELL
purposes.

The applications being tested include kernels used in many famous blkmarks.

This testbed includes the GZIP compression and decompression Bggttion which is our
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Table 6.1: Applications used in the Harahel testbed

Name | Description |
DSP A set of DSP kernels (a simple MAC, Codebook encoding, and
JPEG compression) used at the heart of several signal procegsin
applications.
GzZIP The SPEC benchmark compression utility.
Jacobi A benchmark which attempts to solve a system of equatior|s
using the Jacobi method.
Laplace A program which approximate the result of an integral using the
Laplace method.
MD A toy benchmark which simulates a molecular dynamic simulg-
tion.
MGRID A simpli ed program used to calculate Multi grid solver for com-

puting a 3-D potential eld.

Micro-Benchmark 1| Simple test of one level partitioned calls.
Micro-Benchmark 2| Simple chain of functions across multiple les.
Micro-Benchmark 3| Complete argument register set test.
Micro-Benchmark 5| Long function chain example 2.
Micro-Benchmark 6| Long function chain example 3: Longer function chain and reuseg.
Micro-Benchmark 7| Long function chain example 4: Return values and reuse.
Micro-Benchmark 8| Long function chain example 5: Victim cache example.

main testing program. Besides these applications, there is also a sétmicro-benchmarks
designed to test certain functionality for the partition manager. Br a complete list, please
refer to 6.1.

In the next section, we will present the overhead of the framewousing a very small

example.

6.3 Partition Manager Overhead

Since this framework represents an initial implementation, the main etric on the
studies presented will be the number of DMA transfer produced kgn speci c replacement
policy or/and partition feature. However, we are going to presenthe overhead for each
feature and policy.

The rst version represents the original design of the partition maager in which

every register is saved and the sub-bu er is not subdivided. The imgved version is with
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the reduction of saved registers but without any subdivision. Thenal sections represent
the policy methods with and without victim cache.

On this model, the overhead with the DMA is between 160 to 200 monitag cycles.
Although this is a high number, these implementations are proof of noepts and they can
be greatly optimized. For this reason, we concentrate on the nurabof DMA transfers since
they are the most cycle consuming operation on the partition manag Moreover, some of

these applications will not even run without the partition manager.

6.4 Partition Manager Policies and DMA Counts

Figure 6.2 and 6.1 show the relation between the number of DMA and émumber
of cycles that the application takes using a unoptimized bu er (savig all register le), op-
timized one bu er (rescheduled and reduction of the number of regers saved), optimized
two bu ers and optimized four bu ers. For most applications, thee are a correlation be-
tween a DMA's reduction and a reduction of execution time. Howevgefor cases in which
the number of partition can t in the bu ers, the cycles mismatch like in Synthetic case 1
and 6.

Figure 6.3 show the ratio of Partition manager calls versus the numbef DMA
transfers. The X axis represents the applications tested and thiatios of calls versus one,
two and four bu ers. As the graph shows, adding the extra bu es will dramatically lower
the number of DMA transfers in each partition manager call.

Figure 6.4 selects the GZIP and MGRID applications to show the advéage of
using both replacement policies. In the case of MGRID, both policiessgs the same counts
because the number of partitions is very low. In the case of the GZtompression, the LRU
policy wins over the Modulus policy. However, in the case of decompsen, the Modulus
policy wins over the LRU one. This means that the policy depends on ghapplication
behavior which opens the door to smart application selection policies tine future.

Finally, in Figure 6.5, we show that the victim cache can have drasticallg ects on
the number of DMA transfers on a given application (Synthetic cas®). As the graph shows,

it can produce a 88x reduction in the number of DMA transfers.
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(a) DSP (b) GZIPC (c) GZIPD (d) JACOBI

(e) LAPLACE (f) MD (g) MGRID (h) SYNTH1
(i) SYNTH2 () SYNTH3 (k) SYNTH5 (I) SYNTH6
(m) SYNTH7 (n) SYNTHS

Figure 6.1: DMA counts for all applications for an unoptimized one bier, an optimized
one bu er, optimized two bu ers and optimized four bu er versions
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(a) DSP (b) GZIPC (c) GZIPD (d) JACOBI

(e) LAPLACE (f) MD (g) MGRID (h) SYNTH1
(i) SYNTH2 () SYNTH3 (k) SYNTH5 (I) SYNTH6
(m) SYNTH7 (n) SYNTHS

Figure 6.2: Cycle counts for all applications for an unoptimized one har, an optimized
one bu er, optimized two bu ers and optimized four bu er versions

110



Figure 6.3: Ratio of Partition Manager calls versus DMA transfers

Figure 6.4. LRU versus Modulus DMA counts for selected applications

Figure 6.5: The victim cache comparison with LRU and Modulus policies
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Chapter 7

RELATED WORK

The concept of overlays has been around for a long time. They weexy useful in the
rst multi-users systems and in systems which has restricted mempoproblems. However,
advances in hardware and software technologies have relegatedm out of mainstream to
less visible areas of computing (i.e. embedded systems) [89]. Thereewe/o technologies
that displaced the overlay out of existence: dynamic libraries and wiral memory[32]. One
of the most famous early implementations of both concepts can muhd in the Multiplexed

Information and Computing Service (MULTICS)[12][28].

7.1 A Historical Perspective

Before virtual memory, programs were manually separated into gens of code and
data. These regions were loaded as required. This was prevalentyatems during the 1940's
and 1950's in which the memory hierarchy was composed of at leasbtyevels (permanent
storage and RAM). The rst virtual memory prototype was propced in [40] for the ATLAS
system. Under this system, the concept of address and memorgdtion was decoupled and
the address translation units were born. Virtual memory automatally partitions the code
and data into prede ned pages and loads them when needed. Stures like the Translation
Look-aside Bu er[36] were put into place to take advantage of thiecality of code and data
pages. Thanks for virtual memory, programs could use much motkan the available
physical memory and several of them can be run in the system as @&nshared fashion.
During the 1960s, the virtual memory concept spread like wild re. @mmercial systems like
the IBM 360/67[19], CDC 7600[43], Burroughs 6500[55] among oteemplemented virtual

memory. Of course, nowadays almost every general purposetaysuses virtual memory[33].
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Since then, there are several research e orts that concenteson optimizing virtual memory
for multiple threads, like the one that uses smart pre-fetching oninual pages based on
pattern of synchronized variables[63] and using di erent replaceat policies[9].

Virtual memory has severe limitations for real time systems. It is nadesirable for
performance sensitive applications. Moreover, programmers aoders cannot even hint to
the virtual memory system about the location of their program noin uence the size of the
paging required per function or code region[33] Our partition approach allows the user
hints for the overlay creation and the runtime can modify the size dhe code overlay bu ers.
This can change per application and even per code region which makeg approach ner
grained.

Dynamic (shared) libraries are functions which are loaded on demarahd are de-
signed to reduce the code image size. A way to implement these fuaos is to redirect
these calls to a special program (like the one pointed by the .inter segnt under the ELF
program) which manages a dynamic function table. This table's entseare function point-
ers that are populated by the special program. A function's entrpossesses a counter which
shows how many calls to this function call are in existence. When theunter reaches zero,
the entry can be reused. Consider that under this framework, éhfunction code is not
moved around, they just reside in global memory and they are agsed by each required
process. The table is shared across many processes and threhds require these func-
tions. This saves memory footprint since the code is not replicate@p. As shown before,
these frameworks will not consider the locality of the code and thewyill not replicate to
local memory (to reduce latencies) since they posses instructicaches and virtual memory.
These systems are not designed for many core as the partition nager is since it loads
code according to its usage to their respective local (near) memor

Finally, dynamic loading can load code on demand and unloaded it if nesasy

during the application execution. This allows for dynamic optimization ad bug xing

1 Some Operating Systems and Computers allows to modify the pageesimt this applies
to every application on the system afterwards.

2 However, the data sections for each function are replicated foah user
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without the need of restarting the whole system[93]. Moreover, it isommonly used to
implement software plug-ins for several service based programsliWeb servers[41] and
Instant messenger programs. Finally, the IBM/360 Operating sysms[4] line used these
feature for its I/0O subroutines among others. As before, this syem does not takes care
of locality and near memory issues because they were handled by tetual memory

subsystem. Under the partition manager framework, these issuare taking care by the

partition manager and it can decode the appropriate memory regido load the code.

7.1.1 The Embedded Field: Where Overlays Survived

As stated before, overlays and partitions survived in the embeddeeld. They usually
use classical overlays for code and other interesting techniqguesdata. Research presented
in [76] shows a dynamic approach for overlays for code. In this papa dynamic compiler
creates overlays according to the state of the memory. Moreoyé& automatically creates
entry points for each application. However, this framework doesohtry to optimize the
access patterns using locality or learned patterns as the partitiamanager does. Moreover,
this is for low end embedded systems. However, there is no reasdry whese ideas could
not apply to the computational engines of future super computsr

Another research presented in [56] shows how the concept ofrtagng plus dynamic
code compacting can increase performance by almost 50% for getkapplication (i.e.
SPLASH2[91]). It uses a clustering algorithm (at runtime) for basic lbcks very similar to
the one in used in the partition manager compiler. However, they doohuse any of the

locality opportunities for reuse like the partition manager does.

7.1.2 Data Movements in High Performance Computing

Finally, there is the concept of percolation introduced under the Hyid Technology
Multi-Threaded (HTMT) Architecture[49]. The HTMT project propo sed a highly con g-
urable multiple levels (in computational components and memory levglsit was proposed
at the end 1990 decades and incorporated many state of the adncepts and technologies.
The concept of percolation was introduced to better utilize resoces in such a machine.

It was introduced as the ability of migrate code and data regions ta$t memory for each
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component that needs it. It is called percolation because code / @ategions trickle down
the hierarchy towards the processing elements. Please do not fume this concept with the
percolation theory concept is mathematics that deal with the inteszonnectivity of connected
cluster in random graphs. An interesting research is conducted ingl [46] and [44]. They
implement semi automatic data movement in explicit memory hierarchéefor the Cyclops-
64. This technique is called \Tile Percolation” as it is the rst of its kind to introduce the
concept of data locales under OpenMP. Both this technique and thgartition manager can

be put together to implement a complete percolation engine if necasg

7.2 Programmability for Cell B.E.

There have been many attempts to increase the programmability irhé Cell B.E.
The most famous ones are the ALF and DaCS[14] frameworks ancetellSS project[10].
The ALF and DaCS frameworks are designed to facilitate the creahoof tasks and data
communication respectively for the Cell B.E. The Accelerator Librar Framework (ALF)
is designed to provide a user-level programming framework for pé® developing for the
Cell Architecture. It takes care of many low level approaches (likdata transfers, task
management, data layout communication, etc). The DaCS framewoprovides support for
process management, accelerator topology services and sdvdeta movement schemas.
It is designed to provide a higher abstraction to the DMA engine commmication. Both
frameworks can work together and they are de nitely a step foravd from the original Cell
B.E. primitives. They are not targeted to Cell B.E. application progranmers, but to library
creators. Thus, the frameworks are designed to be lower leveathexpected for an OpenMP
programmer.

The Cell SuperScalar project (the CellSS) [10], and later the Star§8oject[7], is
designed to automatically exploit the function parallelism of a sequeat program and
distribute them across the Cell B.E. architecture. It accomplishethis with a set of pragma
based directives. It has a locality aware scheduler to better utilizéhé memory spaces. It
uses a very similar approach as OpenMP. However, it is restricted task level parallelism

in comparison to OpenMP that can handle data level parallelism. Undeyur framework,
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the parallel functions are analogous to CellSS tasks and the partitiomanager is their
scheduler. Many of the required attributes of the tasks under @8S are hidden by the
OpenMP directives and pragmas which make them more programmable

There have been e orts to port OpenMP to the Cell B.E.. The most stcessful one is
the implementation in IBM's XL compiler[74]. The implementation under tte XL compiler
is analogous to the OPELL implementation with very important di erences. The software
cache under the XL compiler is not con gurable with respect to the umber of dirty bytes
that can be monitored in the line. This allows the implementation of novenemory models
and frameworks as shown in [17]. The other di erence is that the pé@tion manager under
the XL uses static GCC-like overlays. Under OPELL, the partitions an be dynamically
loaded anywhere in the memory which is not possible under the XL corig.

Finally, there is a plethora of work that creates new frameworks tincrease the
Cell B.E. productivity. Rapidmind introduced its high performance laguage that aims to
improve the productivity of the Cell B.E.[72]. It has data types desigad to mask the data
movement and a framework that move data across the computatial components according
to which function/data type is required. However, it does not havéhe functionality of more
mature languages like C and C++. Another e ort is the porting of R-Sream to the Cell
B.E. [65] from Reservoir Labs. It provides several data movemefninctions to coordinate the
application's behavior and performance. However, this approachssill low level compared
against an OpenMP implementation. Finally, we have graphical languag, like Gedae[66],
which aims to increase the usability of the Cell B.E. but at the cost of igpring certain

optimization opportunities. Moreover, this project is closed and @prietary unlike OPELL.

7.3 Future Directions

Another research direction worth taking a look is into Instruction Gche coloring as
represented in [81] and [54]. These research concentrates onist@nalysis of certain code
templates (i.e. loops, control statements, etc) to maximize theireuse in the instruction
cache. They are very powerful techniques that uses weights aating to the control struc-

ture involved, i.e. loops have weights equivalent to their number of itations, the if/else

116



condition will represent 50% of the total weight for each path, andwitch statements will
have 1 / number of cases per path. With these weights, function itgraph is created and

a coloring algorithm is applied to prevent con icts in the I-Cache.

7.4 Productivity Studies

Finally, we need to make a comparison between P3l and the Pittsburd’roductivity
study[15]. The study done in Pittsburgh was bigger and with more p#cipants and pro-
gramming languages (UPCJ[13], X10[35] and Java). Although they h@wmore man power,
they did not have the weight parameters, as P3l had, to represeexpertise.
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Chapter 8

CONCLUSIONS

Ideas presented in this paper show the trend of software in the macore age: the
software renaissance. Under this trend, old ideas are coming baokthe plate: Overlays,
software caches, data ow execution models, micro kernels, angoothers. This trend is
best shown in architectures like Cyclops-64[31] and the Cell B.E.'s SRHits. Both de-
signs exhibit explicit memory hierarchy, simple pipelines and the lack ofrtual memory.
The software stacks on these architectures are in a heavily stabé ux to better utilize
the hardware and increase productivity. This fertile research gomd allows the reinvention
of these classic ideas. The partition manager frameworks rise frahis ux. The simple
idea of having dynamic code regions is introduced in this thesis, in dience with regular
overlays, these partitions represent highly mobile code from whiclther framework can be
developed. In this thesis, the framework developed was to supp@penMP in a heteroge-
neous architecture. However, several research directions at#l open, such as a stronger
static analysis, building on mature research such cache coloring flecaches or dynamic
scheduling of code due to percolation constrains.

This thesis shows a framework to support the code movements heterogeneous
accelerators components. It shows how these e ort spans assoall components of the
software stack. Moreover, it depicts its place on a higher absttamn framework for a
high level parallel programming language. It shows the e ect of sesal policies dedicated
to reduce the number of high latency operations. This is just the @ikt of the road for
many designs. The future is bright but it will require the rebirth and ethinking of many
components. That is why | called this a software renaissance in whidhassical concepts

will be used in novel ways and applied to million of cores that the futurwill bring.
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