
CONCURRENCY AND SYNCHRONIZATION IN THE MODERN

MANY-CORE ERA: CHALLENGES AND OPPORTUNITIES

by

Juergen Ributzka

A dissertation submitted to the Faculty of the University of Delaware in partial
fulfillment of the requirements for the degree of Doctor of Philosophy in Electrical and
Computer Engineering

Summer 2013

c� 2013 Juergen Ributzka
All Rights Reserved

CONCURRENCY AND SYNCHRONIZATION IN THE MODERN

MANY-CORE ERA: CHALLENGES AND OPPORTUNITIES

by

Juergen Ributzka

Approved:
Kenneth E. Barner, Ph.D.
Chair of the Department of Electrical and Computer Engineering

Approved:
Babatunde Ogunnaike, Ph.D.
Dean of the College of Engineering

Approved:
James G. Richards, Ph.D.
Vice Provost for Graduate and Professional Education

I certify that I have read this dissertation and that in my opinion it meets the
academic and professional standard required by the University as a dissertation
for the degree of Doctor of Philosophy.

Signed:
Guang R. Gao, Ph.D.
Professor in charge of dissertation

I certify that I have read this dissertation and that in my opinion it meets the
academic and professional standard required by the University as a dissertation
for the degree of Doctor of Philosophy.

Signed:
Stephan Bohacek, Ph.D.
Member of dissertation committee

I certify that I have read this dissertation and that in my opinion it meets the
academic and professional standard required by the University as a dissertation
for the degree of Doctor of Philosophy.

Signed:
Fouad Kiamilev, Ph.D.
Member of dissertation committee

I certify that I have read this dissertation and that in my opinion it meets the
academic and professional standard required by the University as a dissertation
for the degree of Doctor of Philosophy.

Signed:
Xiaoming Li, Ph.D.
Member of dissertation committee

I certify that I have read this dissertation and that in my opinion it meets the
academic and professional standard required by the University as a dissertation
for the degree of Doctor of Philosophy.

Signed:
Kathleen Knobe, Ph.D.
Member of dissertation committee

ACKNOWLEDGEMENTS

After many years on this journey, I am finally closing another big chapter in

my book of life. I am excited by the new opportunities that are being presented as I

prepare to open the first in a series of brand new chapters, which I will fill with new and

amazing stories. Although this has been a huge step in my life I feel that my journey

is on the verge of truly beginning, and that the most important and precious moments

of life are still ahead of me. In the many years I have been in the USA, I have had

the opportunity to meet countless people from all over the world and learn more about

their di↵erent cultures. During this time all these people left a mark on my life and

the sum of all these little encounters defines me and the things I have accomplished

during these years. This dissertation is not only my work, but the sum of many people

that have supported me in a multitude of ways.

The foundation that made this research possible was laid by Fei Chen and Yuhei

Hayashi who created the initial emulation framework used during my dissertation.

Special credit must be given to Yuhei, who dedicated a great deal of time to adapt the

existing emulation framework to make it applicable to my research. I also owe Monty

Denneau much gratitude for making his IBM Cyclops-64 architecture available to us

and providing such a wonderful research vehicle.

Another great example that shines with their openness are Kathleen Knobe and

Frank Schlimbach from Intel. They provided me with their Concurrent Collections

software framework to jump start my research on a well-tested and supported software

platform.

I was standing on the shoulders of giants and this played a big role in completing

this dissertation, but people very often forget the little and small acts of kindness and

help which we get every day and they are equally important for our success. I would like

v

to thank all the sta↵ including Michael Davis, Karen DiStefano, Kathleen Forwood,

Kjeld Krag-Jensen, Debbie Nelson, Lydia Pagnotti, Jo Ann Rucker, Wendy Scott,

Deborah Whitesel, and many more.

During my time in the CAPSL research group I met many new colleagues (too

many to list them all here) and also new friends. Even though I haven’t worked directly

with everyone, I wish to extend my gratitude to all of them, because in one way or

another we all helped each other.

I also was very fortunate in the help I received from friends in reviewing and

advising me in my thesis research. Thank you Asia Dowtin, Aaron Landwehr, Joseph

Manzano, Sunil Shrestha, and Pamela Vovchuk for all your help.

I thank all the members who served on my committee for accepting the invitation

to counsel and support me in my endeavors. To Stephan Bohacek, Fouad Kiamilev,

Kathleen Knobe, and Xiaoming Li, I am thankful for your feedback, assistance, and

the time you invested toward helping me to complete this degree.

My advisor, Professor Guang R. Gao, gave me full freedom in my research and

work - a great privilege that not many graduate students receive and I feel honored

with the trust he put in me. Over the years I also learned many of the interesting

stories of his personal life and I really enjoyed the conversations we had. It is good to

know that there is a safe place to come back to if sometimes things don’t work out as

planned, and I will never forget that kindness.

My heart is trapped between two continents. When I am in the USA my

thoughts are with my family back home, and when I am at home I am missing all

my friends here. Although there is a huge distance between us I take comfort in know-

ing that they are thinking of me and loving me from afar. It is always good to know

that they are just a phone call away, which can bridge this vast ocean between us. I

received all I could wish for from my parents to support me on my current journey and

beyond.

vi

DEDICATION

This dissertation is dedicated to my parents, Helmut and Ute Ributzka,

for their limitless patience, love, and support.

vii

TABLE OF CONTENTS

LIST OF TABLES . xii
LIST OF FIGURES . xiv
ABSTRACT . xvi

Chapter

1 INTRODUCTION . 1

1.1 History of Microprocessor Architecture 1
1.2 Instruction Level Parallelism Wall . 7
1.3 Memory Wall . 9
1.4 Frequency Wall . 11
1.5 Power Wall . 11
1.6 Wire Delay Wall . 12
1.7 The Era of Many-Core begins . 12

2 BACKGROUND . 14

2.1 Hardware Synchronization Methods 14
2.2 I-Structures . 14
2.3 M-Structure . 15
2.4 Heterogeneous Element Processor (HEP) 16
2.5 Tera MTA / Cray XMT . 17
2.6 Tilera Tile Architecture . 19
2.7 Fine-Grain Asynchronous Programming and Execution Models 20

3 IBM CYCLOPS-64 . 22

3.1 System Architecture . 22
3.2 Chip Architecture . 23
3.3 Microarchitecture . 25

viii

4 FINE-GRAIN NON-STRICT SYNCHRONIZATION IN
HARDWARE . 28

4.1 Motivation Example . 28
4.2 Problem Formulation . 31
4.3 Extended Synchronization State Bu↵er (E-SSB): An Overview 32
4.4 SSB: A Recap . 33

5 DESIGN OF THE EXTENDED SYNCHRONIZATION STATE
BUFFER (E-SSB) . 37

6 IMPLEMENTATION OF THE EXTENDED
SYNCHRONIZATION STATE BUFFER (E-SSB) 39

6.1 Logic Resource Usage of the Extended Synchronization State Bu↵er . 46

7 E-SSB CASE STUDY: WAVEFRONT COMPUTATION 48

7.1 Wavefront Computation with Barriers 48
7.2 Wavefront Computation with Signal-Wait 49
7.3 Wavefront with Fine-Grain In-Memory Synchronization 49

8 THE ADVANTAGES AND DISADVANTAGES OF
NON-STRICT SYNCHRONIZATION 56

9 E-SSB EXPERIMENTAL TESTBED 64

9.1 DEEP: FPGA-based Emulation System 64
9.2 DEEP Hardware Platform . 65
9.3 DEEP Emulation Methodology . 67
9.4 DEEP Debugging Support . 71

10 E-SSB EXPERIMENTAL EVALUATION 72

10.1 Wavefront Computation . 72

10.1.1 Barrier . 73
10.1.2 Signal-Wait . 73
10.1.3 Fine-grain In-Memory Synchronization 74

10.2 SPEC OpenMP Kernel Loops . 79

ix

10.3 Analysis Breakdown . 79

11 INTEL’S CONCURRENT COLLECTIONS (CNC) 86

12 DATA AVAILABILITY TRACKING IN SOFTWARE 88

12.1 Problem Formulation . 89
12.2 CnC Item Collections . 90

13 RD-TREE . 91

13.1 Data Structures . 91
13.2 Splitting Strategy . 92
13.3 Insertion Algorithms . 92
13.4 Query Algorithm . 93
13.5 Memory Management . 93

14 RD-TREE IMPLEMENTATION . 94

15 RD-TREE EVALUATION . 95

15.1 Testbed . 95
15.2 Gaussian Blur Filter . 95

16 RELATED WORK . 110

17 CONCLUSIONS AND FUTURE WORK 112

BIBLIOGRAPHY . 114

Appendix

A CYCLOPS-64 . 120

A.1 Instruction Format . 120
A.2 E-SSB Instructions . 123

A.2.1 Read Lock . 123
A.2.2 Write Lock . 123
A.2.3 Unlock . 124
A.2.4 Single-Writer-Single-Reader Mode 1 Read 125
A.2.5 Single-Writer-Single-Reader Mode 1 Write 125
A.2.6 Single-Writer-Single-Reader Mode 2 Read 126

x

A.2.7 Single-Writer-Single-Reader Mode 2 Write 127
A.2.8 Single-Writer-Single-Reader Mode 3 Read 127
A.2.9 Single-Writer-Single-Reader Mode 3 Write 129

B COPYRIGHT INFORMATION . 130

B.1 Wikipedia . 130
B.2 ACM License Agreement . 130

xi

LIST OF TABLES

6.1 Extended Synchronization State Bu↵er (E-SSB) Instruction Format 40

6.2 E-SSB Opcodes . 41

6.3 Load/Store Instruction Format . 41

6.4 Primary Opcodes . 42

6.5 E-SSB Entry . 44

6.6 E-SSB State Encoding . 44

6.7 E-SSB Return Package . 45

6.8 Logic Resource Usage of the Cyclops-64 Architecture 47

A.1 X1: Fix-Point Instruction Format 120

A.2 X2: Floating-Point Instruction Format 120

A.3 X3: Logic and Compare Instruction Format 120

A.4 X4: Bit Field Instruction Format 121

A.5 X5: Move Special Purpose Register Instruction Format 121

A.6 EX: Extended Synchronization State Bu↵er Instruction Format . . 121

A.7 C: Compare and Trap Immediate Instruction Format 121

A.8 D: Memory Instruction Format . 122

A.9 I: Fix-Point Immediate Instruction Format 122

A.10 BC: Conditional Branch Instruction Format 122

xii

A.11 B: Branch and Link Instruction Format 122

xiii

LIST OF FIGURES

1.1 Processor Frequency . 3

1.2 MIPS Processor Pipeline . 4

1.3 Memory Performance Gap . 10

3.1 IBM Cyclops-64 System Overview 23

3.2 IBM Cyclops-64 (C64) Many-Core Architecture 26

4.1 Wavefront Computation (C-Code) 29

4.2 Wavefront Computation Dependency Illustration 30

4.3 SSB 1: Busy-Wait . 34

4.4 SSB 2: Sleep-Wakeup . 36

5.1 E-SSB 3: Non-Strict . 38

7.1 Wavefront Speedup (Barrier) . 50

7.2 Wavefront Speedup (Signal-Wait) 51

7.3 Wavefront Speedup (SWSR 1) . 53

7.4 Wavefront Speedup (SWSR 2) . 54

7.5 Wavefront Speedup (SWSR 3) . 55

8.1 Assembly Code of the Wavefront Kernel using E-SSB 1 58

8.2 Assembly Code of the Wavefront Kernel using E-SSB 1 and
Optimistic Speculation . 59

xiv

8.3 Assembly Code of the Wavefront Kernel using E-SSB 2 60

8.4 Assembly Code of the Wavefront Kernel using E-SSB 3 62

8.5 E-SSB 3 Example . 63

9.1 DEEP Emulation Platform . 66

9.2 DEEP Block Diagram . 68

9.3 DEEP Simulation Mode . 69

9.4 DEEP Emulation Mode . 70

10.1 Wavefront Speedup . 75

10.2 Synchronization Delay Illustration 78

10.3 SPEC OpenMP Loops Speedup . 80

10.4 Wavefront Execution Runtime Breakdown 85

15.1 Gaussian Blur Filter Results for Problem Size 1024x1024 97

15.2 Gaussian Blur Filter Results for Problem Size 2048x2048 101

15.3 Gaussian Blur Filter Results for Problem Size 4096x4096 105

xv

ABSTRACT

Many-core architectures are omnipresent in today’s modern life. They can be

found in mobile phones, tablet computers, game consoles, laptops, desktops and server

systems. Although many-core systems are common in powerful mainstream systems,

their core count is still in the lower tens and has not increased much over the last

years. Truly massively parallel systems with core counts in the higher tens or even

hundreds have only been seen so far in custom-made architectures for High Performance

Computing (HPC) systems or innovative new architectures from start-up companies.

Nevertheless, the core count has already reached a critical mass that shows the di�culty

of increasing performance and reducing power. This requires careful orchestration of

the many cores with e�cient synchronization constructs such that they reduce the idle

time of waiting cores and use power e�cient synchronization operations.

This thesis explores the challenges that current many-core architectures face.

First, it analyzes synchronization constructs not only on from a hardware perspective

but also from a software stack / runtime view. Under this study it investigates the

feasibility, usefulness, and tradeo↵s of di↵erent synchronization mechanisms including

fine-grain in-memory synchronization support in a real-world large-scale many-core chip

(IBM Cyclops-64). The original Cyclops-64 architecture design is extended at the gate

level to support fine-grain in-memory synchronization features and it proposes a new

non-strict synchronization method. Next, it performs an in-depth study of a well-known

kernel code: the wavefront computation. Several optimized versions of the kernel code

are used to test the e↵ects of di↵erent synchronization constructs using a chip emulation

framework. Furthermore, it compares selected SPEC OpenMP kernel loops using these

mechanisms against existing well-known software-based synchronization approaches.

xvi

In the wavefront benchmark study, the combination of fine-grain dataflow-like

in-memory synchronization with the new non-strict synchronization method yields a

thirty percent improvement over the best optimized traditional synchronization method

provided by the original Cyclops-64 design. The SPEC OpenMP kernel loops show

speedups of three to fourteen times the speed of software-based synchronization meth-

ods.

Second, this thesis introduces a new method for data availability tracking at

the software layer. It enables hierarchical tiling and dynamic partitioning during run-

time under a new parallel programming model and language called Intel’s Concurrent

Collections (CnC). A prototype of the method is implemented as a proof-of-concept in

the CnC programming language framework. The results are very promising and show

good e�ciency compared to manual hand-tuned code.

More importantly, the new system is automatic and fully integrated into the

language and runtime framework. This has several advantages over the hand-tuned

code. It reduces the e↵ort on the programmer by reducing the complexity and amount

of code that has to be written. On the language side an even more fundamental

change occurs. This new model allows a clean separation of the algorithm and the

tuning specification. This separation of concerns is a core concept of CnC and this

thesis extends CnC to support tileable dense data arrays. Another nice side-e↵ect

of this new method is the reduction of runtime calls. These runtime calls are pure

overhead and are required by the language framework to ensure the correct execution

of the program. Any reduction of these runtime calls is a potential scalability and

performance improvement, but this e↵ect depends on a given application.

The future of many-cores brings many challenges with it and there is not a single

silver bullet to solve all the issues. This thesis highlights two opportunities to tackle

the issues ahead of us. It requires a rethinking of our existing infrastructure starting at

the top with powerful and new programming languages designed from the start with

concurrency in mind, all the way down to dedicated hardware support that has to be

carefully chosen and designed to achieve the desired results.

xvii

Chapter 1

INTRODUCTION

Many-core architectures have slowly infiltrated almost all aspects of modern life.

Mostly unnoticed, they can now be found in a wide variety of devices including mobile

phones, tablet-, laptop-, and desktop computers, and of course in the most powerful

supercomputers. Although many-core systems have only recently become visible to the

general public, they have been in use by the scientific and high performance computing

community for several decades. The first many-core systems that were developed were

custom made systems or research systems and their sheer size and cost prohibited

home use. It was not until the late 1970s that the first single-core computers became

a↵ordable, made it into homes, and therefore became more widely available. With

the introduction of the IBM PC in 1981, the era of x86 based systems began. A

steady increase in the performance of single-threaded microprocessors (50-60% each

year) fueled the advances for the coming decades until everything came to a sudden

halt in 2005.

1.1 History of Microprocessor Architecture

The move to many-core architectures was not necessarily a voluntary change

for everyone, but physical laws and the resulting limitations (which will be discussed

later in detail) made it necessary to leave the successful path of highly sophisticated

superscalar out-of-order architecture development and move toward many-core archi-

tectures. Today, the many-core architectures model promises to be the holy grail to

solve the dilemma we are facing, but it is too early to tell for certain if this direction

will be successful or if an even more radical change is necessary.

1

To provide a deeper understanding of why this change was necessary, we will first

take a look at the history of microprocessor architecture to get a better understanding

of the challenges architects faced over the past several decades and how they addressed

these issues. This look back is also very interesting, since early many-core architectures

have striking similarities to earlier, simpler microprocessor architectures.

For the past few decades, the number of transistors in integrated circuits has

doubled about every two years. Gordon Moore observed this originally in 1965 [1] and

predicted a doubling every year and that this trend would continue for at least another

ten years. In 1975 [2] he revised his prediction to a doubling every two years. Later,

this observation came to be referred to as Moore’s Law. This trend continued not

only for ten years, but for decades to come and is still true today. This predictable

advance in processing technology fueled the imagination of many architects and greatly

benefited microprocessor development and architectural advances.

With each reduction in feature size, transistors were improved in two aspects.

First, for every new technology generation, a reduction of transistor dimension by 30%

actually leads to a 50% area reduction - e↵ectively doubling transistor density. Second,

the smaller transistor also has less delay, which allows for a frequency increase of 40%.

The increase in frequency by itself is already a performance boost, but the additional

transistors could be put to good use too.

Initially, additional transistors were used to increase bit-level parallelism. As

a result, microprocessors scaled quickly, increasing from 4 bit (Intel 4004) to 32 bit

(Intel 80386DX) within 15 years. This improved integer performance by providing

native support for larger integer data types, and most simple instructions like addition

could be performed in just one cycle. Another way to use these additional transistors

was by integrating the floating-point unit into the chip itself, instead of using a separate

o↵-chip dedicated floating-point processor.

Looking at Figure 1.1 an interesting phenomenon can be observed: the clock

rate of microprocessors is increasing at a superlinear rate that cannot be explained by

the 40% transistor frequency increase for each technology generation.

2

����

��

���

����

�����

������

���� ���� ���	 ���� ���
 	��� 	��� 	��	

�
��
��
��
�	
	

���

��

Figure 1.1: Processor Frequency

Before going into further detail let’s take a step back and introduce a concept

called pipelining. Pipelining can be applied to several di↵erent problems, but in this

context we will concentrate on pipelining in microprocessors. A very good example to

demonstrate this concept is the simple processor pipeline of a Reduced Instruction Set

Computing (RISC) processor like MIPS. Without pipelining, a microprocessor would

treat each instruction in turn - one at a time. The maximum frequency at which

the microprocessor could operate would be limited by the slowest instruction. While

processing a single instruction, di↵erent parts of the microprocessor are used over time.

By using this approach most of the logic sits idle waiting for work. To better utilize the

di↵erent components of a microprocessor, the lifetime of an instruction can be split up

into di↵erent phases - henceforth called pipeline stages. The MIPS processor pipeline

depicted in Figure 1.2 consists of five stages - Instruction Fetch, Instruction Decode,

Execute, Memory Access, and Write Back.

• Instruction Fetch: The first stage of the pipeline fetches the next instruction
directly from memory, or more common for current microprocessors, from the

3

Instruction Cache (I-Cache). This assumes that the instruction can be obtained
within one cycle.

• Instruction Decode: The second stage decodes the instruction, which can be done
easily by combinatorial logic in one cycle. Furthermore the required registers are
loaded from the register file.

• Execute: The third stage performs the actual work by executing the instruction.
This applies only to single-cycle instructions and memory operations. More com-
plicated multi-cycle instructions are passed on to a separate unit that also write
back to special dedicated registers.

• Memory: During this stage the actual memory operation, based on the address
computed by the previous stage, is performed. For all other operations the result
from the execute stage is just forwarded to the next stage.

• Write Back: In this final stage the result is written back to the register file.

Figure 1.2: MIPS Processor Pipeline

Other architectures like the Cyclops-64 Many-Core architecture, as further ex-

plained in Chapter 3, has only a four stage pipeline. There are also architectures with

4

deep pipelines like the IBM POWER6 processor with 33 pipeline stages on the other

side of the spectrum.

Using a pipelined architecture enables a new instruction to be placed into the

pipeline every clock cycle (this would be the ideal case) and the di↵erent resources are

more e�ciently utilized. By breaking up the processing of every instruction into smaller

stages the processor frequency can be increased. This assumes there is a perfect overlap

of the used resources and there are no conflicts/hazards. If for example an instruction

depends on the result of the previous instruction it would read the wrong data from the

register file, because the register file would be updated afterward. This is commonly

referred to as ”data hazard”. One way to avoid this would be to introduce ”bubbles” in

the pipeline to guarantee that the value has been written to the register file before its

next use. Unfortunately, this would negatively a↵ect performance. Another way would

be to forward the result from the output of execution stage directly back to the input

of the execution stage for the next cycle. This works only for single-cycle instructions.

Memory operations require an additional cycle and in this case the ”bubble” cannot

be avoided. Ideally, the compiler is aware of this and tries to schedule an unrelated

instruction between the load operation and its successor to avoid this ”bubble”.

Another source of hazards are control flow instructions - hence called control

hazards. Control flow instructions, such as conditional and unconditional branches,

may change the address of the instruction pointer. Depending on the architecture,

the calculation of the next instruction pointer address takes at least one cycle, but

could also take several cycles. As a result one or several wrong instructions might have

been placed into the pipeline. The pipeline then has to be flushed/drained to evict the

erroneous instructions. This can be extremely costly for deep pipelined processors (24-

100 clock cycles for the Intel P4). It also wastes energy on useless instructions and may

negatively a↵ect the instruction cache too. Control intensive code can therefore reduce

the benefit of pipelining. Great e↵ort is put into preventing or reducing such hazards.

For conditional branches, the processor keeps a history to predict if the branch will be

taken or not. For conditional and unconditional branches, it also keeps a history of past

5

branch target addresses. Unconditional branches will only be mispredicted if they are

not in the Branch Target Bu↵er (BTB) or if two branch instructions alias to the same

location in the bu↵er. Conditional branches are more di�cult to predict and several

branch predictors [3] have been implemented to handle even simple repetitive patterns.

Unfortunately, it is impossible to create a perfect branch predictor - that would be an

oracle. For applications with rather erratic branch behavior, this approach falls apart

and a huge amount of work (up to 40% [cite]) is wasted.

Some architectures support a feature called predication (ARM, Itanium, and

GPUs). Predication allows the architecture to execute instructions conditionally. They

are fetched and placed into the pipeline, but based on the content of a condition register

they may or may not be executed. This allows the compiler to schedule both branches

of a conditional statement as straight line code, interleaving instructions from both

branches, without any branch instructions. Although this approach prevents costly

flushes of the pipeline, it is not always beneficial and can lead to even worse performance

if not used correctly.

To explain the superlinear increase in frequency one important metric needs

to be explained first. The fan-out of 4 (FO4) metric is a process-independent delay

metric that describes the delay of an inverter that has to drive four comparable inverters

in size on its output. This allows for the fair comparison of a circuit’s performance

independent of its feature size. It also can help to find a lower bound for a pipeline

stage. The clock rate does not only depend on the frequency at which transistors can

reliably work, but also at how much work has to be performed in each pipeline stage

(ignoring wire delay). The FO4 delay is a metric that allows for the comparison of

the di↵erent architectures at di↵erent feature sizes. The Intel 386 in 1989 had a FO4

delay of around 80 per pipeline stage. This reduced dramatically to 11 FO4 delays for

the IBM Cell Processor in 2006 [4]. A lower FO4 delay normally indicates a deeper

pipeline with less logic in each pipeline stage. Deeper pipelines allow a processor to

run at higher frequencies. The combination of deeper pipelines, with less logic per

pipeline stage (small FO4 delay) and the increase in transistor frequency explains this

6

incredible improvement in microprocessor clock speed of the past several decades. It

also explains why we cannot continue on this path anymore. The benefits of reducing

the FO4 delay of a pipeline stage diminish because the overhead for the latches to keep

and pass on the state to the next pipeline stage stays constant. Hrishikesh et al. [5]

estimate the optimal logic depth to be 6 to 8 FO4 delays for floating point and integer

pipelines respectively. This also would allow enough logic to implement a 64 bit adder

in one pipeline stage [6]. We are already approaching the 8 FO4 delay, so there is little

room left to improve the clock frequency with deeper pipelines. This will inevitably

stop the superlinear improvement in microprocessor frequency and limit improvements

to advances in transistor technology.

1.2 Instruction Level Parallelism Wall

The goal of every architect is to increase the performance of each new design.

Performance improvements are not limited to increasing frequency; the idea is to exe-

cute as many instructions as possible. Increasing the frequency of the design is one way

to achieve this. Another is to execute more than one instruction per cycle. With the

increasing transistor budget, architects were able to duplicate certain structures, e.g.

the Arithmetic and Logic Unit (ALU). This also required changes to other parts of the

microprocessor, e.g. the register file, which requires additional read and write ports

to feed more than one ALU simultaneously. There are two architectural philosophies

that use this approach - Superscalar and Very Long Instruction Word (VLIW). Super-

scalar does not require any changes to the instruction format and is therefore backward

compatible with previous processors that use the same instruction format. Superscalar

microprocessors have a more complicated control logic to make certain that a set of

instructions can actually be executed concurrently. Since the instruction format is

parallelism-agnostic, the microprocessor has to make sure that the result is the same

as it would be if the instructions would have been executed sequential. VLIW, on the

other hand, uses a di↵erent instruction format that explicitly exposes the di↵erent func-

tional units of the microprocessor. Since this format is highly architecture dependent,

7

backward compatibility is sometimes di�cult or impossible to achieve. The addition

of a new functional unit in the next version of the architecture requires a modified

instruction set that provides an additional slot in the instruction format for the new

functional unit. This explicit exposure of concurrency in the instruction format itself

makes the processor’s control logic less complex.

Regardless of which philosophy is used to take advantage of Instruction Level

Parallelism (ILP), it requires a good compiler that is capable of extracting this instruc-

tion level parallelism from the application and schedule the instructions carefully to

fully utilize the pipeline. The instructions are statically scheduled and the micropro-

cessor relies heavily on the compiler to achieve good performance. In the beginning this

task was easier to achieve, because the memory subsystem was more predictable, which

is no longer true. Section 1.3 about the memory wall will detail this problem further.

It has become rather di�cult to correctly estimate the time it takes to load a given

datum from memory. This complicates the scheduling for the compiler. Furthermore,

due to the limited information available to the compiler, possible optimizations might

be prevented and a more conservative schedule is generated that does not expose all

the possible instruction parallelism available in the code.

Over time, architects added more functional units to the architecture that

greatly increased the theoretical peak performance of the microprocessor, but it also

became increasingly more di�cult for the compiler to extract more parallelism from

the application and provide a good schedule to fully utilize the pipeline. The compiler

is limited to the information available to it during compile time, but the microproces-

sor has additional information available during runtime. In the 1990s microprocessors

switched to Out-of-Order (OoO) execution. Out-of-Order Execution allows the proces-

sor to look at a set of instructions (the instruction window) and schedule all instructions

based on which inputs are available for execution, independent of the order in the in-

struction stream. However, the results have to be committed in program order to

the register file and rolled back correctly during a branch misprediction or exception.

8

This requires rather complex and power hungry logic. Improvements in the Out-of-

Order Execution Engine reaped more instruction level parallelism from applications

and increased performance, but the maximum amount of parallelism that can be ex-

tracted is limited and application specific. This e↵ect is known as the ILP wall. Since

there might not be enough parallelism in one application, the combination of two or

more application should yield more instruction level parallelism. To achieve this on

the hardware level, architects developed Simultaneous Multithreading (SMT) [7, 8].

This allows the operating system to schedule more than one process simultaneously on

the same processor. Hardware structures that contain process specific states, such as

the architectural register file, instruction pointer, etc. are replicated to support sev-

eral concurrent and independent hardware threads. The instructions of the di↵erent

hardware threads are scheduled simultaneously on the shared microprocessor pipeline.

Doing so increases the utilization of the processor pipeline and allows long latency

operations to be hidden by overlapping several threads or processes. This increases

the computational bandwidth, but applications might now take more time to execute,

since they have to share a single pipeline. SMT can also have negative e↵ects on an

application, because now more than one application has to share the same instruction

cache, data cache, and memory subsystem.

This trend already shows that the ILP in an application is limited and the use

of multithreading is required to create more instruction level parallelism.

1.3 Memory Wall

The tremendous strides in microarchitecture performance advances were not

matched by memory technology. Both technologies were evolving at an exponential

rate, but with di↵erent exponents. As mentioned before, microprocessor performance

is increasing between 50-60% each year, while memory performance increases only at a

rate of 7-10% per year [9, 10]. Figure 1.3 visualizes the widening gap between processor

and memory performance. This ever growing gap made it di�cult to hide the increasing

memory latency with more and more instructions. With increasing transistor budgets,

9

architects were able to create a very fast on-chip temporary storage. This storage was

a cache that automatically obtained the required data from memory when needed, or

proactively based on predictors, and wrote it back when the space was needed for other

data. The idea is to keep data that might be used more than once in a certain time

period (temporal locality), or data that are close to each other, such as in traversal

of an array (spatial locality) closer to the processor to reduce the access latency. In

current microprocessors there might be more than one level of caches and the caches

can be dedicated for data or instructions, or they can be unified. It is common to

find a combination of both, where the first level caches are dedicated to either data or

instructions and the lower and last level caches are unified to handle both.

Figure 1.3: Memory Performance Gap

Although caches are transparent to the application running on the microproces-

sor, knowledge of their existence, configuration, and parameters are crucial for applica-

tion developers and compilers to obtain maximum performance. Caches can delay the

occurrence of the memory wall or even prevent it for certain applications, but other

applications that cannot take advantage of caches are already limited by memory band-

width and delay.

10

Data caches have become a fundamental part of every modern microprocessor

and over 50% of the transistor budget is now dedicated to these memory structures.

1.4 Frequency Wall

Beginning in 2002, microprocessor clock rates started to stagnate and have not

improved much since. One of the reasons is, as mentioned above, the lower limit on

the logic in a single pipeline stage. As the lower limits of FO4 delay are reached,

further deepening of pipelines has diminishing returns. Also, the increasing gap be-

tween microprocessor and memory performance further diminishes any gains. These

aspects alone would already warrant a reduction or stagnation of frequency. If power

is considered as well, then further frequency scaling becomes prohibitive.

1.5 Power Wall

With increasing transistor density, the power consumption initially did not in-

crease because increases in frequency were compensated by voltage reductions. But this

only applies to dynamic power - the power that is dissipated for switching a transistor

- and this also assumes we can reduce the voltage with every technology step. An-

other factor that has to be considered is leakage power [11]. This power is dissipated

regardless of whether the transistor is switching or not. The only way to eliminate

the leakage power is to cut o↵ the power to the circuit. Leakage power used to be

a very small factor, so it could be ignored. But with transistor counts now in the

billions, there are a lot of transistors doing nothing and still dissipating a huge amount

of energy. Soon there will be so many transistors on a single chip that the power to

run them all cannot be provided. This phenomenon coined the term dark silicon [12].

With the end of Dennard scaling [13] in 2005, dynamic power will also increase more

because we cannot reduce the voltage anymore to compensate for higher frequencies.

Since power is becoming the limiting factor in how many transistors can actually be

turned on and used, an exploration of reduced supply voltages (also referred to as near

11

threshold voltages [14]) becomes interesting. The backside of this is another reduction

in frequency and therefore performance as well.

1.6 Wire Delay Wall

With every new technology step transistors become smaller and faster. Wires get

smaller too, but also increase resistance and capacitance - e↵ectively they are becoming

slower than logic [15]. This will have severe repercussions for future architectures.

Many modern architectures use sophisticated architectural features that heavily depend

on a large set of state. Accessing this state will become more costly in terms of time

when the wire delay increases. To maintain the same microprocessor clock rate, the

state has to become smaller, which will reduce performance. Or the state stays the

same, but frequency is reduced, also leading to less performance.

1.7 The Era of Many-Core begins

There is an abundance of transistors these days, but we have to change the way

how we use them. The current path we have traveled on lead to an dead end and all the

constraints nudges us slowly but steady into the many-core era. More and more many-

core architectures are appearing e.g. IBM Cyclops-64 [16], Tilera Tile [17, 18, 19], and

Adapteva Epiphany , to just list a few.

This thesis is structured as following: Chapter 2 introduces several fine-grain

synchronization constructs and a few architectures that are famous for their in-memory

synchronization support. Furthermore it introduces several asynchronous execution

models and runtimes that embrace the philosophy of fine-grain asynchronous synchro-

nization. Chapter 3 gives a detailed description of the Cyclops-64 architecture, which

plays a central role in this dissertation. Chapter 4 introduces the hardware based

synchronization approach with a motivation example. Chapter 5 and 6 show how the

Cyclops-64 architecture was modified to support fine-grain in-memory synchronization

for many-core architectures on the architectural level with the Extended Synchroniza-

tion State Bu↵er (E-SSB). Chapter 7 describes the di↵erent implementation used for

12

the E-SSB case study. Chapter 8 contrasts the advantages and disadvantages of the

di↵erent fine-grain in-memory synchronization constructs. Chapter 9 gives a detailed

introduction to the emulation system that played an important role in debugging and

emulating the modified many-core architecture. Chapter 10 presents the results ob-

tained from the emulation system for the di↵erent synchronization constructs presented

in this dissertation and provides an in depth analysis of the results. Chapter 11 in-

troduces a high level language framework, which is basis of the research presented in

the following chapters. Chapter 12 looks at the problem from a di↵erent angle and

investigates how synchronization could be used more e�ciently on the language and

runtime level. Chapter 13 and 14 presents the proposed new item collection and its

implementation for the language framework to support automatic tiling for dense data

arrays. Chapter 15 evaluates the performance of the new item collections. Chapter

16 presents related work and Chapter 17 concludes this dissertation and provides an

outlook for possible future work.

13

Chapter 2

BACKGROUND

This chapter introduces some notable hardware synchronization constructs, which

are the foundation of the fine-grain non-strict synchronization method presented in

Chapter 4. It also gives a brief recap of fine-grain asynchronous programming and

execution models that relate to the data availability framework presented in Chapter

11.

2.1 Hardware Synchronization Methods

Over the past decades there were several parallel architectures that tackled the

synchronization problem in di↵erent ways. However, a vast majority of them had

one thing in common - the addition of meta-data to describe the state of a datum in

memory. This addition a↵ects the operational semantics of memory operations in the

system. One of the most recognizable meta-data system is called incremental structure

or I-Structure for short.

2.2 I-Structures

The I-Structure was originally proposed by Arvind et al. [20] in 1981 as an

extension for the functional language Id as a pure software construct. Only later

on in 1987 the I-Structure was first described as a hardware construct [21] and its

operational semantics were fully defined. Even though the I-Structure was described as

an extension for a functional language and a dataflow-centric hardware implementation

proposed, its overall operational semantics and general idea still apply to a broader set

of programming languages, like C/C++ or Fortran; and hardware implementations,

like stored program architectures.

14

The I-Structure is a special memory that has additional meta-data associated

with each memory location. This meta-data indicates if a datum is present, absent

or if someone is waiting for it. When the memory is allocated the memory controller

initializes the meta-data to the absent state.

A read request contains the address of the memory location to be read and a

tag specifying the instruction1 waiting for the datum. When a read request arrives, the

memory controller checks the requested location’s state. If the state is present, the

datum will be immediately returned. If the state is absent or waiting, then the read

operation is deferred and the tag is queued in a linked list of tags in the deferred read

request area. When the first read operation is deferred, the location’s state is changed

from absent to waiting.

When a write request arrives, it contains the address of the memory location to

be written and the datum. If the location’s state is absent, then the datum is written

to the location and the state is changed to present. If the location’s state is waiting,

then the datum is send to all the instructions specified by the tag(s) in the deferred

read request linked list, the datum is written to the location, and the location’s state

is changed to present. Writing the same location more than once results in an error.

2.3 M-Structure

A natural extension of the I-Structure is to relax its single assignment rule. With

this in mind, the M-Structure [22] was proposed in 1991. Its operational semantics is

very similar to the I-Structure’s, but instead of a write operation permanently sealing

a location, a read operation will reset the state to absent, so that the location can

be reused. This allows the iterative update of the same memory location without the

need to allocate a new array for each new iteration, as it would have been required

with the I-Structure. In the case a write operation encounters a location’s state that

is present, an error is raised.

1 This is a peculiarity of a dataflow machine. Instead of describing a register location
to hold the data, a tag describes the instruction that will consume the data.

15

2.4 Heterogeneous Element Processor (HEP)

The Denelcor HEP computer system [23] was introduced in 1978 as a large scale

scientific parallel computer representing a Multiple Instruction, Multiple Data streams

(MIMD) architecture [24]. I was the first commercial multithreaded multiprocessor.

The architecture was designed by Burton Smith and had a variety of unusual and

interesting features. A HEP system may consist of up to 16 Process Execution Modules

(PEM), up to 128 memory modules, up to four I/O cache module, and up to 4 external

I/O modules connected via a switch network. Each Process Execution Module - the

processor - has its own 64 bit register file with 2048 registers. In addition it also has a

64 bit constant register file with 4096 entries. Each processor also has its own separate

instruction memory that can hold up to 1024k instructions. Each instruction is 64 bit

wide. The processor supports 16 tasks, but only seven can be used by user programs,

the others are reserved for the operating system. A task specifies the base and limit for

the register files and the memory. This allows for hardware protection between tasks,

but tasks can also be overlapped to work cooperatively. A processor can maintain

up to 128 processes in hardware and up to 64 processes can be assigned to a single

task. The other 64 processes are reserved for the operating system tasks. Each process

has a corresponding process status word (PSW). This PSW does not only contain the

instruction pointer, but also o↵set values into the register and constant memory file.

These could be used for reentrant programming. Furthermore it contains additional

process related information and a user trap mask. The processor has a separate control

and execution pipeline/loop. The PSWs circle through the control loop in a queue and

a delay is added to limit the rate. This is because the execution pipeline has eight

stages and only one instruction per process is allowed in the pipeline to avoid data

hazards. This also means that at least eight processes must be active at any given

time to fully utilize the pipeline at 10 MIPS. The processor time-multiplexes processes

every execution cycle in a round-robin fashion. This approach is called fine-grained

multithreading, which is similar to simultaneous multithreading. Processor that use

this kind of hardware thread scheduling are also called barrel processors. For memory

16

operations the scheduler function unit (SFU) sends the request over the switch network

to obtain or store the data and removes the PSW from the control loop. It reinserts

the PSW into the control loop once the data returned and has been written to the

register file. To e�ciently facilitate concurrent applications each memory location

(including the register file) has additional state information. These states are full,

empty, and reserved. In combination with special memory operations this could be

used to facilitate fain-grain producer-consumer synchronization or critical sections for

mutual exclusion. If an operation fails it circles through the control loop and is retried

until it succeeds.

2.5 Tera MTA / Cray XMT

The Tera MTA architecture [25, 26], now known as Cray MTA, was derived from

the Horizon architecture [27, 28, 29]. Although both architectures stem its roots from

the HEP architecture, which is not a big surprise considering that Burton Smith was

involved in all three of them. The Tera MTA kept several features of the HEP system

and extended them. One big di↵erence is the separation of the register file for each

process, which is now called stream. Originally, in the HEP system di↵erent processes

could access and share the same registers. This is no longer possible and every stream

has its own set of 32 64-bit general registers, eight 64-bit target registers (used for

branching), and one 64-bit stream status word that includes the instruction pointer.

All 128 streams can now be used for user processes. The instruction word is still 64-

bit wide, but it encodes now three instructions to increase ILP. The processor issues

an instruction each clock tick from the next ready stream. The memory state bits

have been extended. Not only does each 64-bit memory location have a full/empty

bit, they also have now two user trap bits and one forwarding bit. Although they

are called user trap bits, they are meant to be used by the language implementer

to implement certain features like breakpoints, demand-driven evaluation, etc. The

forward bit is used to implement automatic indirection that is transparent to the user.

The memory controller will continue dereferencing until it reaches a memory location

17

with the forwarding bit not set. The pointer itself can be used to disable forwarding

too by explicitly disabling it. The semantics of the full/empty bit has not changed.

There are no data caches and memory addresses are randomized to prevent hot spots.

The Cray MTA 2 system was running at 220 Mhz and had a modified Cayley graph as

network topology. The Cray XMT (Eldorado) system increased the frequency to 500

Mhz and used a simpler 3D torus network topology.

The full/empty bit can be used for fine-grain synchronization on a producer-

consumer basis like a M-Structure or for a feature called futures, that interprets the

full/empty di↵erently. In the context of this thesis only the operational semantics of

the full/empty bit used to facilitate producer-consumer synchronization are consid-

ered. This method is also called sync mode.

A read request contains the address of the memory location2. When a read

request in sync mode arrives, the memory controller checks if the requested location’s

full/empty bit is full (equivalent to the I/M-Structure state present), clears the

full/empty bit, and returns the datum. If the location’s full/empty bit is empty

(equivalent to the I/M-Structure state absent/waiting), the memory controller will

retry the operation for a predefined number of times. When it fails to complete the

operation a trap is triggered in the processor that issued the memory operation. It is

now the software’s responsibility to decide how to proceed. It could retry the memory

operation or suspend the issuing thread (stream).

When a write request arrives, it contains the address of the memory location to

be written and the datum. While in sync mode, the memory controller checks if the

requested location’s full/empty bit is empty, sets the full/empty bit, and writes the

datum. If the location’s full/empty bit is full, the memory controller will retry the

operation for a predefined number of times. When it fails to complete the operation, a

trap is triggered in the processor that issued the memory operation. The runtime will

2 Please note that the tag equivalent mechanism here is the same as used in stored
program architectures (i.e. destination register and processor) unlike the dataflow tag
used by the I-Structure

18

decide what to do with the outstanding memory operations (for example to retry it,

to retire it or to delay it).

2.6 Tilera Tile Architecture

The Tilera Tile architecture is a mesh-based many-core architecture based on

the Raw architecture[17]. Tilera released their first processor, called TILE64, in 2004.

The microprocessor consists of 64 tiles connected via a 2D mesh network, four DDR2

memory controllers, two 10-gigabit ethernet interfaces, two PCIe interfaces, and other

misc I/O. Each tile contains a microprocessor, cache, and a network switch. The

microprocessor is a 32-bit in-order 5-stage pipeline 3-way VLIW processor with three

functional units and a 64 entry 32-bit register file. The pipeline drives two integer

arithmetic units and one load-store unit. There is no floating-point unit. The cache

has separate 8 KiB level 1 instruction and data cache and a unified 64 KiB level 2

cache. A level 3 cache is emulated by the aggregation of all level 2 caches on a chip.

The network switch connects the microprocessor to its four surrounding neighbors in

the 2D mesh network. The mesh network has five independent networks for distinct

functions. The memory dynamic network (MDN) and the tile dynamic network (TDN)

are used for the memory subsystem and are dynamically routed. The MDN is used for

access to the DDR2 memory controllers on a cache miss. The TDN is used to access

level 2 data cache of the di↵erent tiles. The user dynamic network (UDN) and the I/O

dynamic network (IDN) are mapped into the register space of the microprocessor and

are dynamically routed. The UDN is used for user-level communication and the IDN

for inter-tile communication and I/O subsystem access. The static network (STN) is

a software routed network for communication between tiles. The chip was fabricated

in 90nm technology at runs between 500 and 866 MHz.

The TILEPro64 is an improved version of the TILE64 with additional instruc-

tions, double the level 1 instruction cache to 16 KiB, doubled the L2 cache associativity,

and add the coherence dynamic network (CDN) for the distributed dynamic cache. The

TILEPro32 is the TILEPro64s little brother and features 32 cores per chip.

19

The latest version, the TILE-Gx72, follows the same principles of the mesh-

architecture, but with several notable enhancements. The 72 microprocessors have

been upgraded from 32-bit to 64-bit. Although they still lack a dedicated floating-point

unit, the microprocessors have now a new set of instructions that can be combined

to execute simple floating-point operations (addition, subtraction, and multiply) in

hardware. More complicated operations (division, square root, etc) are still performed

in software. The level 1 instruction and data cache have been both increased to 32 KiB

and the level 2 unified cache to 256 KiB. The memory controllers have been upgraded

to DDR3 with ECC support. The system-on-chip also features now dedicated hardware

for network package processing and cryptography. The feature size has been reduced

to 40nm and the chip is running at 1 GHz.

2.7 Fine-Grain Asynchronous Programming and Execution Models

The idea of fine-grain asynchronous programming and execution models has

been around in academia for several decades, but no such models made it to industry

until recently. There are primarily two reasons for this: (1) such execution models

were not needed for non-HPC general purpose computing, and (2) prototype imple-

mentations of such models have tended to be more di�cult to program than more

conventional models. However, because of the event and rise of many-core architec-

tures in recent years, the study of such models is seeing a resurgence.

On of the more famous fine-grain execution models is Cilk [30] which made

it all the way to industry. Cilk stands out through its simplicity in use and easy

to understand recursive programming model. Cilk worked well for a certain set of

applications (e.g. recursion, fork-join based), but it also had its own set of limitations,

such as not being able to express consumer-producer problems. Other models developed

around the same time tried to be more flexible at the cost of simplicity. For instance,

Earth [31], a dataflow inspired execution model, encompassed the Cilk programming

model space, and beyond. Earth was the inspiration for the recent proposed codelet

execution model [32, 33] and the foundation of SWARM.

20

There is a myriad of old and new fine-grain asynchronous execution models or

programming models out there, including StreamIt [34], Cilk Plus, TBB [35], CnC [36],

Chapel [37], UPC [38], Habanero [39], ParalleX [40] to just mention a few of them. So

far it is not clear which execution model/programming model will win and be widely

adopted, since many of them are not completely defined yet and still in flux. Although,

models have started to converge with respect to certain features. This thesis will focus

on Intel’s Concurrent Collections (CnC) programming model and framework as a basis

for a proof-of-concept implementation of the data availability query system for dense

data.

21

Chapter 3

IBM CYCLOPS-64

At the end of 1999 IBM announced the Blue Gene project - a five-year e↵ort to

build a massive parallel supercomputer geared toward biomolecular applications such

as protein folding [41]. The envisioned machine was planed to provide 1 PFLOP (1015

floating-point operations per second), which was 50 times the computational perfor-

mance of all supercomputers available at that time. To achieve this ambitious goal

the chief architect Monty Denneau designed a new cellular architecture that followed

a radical new philosophy. Contrary to existing architectures with out-of-order micro-

processors and large multi-level caches, the Cyclops-64 architecture followed a di↵erent

path. In order to exploit parallelism and provide the required computational perfor-

mance the architecture features 160 independent homogeneous cores on a single chip.

To accomplish this the cores were simplified to in-order RISC microprocessors and

dispensed of all data caches. Two cores share one pipelined floating-point unit that

can produce a fused multiply-accumulate result every cycle. Later on an already ex-

isting architecture - the PowerPC architecture - was chosen to build the Blue Gene/L

system, but Monty’s architecture continued on as Blue Gene/C and then as Cyclops-

64. Although the Cyclops-64 architecture has changed over the years, its origin and

philosophy can be still traced back to the initial ideas of the Blue Gene project.

3.1 System Architecture

At the lowest level of the Cyclops-64 system hierarchy (see Figure 3.1) we have

a single Cyclops-64 chip running at 500MHz, with a peak performance of 80 GFLOPS.

Each blade (compute board) contains one Cyclops-64 chip, 1GiB of DDR2 memory,

and a FPGA for the system control network. The FPGA connects also to an ethernet

22

interface, that is used by dedicated I/O nodes. 48 blades connect to a single midplane

that provides power and the wiring for the chip interconnect. Three midplanes are

placed in a single cabinet. The whole system is comprised of 96 cabinets. Overall the

system features a total of 13,824 chips interconnected in a 24x24x24 3D mesh network.

The aggregated theoretical peak performance of the 2,211,840 compute cores is over

1.1 PFLOPS.

Figure 3.1: IBM Cyclops-64 System Overview

3.2 Chip Architecture

A Cyclops-64 chip (see Figure 3.2) is logically partitioned into 80 processors,

containing two integer units called thread units (TUs), one floating-point unit (FPU)

that is shared by the two thread units, and two 30 KiB SRAM banks (one for each

23

thread unit). Each thread unit has a simple 64-bit RISC microprocessor with a four

stage pipeline running at 500MHz. The microprocessor is an in-order single-issue pro-

cessor and uses scoreboarding for out-of-order completion. Each threat unit has its

own dedicated 64-bit register file with 64 general purpose registers (GPRs), instruc-

tion pointer and special purpose registers. Ten thread units (five processors) share one

instruction cache (IC) of 32 KiB. Furthermore, the chip also contains four DDR2 con-

trollers that connect to 1 GiB of o↵-chip Dynamic Random-Access Memory (DRAM).

The on-chip SRAM and the o↵-chip DRAM are error-correcting code (ECC) protected.

Each chip has an integrated network switch that connects to its six neighboring chips

using a 3D mesh network topology. There is also an additional interface called host

interface that is used to boot-up and configure the chip and to communicate with

other I/O components. All the chip components are connected through an on-chip

7-stage crossbar. In summary, the chip’s crossbar interconnect possesses a total of 96

ports: 80 for the processors, four ports for the instruction caches, four ports for on-

chip DDR2 memory controllers, seven ports for inter-chip communication, and one port

for the host interface. The architecture has an explicit three level memory hierarchy

that is fully exposed to the programmer. There are no data caches that automatically

move data between the di↵erent hierarchies and the programmer is responsible to per-

form this task in software. The three di↵erent levels of the memory hierarchy consist

of scratch-pad memory, global interleaved shared memory, and DRAM. During chip

boot-up each SRAM bank of a thread unit is configured into two distinct regions. One

region is configured as scratch-pad memory, the other region contributes to the global

interleaved shared memory. This configuration is not required to be symmetrically

and it is possible that some threat units contribute all of their memory to the global

interleaved shared memory or none at all. This is particularly helpful when a few

thread units or SRAM banks are faulty, but the rest of the chip is still working fine.

In this case the bad components can be mapped out and the chip can be still used.

In the default configuration 15 KiB is assigned to scratch-pad memory and the other

15 KiB contribute to the global interleaved shared memory of 2,400 KiB. The DRAM

24

and the global interleaved shared memory are interleaved at a 64 byte boundary. A

thread unit has direct, low-latency access to its own scratch-pad memory; although the

scratch-pad memory of all other thread units can still be accessed through the crossbar.

Global interleaved shared memory has always to be accessed through the crossbar. Ac-

cesses through the crossbar guarantees sequential consistency for the global interleaved

shared memory and the DRAM, but not for the scratch-pad memory if the direct link

is used. There are no segments, paging, or virtual memory support. Although there

is minimal memory protection support to make a configurable region of memory only

accessible in supervisor/kernel mode. A massive parallel architecture requires special

synchronization support to allow for e�cient orchestration of the several cores on chip.

One important feature of this architecture is the hardware synchronization support

for fast barriers. Another very important feature is the support of atomic in-memory

operations provided by all 160 SRAM memory controllers and all four DDR2 memory

controllers. This means that every memory controller has a small Processor-In-Memory

(PIM) to perform simple arithmetic operation atomically in memory.

3.3 Microarchitecture

The microarchitecture of a single core is a simple in-order four stage pipeline.

In the first stage - the instruction decode stage - the next instruction is fetched from

the Prefetch Instruction Bu↵er (PIB) and decoded. Each core has its own little PIB

that holds two sets of 16 instructions. Every instruction is 32-bit wide and can be

decoded in a single clock cycle. In the next stage - the register read stage - the

requested registers are read from the register file. Most instruction have one or two

source registers and the register file has two read ports to serve most instructions in

one cycle. Only a few instructions with three source registers like the fused multiply-

add floating-point instruction may need an additional cycle to obtain the third source

register. The floating-point unit has a register cache of 5 registers to mitigate this

one cycle penalty, by using the cached register. This requires careful scheduling and

register allocation to take advantage of this feature. In the third stage - the execute

25

Figure 3.2: IBM Cyclops-64 (C64) Many-Core Architecture: The architecture con-
sists of 80 processors (Processor 0 -79). Each processor has two Thread
Units (TUs) called TU 0 and TU 1. Both share one Floating-Point Unit
(FPU) and one crossbar port (MPG). Each TU is connected to a SRAM
bank, which can be accessed by all other TUs via the crossbar. Ten TUs
share one Instruction Cache (IC). The system has four on-chip DDR2
memory controllers to access o↵-chip memory. The A-Switch is used to
connect to the six surrounding neighbors in a 3D-mesh network.

26

stage - most instructions are performed within one cycle. A few special operations

like population count or floating-point comparison require two cycles. Floating-point

operations and integer multiplication operations are dispatched to the shared floating-

point unit. A Least-Recently-Used (LRU) schema is employed to decide which threat

unit is allowed to dispatch the instruction or needs to stall. For memory operations

the address is calculated and passed on to the storage interface that will route it to the

local memory or to the crossbar. Long latency operations such as memory loads and

floating-point operations set the scoreboard bit for the result register. The instruction

that depends on a register that is not available yet stalls the pipeline and all instructions

that follow. Careful scheduling is required by the compiler to hide these latencies with

other instructions. In the last stage - the write back stage - the register file is updated

with the new value from the ALU (if applicable). The register file has two write ports

that have to be shared between the fix-point unit (ALU), floating-point unit, and load

return from memory.

27

Chapter 4

FINE-GRAIN NON-STRICT SYNCHRONIZATION IN HARDWARE

Many-core architectures are on the rise and an increasing number of applications

are modified to take advantage of these new architectures. A certain class of applica-

tions is very easy to parallelize, because the parallel computations performed by the

applications have no dependence on each other. This small class of applications is often

referred to as ”embarrassingly parallel applications”. Unfortunately, most applications

are slightly more complicated and therefore more di�cult to parallelize. It is a very

common problem that once a programmer tries to split up the work, so that it can be

executed on several cores simultaneously, data dependencies have to be identified and

taken care of. This task was originally handled by the microprocessor. Even if it was

executing instructions out-of-order and concurrently, the control logic was responsible

to identify and obey these dependencies in the program. Now, by manually splitting up

the application, the programmer has to perform this task. Additional synchronization

constructs are now required to ensure the correct execution of a program because the

di↵erent cores do not work in a lockstep fashion. Each core is independent of every

other core and complex system interactions make it impossible to predict the behavior

statically during compile time.

4.1 Motivation Example

To better illustrate the problem of concurrency and synchronization on many-

core architectures, a simple microbenchmark - the wavefront computation - was chosen.

The C code of the kernel is shown in Figure 4.1. First, the algorithm initializes the first

column and the bottom row of a 2D array. Next, the remaining elements of the 2D

28

array are calculated based on the previously determined values from the left, bottom-

left and bottom element. This forms a wavefront computation from the bottom-left

corner to the top-right corner as shown in Figure 4.2.

1 for (i =1; i<N; ++i) {
2 for (j =1; j<N; ++j) {
3 a [i] [j] = (a [i �1] [j �1] +
4 a [i �1] [j] +
5 a [i] [j �1]
6) / 3 ;
7 }
8 }

Figure 4.1: Wavefront Computation (C-Code)

Due to the dependence of an element on its previously computed neighbors,

parallel versions of the wavefront kernel require synchronization constructs to ensure

correctness. Nevertheless, it is still possible to exploit this kernel’s parallelism to be

executed on a many-core architecture. One possible approach would be to distribute

the rows (or a contiguous set of rows) across the available processors on the chip

statically in a round-robin fashion and enforce data dependencies via synchronization

constructs. However, the choice and the available hardware support for a particular

synchronization construct can greatly a↵ect the performance and the scalability of

the parallel implementation. To investigate the e↵ects of di↵erent synchronization

constructs, and in particular fine-grain synchronization, the wavefront computation

kernel was implemented with five di↵erent synchronization constructs. An explanation

of the di↵erent implementations is provided in Chapter 7 and a more in-depth analysis

of the results can be found in Chapter 10.

29

Figure 4.2: Wavefront Computation Dependency Illustration

30

4.2 Problem Formulation

Many-core architectures usually provide synchronization constructs directly in

hardware or other hardware primitives that allow the creation of a variety of syn-

chronization constructs in software. A very common synchronization construct is the

barrier, that is usually implemented in software and provided as a library call. This

construct has not a neglectable overhead that needs to be considered when partition-

ing the application to find a good ratio of useful work to synchronization overhead.

Other synchronization constructs like signal/wait, locks, or mutexes are also imple-

mented with simpler hardware primitives. Fine-grain synchronization on the other

side requires dedicated hardware support, which is not supported by the majority of

many-core architectures. Therefore, this thesis not only focuses on the performance and

scalability of the di↵erent synchronization constructs, but also on the e↵ort and cost

of fine-grain synchronization support. The following questions highlight the objectives

this thesis tries to answer:

How di�cult is it to implement and support non-strict fine-grain synchro-

nization?

New architectural features can be simulated and tested quickly using functional-

accurate simulators, but the real complexity and timing is often misunderstood or un-

derestimated. To determine the complexity of fine-grain synchronization constructs,

an implementation at the hardware description level (HDL) of a real many-core ar-

chitecture is performed. Chapter 6 gives a more detailed description of the changes

that were necessary to support fine-grain synchronization in the Cyclops-64 many-core

architecture.

What are the implications on used chip real estate?

The real hardware cost of a new architectural feature can be estimated to a

certain extent, but the final resource usage is unknown until an actual implementation

31

has been performed. Section 6.1 discusses and describes the additional hardware re-

sources, which are required to support fine-grain synchronization, and how these results

are obtained.

What are the performance gains of non-strict fine-grain synchronization?

The e↵ort and cost of adding a new architectural feature has to be validated and

justified. In the case of the non-strict fine-grain synchronization construct, a substantial

performance increase is expected. Otherwise, it may be more useful to use chip real

estate for other features or even more cores. Chapter 10 compares and contrast fine-

grain synchronization with other already existing synchronization constructs of the

Cyclops-64 many-core architecture.

How to ensure the correctness of the implementation and the given perfor-

mance prediction with a very high degree of confidence?

The validation of new features and their true performance is di�cult to measure

with software simulators only. Software simulators may be cycle accurate, but they

are also slow and not useful to validate a full chip. Others might be fast, but sacrifice

accuracy. Chapter 9 describes the emulation system and how it is used to obtain cycle-

accurate performance results of the whole chip with a very high degree of confidence.

4.3 Extended Synchronization State Bu↵er (E-SSB): An Overview

The Extended Synchronization State Bu↵er (E-SSB) is a new fine-grain non-

strict synchronization method that is not part of the Cyclops-64 architecture. It was

inspired by the original Synchronization State Bu↵er from Zhu et al. [42]. Section 4.4

takes first a look at the original Synchronization State Bu↵er (SSB) and its semantics.

Then Chapter 5 introduces the semantics of the Extended Synchronization State Bu↵er

(E-SSB). Chapter 6 gives a detailed explanation of the implementation in the Cyclops-

64 many-core architecture.

32

4.4 SSB: A Recap

The Synchronization State Bu↵er (SSB) proposed by Zhu et al. [42] is based on

the observation that in any synchronized program only a small number of synchronized

variables are needed at any point in time. This means that a small bu↵er (added to

each memory controller) is su�cient to keep the synchronization meta-data of these

variables. This reduces the memory overhead of keeping extra bits for each memory

location in the system compared to other solutions [43]. Moreover, this bu↵er could

store additional meta-data for a specific datum to enable features such as invisible

indirection (pointer forwarding) and debugging/tracing capabilities.

This thesis will only describe the usage of the meta-data as full/empty bits in

the context of producer-consumer synchronization. The information saved in a SSB

entry is implementation dependent, but it requires at least four parts in the original

SSB: (1) a state field to indicate the current synchronization mode; (2) a counter field;

(3) a thread identifier field; and (4) an address field to indicate the memory address to

which the entry applies. The counter field is used by other SSB instructions as actual

counter, but they are not the focus of this paper. Single-Writer-Single-Reader Mode 2

uses the counter field indirectly to encode additional state information.

The original SSB design had two di↵erent producer-consumer modes, which are

also called Single-Writer-Single-Reader (SWSR). The first mode employs a busy-wait

approach for the reader until the data is ready. The second mode utilizes the sleep-

wakeup feature of the architecture to reduce crossbar tra�c. The operational semantics

for the SSB synchronization constructs are described as follows:

SWSR Mode 1: Busy-Wait

A read request contains the address of the memory location to be read and a

tag specifying the thread identifier (TID) and register location waiting for the datum.

When a read request arrives the memory controller checks if the requested location

has an entry in the SSB. If there is a corresponding entry, then the entry is removed,

the datum and the status SUCCESS are returned. If there is no corresponding entry,

33

then the status FAIL is returned and the read operation has to be retried by the

programmer.

When a write request arrives it contains the address of the memory location to

be written, the datum, and a tag specifying the TID and register location waiting for

the return code. If there is no entry in the SSB for the specified location, then the

datum is written to the location, an entry is created with the state SWSR 1, and the

status SUCCESS is returned. If there is already an entry for the specified location,

then an interrupt is raised. The corresponding state diagram is shown in Figure 4.3.

Figure 4.3: SSB 1: Busy-Wait

SWSR 2: Sleep-Wakeup

A read request contains the address of the memory location to be read and a

tag specifying the thread identifier (TID) and register location waiting for the datum.

When a read request arrives, the memory controller checks if the requested location

has an entry in the SSB. If there is a corresponding entry, then the entry is removed,

the datum and the status SUCCESS are returned. If there is no corresponding entry,

then an entry is created with the state SWSR 2, and the status WAIT is returned.

The programmer has to check for this return code and issue a sleep instruction.

When a write request arrives it contains the address of the memory location

to be written, the datum, and a tag specifying the TID and register location waiting

34

for the return code. If there is no entry in the SSB for the specified location, then

the datum is written to the location, an entry is created with the state SWSR 2,

and the status SUCCESS is returned. If there is already an entry for the specified

location and the state is WAITING, then the state is updated to AVAILABLE and

the TID of the waiting thread is returned with the status indicating that there is a

waiting thread. The programmer has to check for this return code and wakeup the

thread specified by the returned TID. If there is already an entry and the state is not

WAITING, then an interrupt is raised. The corresponding state diagram is shown in

Figure 4.4.

In the event that the bu↵er is full and a synchronization operation tries to add

a new entry, then an interrupt is generated and the software runtime will take control

of the bu↵er. There is no automatic eviction of entries and flush to memory as a cache

would do.

35

Figure 4.4: SSB 2: Sleep-Wakeup

36

Chapter 5

DESIGN OF THE EXTENDED SYNCHRONIZATION STATE BUFFER
(E-SSB)

This section explains the design principles for non-strict fine-grain synchroniza-

tion and its operational semantics. The original SSB design is extended with non-strict

fine-grain synchronization. The major goal in designing the Extended Synchronization

State Bu↵er (E-SSB) is to improve programmability and ease-of-scheduling for the com-

piler. The major interest are the Single-Writer-Single-Reader (SWSR) synchronization

operations. A third mode, which further reduces the overhead of the synchronization

operation with little additional hardware cost and non-strict behavior, is added. For

the remainder of this thesis these three di↵erent modes are referred to as E-SSB 1,

E-SSB 2 and E-SSB 3, respectively. Furthermore, all modes support now several data

sizes: byte (1 byte), half word (2 bytes), word (4 bytes) and double word (8 bytes);

and signedness (signed and unsigned) of memory operations. To support these new

features an E-SSB entry is extended with the following fields: (5) register identifier;

(6) size; and (7) signedness.

The operational semantics of the non-strict synchronization is defined as follows:

E-SSB 3: Non-Strict

A read request contains the address of the memory location to be read and a

tag specifying the thread identifier (TID) and register location waiting for the datum.

When a read request arrives the memory controller checks if the requested location

has an entry in the E-SSB. If there is a corresponding entry the entry is removed and

the datum is returned. If there is no corresponding entry, then an entry is created

containing the state SWSR 3, the TID, and register location.

37

When a write request arrives it contains the address of the memory location to

be written and the datum. If there is no entry in the E-SSB for the specified location,

then the datum is written to the location and an entry is created with the state SWSR

3. If there is already an entry for the specified location and the state is WAITING,

then the datum is written and also returned to the TID and register location of the

waiting thread at the same time. Finally, the entry is removed from the E-SSB. If

there is already an entry and the state is not WAITING, then an interrupt is raised.

Under this mode, the synchronization memory operations appear as normal load

and store operations to the processor. The processor only stalls when a dependency is

found between the synchronized operation and another operation. The corresponding

state diagram is shown in Figure 5.1.

Figure 5.1: E-SSB 3: Non-Strict

38

Chapter 6

IMPLEMENTATION OF THE EXTENDED SYNCHRONIZATION
STATE BUFFER (E-SSB)

This section describes the required architectural changes to implement non-strict

fine-grain synchronization in the Cyclops-64 many-core architecture. The Extended

Synchronization State Bu↵er (E-SSB) requires changes mainly in the Thread Unit

(TU), because all the required logic related to the on-chip SRAM memory interface

is located there. In particular, changes are required on the instruction decoder to

support the new E-SSB instructions, the execution unit for interrupt handling and

event counting, and the storage interface for routing the new memory operations and

the actual implementation of the logic and bu↵er of the E-SSB. Another module, the

crossbar interface, which is shared by two thread units, has to be adapted to support

the new E-SSB crossbar packages, but changes to the crossbar itself are not required.

The existing design allows for an easy extension of the instruction decoder to

support the new E-SSB instructions. Fortunately the opcode space is not completely

exhausted and has enough space left to accommodate a variety of E-SSB instructions.

The Cyclops-64 instruction format has a fixed size of 32-bit. The first four most

significant bits are used for the primary opcode. The primary opcode could only

encode 16 instructions by itself. Fortunately the majority of the instructions only use

one or two source registers and at most one result register leaving enough space for

an additional opcode field called extended opcode. The combination of the primary

and extended opcode fields allow the encoding of a myriad of instructions with a very

simple decoding logic. As a matter of fact almost all instructions are encoded using the

same primary opcode, but use an additional nine-bit extended opcode field to specify

the actual instruction. Memory operations, branch instructions, and instructions with

39

immediate values require more space for the immediate field and do not have space for

an extended opcode field. They are encoded by just using the primary opcode field.

The four remaining and unused primary opcodes are used to encode the various E-SSB

instructions.

A new instruction format is created that allows the encoding of all instructions

mentioned in the original SSB work and the new E-SSB instructions. In a real imple-

mentation not all of these instruction would actually be implemented, but for a fair

comparison all instructions are implemented at the logic level. The new instruction

format accommodates the primary opcode (OP), the return register (RT), the address

register (RA), the value register (RB), the E-SSB opcode (EE), the size (Sz) and the

signedness (S). The instruction format and the size of each field is shown in Table 6.1.

Table 6.1: Extended Synchronization State Bu↵er (E-SSB) Instruction Format

Primary Target Source Source E-SSB Size Signedness unused
Opcode Register Register 1 Register 2 Code

4 6 6 6 6 2 1 1
OP RT RA RB EE Sz S 0

The EE field is used to encode the actual E-SSB operation. A list of the encoded

E-SSB operations is shown in Table 6.2.

The Single-Writer-Single-Reader Mode 3 instructions are also redundantly en-

coded using the already existing instruction format for memory operations as shown

in Table 6.3.

This way they could be easily used as drop-in replacement for normal load

and store instruction with no changes to the surrounding code and easily be scheduled

without any restrictions. All primary opcodes with the newly added E-SSB instructions

are shown in Table 6.4.

A full list of the newly added E-SSB instructions, their encoding, and their

semantic description can be found in Appendix A.

40

Table 6.2: E-SSB Opcodes

EE E-SSB Operation Description

0 RLock Read Lock
1 WLock Write Lock
2 UnLock Unlock
3 SWSR1 R Single-Writer-Single-Reader Mode 1 Read
4 SWSR1 W Single-Writer-Single-Reader Mode 1 Write
5 SWSR2 R Single-Writer-Single-Reader Mode 2 Read
6 SWSR2 W Single-Writer-Single-Reader Mode 2 Write
7 SWSR3 R Single-Writer-Single-Reader Mode 3 Read
8 SWSR3 W Single-Writer-Single-Reader Mode 3 Write

9-63 reserved n/a

Table 6.3: Load/Store Instruction Format

Primary Target/Soucre Address Size O↵set
Opcode Register Register

4 6 6 2 14
OP RT/RS RA Sz D

41

Table 6.4: Primary Opcodes

OP Operation Description

0 E-SSB E-SSB (uses E-SSB opcodes)
1 LD Signed Load
2 ST Store
3 LDU Unsigned Load
4 BCC Branch on Condition
5 BAL Branch and Link Register
6 LDS Signed Load Synchronized
7 STS Store Synchronized
8 LDUS Unsigned Load Synchronized
9 XORI XOR Immediate
10 ANDI AND Immediate
11 ORI OR Immediate
12 CMPI/TRAPI Compare or Trap Immediate
13 ADDI Addition Immediate
14 SHORI Shift left 16 then OR Immediate
15 EXT all other instructions (uses extended opcodes)

Some of the original SSB instructions require more than one result register. One

register is required for the return code and another one for the data. Due to restric-

tions in the instruction format, crossbar package format, and the register file, the result

register and implicitly the following register are used as bundled result registers. For

example, the E-SSB instruction swsr1 rd RT,RA reads a signed double word value

from the address specified in register RA. The return code is written to register RT

and the datum is written to register RT+1. The write-back register is selected to be

the next register after the return-code register in the register file. The MIPS32 archi-

tecture uses a similar approach by pairing two 32-bit floating-point registers for double

precision floating-point operations. Although this approach is limited to predefined

even-odd register pairs only. The scoreboard of the Cyclops-64 architecture already

supports the setting of a vector of bits for its load multiple instructions, so adding

this behavior could be easily achieved by leveraging the existing infrastructure of the

Cyclops-64 architecture. Crossbar return packages that encode both, return code and

42

data, require special treatment in the storage interface. A similar special treatment is

already applied to load multiple crossbar return packages and a similar treatment was

implemented analogous to the existing load multiple return filter.

The execution unit performs the the e↵ective address calculation, which is also

analogous to the existing memory operations. In addition the performance counters

were extended to count events concerning E-SSB instructions, such as the number

of issued E-SSB load and store instructions and the number of failing E-SSB load

instructions (E-SSB 1 and 2). E-SSB 3 instructions cannot fail (but raise interrupts if

used incorrectly), since they will wait in the memory controller. The interrupt handler

is also extended to support the new E-SSB interrupt to expose the invalid use of E-SSB

instructions in faulty programs.

The majority of the changes are required in the Storage Interface (SI) of the

Thread Unit (TU), because it contains the E-SSB module. This is the actual bu↵er for

the meta-data and the associated control logic. The Storage Interface orchestrates the

data routing between di↵erent requests coming from the network (crossbar), Thread

Unit, and the E-SSB module and the responses coming from the network (crossbar),

and the memory controller (SRAM memory controller). The encoding of the crossbar

package is adjusted to also support the additional E-SSB memory instructions, but

this was done within the already existing encoding space and the size of the crossbar

package has not been altered.

The actual implementation of the meta-data bu↵er is a direct mapped 16-entry

8-way associative bu↵er and is 47 bits wide for each entry (see Table 6.5). The required

fields for an E-SSB entry in this architecture are: state (4 bits), counter (8 bits),

address (15 bits), processor id (7 bits), thread id (3 bits), register id (6 bits), size (2

bits), signedness (1 bit), and bits for implementation dependent features (in this case

one bit to identify memory operations originating from the local thread unit). The

state field is further specified in Table 6.6.

The state field has not been fully utilized, because not all original SSB oper-

ations like Single-Writer-Multiple-Reader are implemented. The counter field is only

43

Table 6.5: E-SSB Entry

Field State Counter Address PID TID GPR Size Signedness Local

Size (bit) 4 8 15 7 3 6 2 1 1

Table 6.6: E-SSB State Encoding

State Description

0 Invalid Free Entry
1 RLOCK Read Lock
2 WLOCK Write Lock
3 WRLOCK Write-Recursive Lock
4 SWSR1 Single-Writer-Single-Reader Mode 1
5 SWSR2 Single-Writer-Single-Reader Mode 2
6 SWSR3 Single-Writer-Single-Reader Mode 3

7-15 n/a reserved

used for the reader-writer locks and to indicate if the read or write arrived first for

the Single-Writer-Single-Reader (SWSR) operations (as described above). If only the

SWSR operations would have been implemented, then the counter field could have

been removed and additional states could have been added to distinguish the di↵erent

cases for the SWSR modes. The address field only requires 15 bits, because at this

stage it is already known which SRAM block needs to be addressed and 32KiB address

space is therefore su�cient. Internally the combined processor- and thread-identifier

are represented as a 10-bit value and this implementation follows this representation.

The register identifier stores the register location (64 registers per thread unit) to which

the value has to be returned to. This is required for the E-SSB Mode 3, when the return

of a load is delayed until the store arrives. The size and the signedness of the memory

operation is stored to make sure only matching pairs of load-store and lock/unlock are

performed. The local bit is an implementation specific detail to identify if the operation

44

came from the local thread unit or from the network. Depending on the bit value the

data is returned directly to the thread unit or directed to the network (crossbar). The

E-SSB bu↵er is created generously large with 128 entries. This allows all experiments

to be performed without the need to fall back to a software-based approach, which is

not part of this research. The E-SSB module creates special network return packages

to accommodate support for E-SSB return codes, interrupts and performance counter

events. The interrupt is always raised in the thread unit that issues the memory oper-

ation and not in the thread unit where the E-SSB is located. The format of the E-SSB

return packages is shown in Table 6.7. TrCode species the type of package, which is

in this case is E-SSB Return. Int is used to raise an E-SSB interrupt. Sync is used

by the performance counters. It indicates if an E-SSB load operation was successful or

not (this only applies to E-SSB Mode 1 and 2 operations). E-SSB Code is the return

code from the E-SSB module. It indicates success, failure, or if another thread unit is

waiting. In the case of an interrupt the field indicates the interrupt reason. Possible

reasons for interrupts are faulty programs with size or state violations of the issued

operation or non-faulty programs that just filled up the bu↵er. The E-SSB Code is

sign-extended to 64-bit and written to the register specified in the GPR field. PID

and TID encode the destination and are used by the crossbar for routing. Error has

the same behavior as for normal memory operations and raises an External interrupt.

This normally happens when a user level store tries to access protected memory or a

load/store access is outside the valid memory space. The content of the Data field is

written to register GPR+1.

Table 6.7: E-SSB Return Package

Field TrCode Int Sync E-SSB Code PID TID Error GPR Data

Size (bit) 6 1 1 3 7 3 1 6 64

At last a few changes are required on the crossbar interface. The crossbar

45

interface arbitrates the network access of two thread units that share a single crossbar

port. There are two virtual networks - one for memory load and store request and

another one for the load returns. The first type has a bu↵er in the crossbar interface,

because a thread unit and in turn the memory controller might already be busy with

a previous network request or a local request from the thread unit. The second type

had originally no bu↵er, because a thread unit is designed to handle a load return

request every cycle. With the introduction of the E-SSB return package that writes

two registers this is no longer true and a second bu↵er of the same size is added to

the crossbar interface to compensate for this. This bu↵er is added for pure functional

reasons to make the original SSB instructions work. This bu↵er is not required by the

new E-SSB Mode 3 instruction and an actual implementation of the E-SSB without

E-SSB Mode 1 and 2 instructions would not need it. Therefore further investigation to

find an optimized size for the bu↵er or to find an alternative solution, which would not

require the bu↵er at all, were not performed. Minor additional changes are required

to process the new E-SSB operations network packages, which is analogous to the

handling of atomic memory operations network packages.

In summary the existing architecture is surprisingly extension friendly and most

changes could be easily integrated by leveraging already existing system components.

6.1 Logic Resource Usage of the Extended Synchronization State Bu↵er

New architectural features may sometimes be implemented very easily, but the

associated hardware cost can be overwhelming and may not be feasible to implement

in hardware. A comparison of the Cyclops-64 design with and without E-SSB is per-

formed. The HDL code is converted to VHDL and synthesized with the design com-

piler, using the generic technology independent libraries (GTECH) to generate a VHDL

netlist. Then a tool is used to analyze the VHDL netlist and calculate the number of

each design primitive. The design primitives reported for this study are the following

basic logic elements: NOT, AND, OR, XOR, Flip-Flops (FF), and SRAM. An exact

46

gate number cannot be given, because this depends on the specific component libraries

of the semiconductor foundry.

Table 6.8: Logic Resource Usage of the Cyclops-64 Architecture

Design Primitive Original Design Design with E-SSB Increase (%)

NOT 6,946,100 7,364,740 6.03%
AND 10,924,586 11,779,946 7.83%
OR 5,812,398 6,257,358 7.66%
XOR 1,171,951 1,200,671 2.45%
FF 2,140,299 2,350,619 (+76,000) 6.28 (9.83)%
RAM(bit) 50,318,560 51,260,640 1.87%

As mentioned in Section 4.4 the implementation of the first two Single-Writer-

Single-Reader Modes (E-SSB Mode 1 and E-SSB Mode 2) require additional bu↵ers in

the crossbar interface, which is solely responsible for an increase of 76,000 FF in the

whole system. The first two modes are only implemented to have a fair comparison

for benchmarking. In the final architecture it would not be necessary to implement

all three modes and these additional FF would not be required. They are still listed

in parentheses in Table 6.8 for completeness to represent the current design. The

increase in combinatorial logic and Flip-Flops is moderate around 6-7%. The more

costly resource - the on-chip SRAM - has only increased by less than 2%. This shows

that the idea of E-SSB is a feasible solution that actually can be implemented in

hardware.

47

Chapter 7

E-SSB CASE STUDY: WAVEFRONT COMPUTATION

This chapter details the wavefront microbenchmark, as introduced in section 4.1,

implementation for the Cyclops-64 many-core architecture using the following synchro-

nization constructs: barrier, signal-wait, and fine-grain in-memory synchronization.

The di↵erent implementations are described in the following subsections.

7.1 Wavefront Computation with Barriers

A well-known coarse-grain synchronization construct is the barrier. A barrier

enforces order on the issuing of memory operations and thread execution. Barriers,

even if implemented or partially supported in hardware, can incur additional overhead,

which needs to be considered when parallelizing an application. One way to reduce

the synchronization overhead is to use a blocking approach. The 2D array is divided

into blocks and each row of blocks is processed by one thread. Threads are statically

assigned in a round-robin fashion to rows. By increasing the block size, the overhead

of the barrier can be mitigated, but it also reduces parallelism. The barrier synchro-

nization is considered a coarse-grain synchronization construct because it synchronizes

all threads. The work allocated to each thread is equal (except for the corner cases),

but other unpredictable side-e↵ects, like crossbar congestion, can produce a variation

in execution time for each thread. This means that if a single thread falls behind,

all threads must wait for this one thread to complete, even though the wait for cer-

tain threads may be wasteful (i.e. there are no dependencies with the slowest thread).

This unnecessarily harsh synchronization takes its toll and the problem is even further

aggravated with increasing number of cores.

48

On the Cyclops-64 architecture this parallelization strategy does not scale very

well with the number of cores, although there is assisting hardware support for barriers.

Even an increase in the problem size, which helps to mitigate the overhead of ramping

up and down the wavefront, does not provide significant performance gains either.

Figure 7.1 shows the speedup for the barrier version of the benchmark with a maximum

speedup of 24x.

7.2 Wavefront Computation with Signal-Wait

Another well known synchronization construct is signal-wait. Signal-wait can be

seen as a fine-grain synchronization construct when compared to barriers. Instead of

synchronizing a set of threads, it allows a finer control akin to point-to-point synchro-

nization methods. In this parallelization strategy, the producer can signal the consumer

when it has finished the write. The consumer will wait until the signal arrives and then

read the data it was waiting for. Depending on the architecture the Signal and Wait

functions might have di↵erent implementations and special hardware support might be

required. On an out-of-order architecture, a special operation called a fence instruction

is required to make sure that the signal from the producer is not sent before the write

operation and the read operation from the consumer is not issued before the wait. The

overhead of signal-wait can be reduced by unrolling the loop, therefore reducing the

number of synchronization operations, much like a smaller scale of the blocked barrier

approach.

Experiments on the Cyclops-64 architecture show that this fine-grain paral-

lelization strategy is more successful than the barrier approach. Figure 7.2 shows the

speedup for the signal-wait version of the benchmark with a maximum speedup of 72x.

7.3 Wavefront with Fine-Grain In-Memory Synchronization

The last synchronization construct used in this experimental study is a dataflow-

like fine-grain in-memory synchronization method. In fact, three di↵erent versions of

this fine-grain synchronization construct are used, which are described in detail in

49

































































 





































F
ig
u
re

7
.1
:
W
av
ef
ro
nt

S
p
ee
d
u
p
(B

ar
ri
er
)

50








































































 


























F
ig
u
re

7
.2
:
W
av
ef
ro
nt

S
p
ee
d
u
p
(S
ig
n
al
-W

ai
t)

51

Section 4.4 and Chapter 5. The important di↵erence between the three versions is that

the first two versions are blocking, while the last one is non-blocking. They use the same

approach as signal-wait, but replaces the Signal and Wait functions with synchronizing

load and store instructions, which are supported in hardware. Much better results are

expected from these synchronization constructs, because it only synchronizes the load

and store and not any unrelated memory operations.

The first two synchronization constructs prove to be faster than the barrier

approach, but are still slower than the signal-wait implementation. This is due to

the blocking behavior of the first two synchronization constructs, which is fatal for

in-order-issue processors. Signal-wait is blocking on the receiver side, but not on the

sender side. The first two fine-grain synchronization constructs are blocking on both

the sender and receiver side. To solve this dilemma, the third fine-grain synchronization

construct is non-blocking on both sides - sender and receiver. This change achieves

promising results. The third implementation beats all other implementations in every

case. It receives maximum speedup for any problem size and scales much better with

the number of threads. Even small problem sizes achieve better speedup with this

implementation than with any of the previous synchronization constructs. Figures 7.3,

7.4, and 7.5 show the speedups for the di↵erent fine-grain synchronization versions of

the benchmark with a maximum speedup of 60x, 50x and 94x, respectively.

52

























































































 


























F
ig
u
re

7
.3
:
W
av
ef
ro
nt

S
p
ee
d
u
p
(S
W

S
R

1)

53

























































































 


























F
ig
u
re

7
.4
:
W
av
ef
ro
nt

S
p
ee
d
u
p
(S
W

S
R

2)

54




































































































 




























F
ig
u
re

7
.5
:
W
av
ef
ro
nt

S
p
ee
d
u
p
(S
W

S
R

3)

55

Chapter 8

THE ADVANTAGES AND DISADVANTAGES OF NON-STRICT
SYNCHRONIZATION

The di↵erent E-SSB modes provide all the feature of fine-grain synchronization,

but conceptually they are quite di↵erent. This a↵ects the way how they have to be

used programmatically and therefore also a↵ect performance. Figure 8.1 shows the

assembly code for the wavefront kernel using E-SSB 1 for synchronization. The loop

has been unrolled so that four iterations are processed at one. This reduces not only

the usual loop overhead such as pointer increments and branching, but also reduces

the number of synchronizations operations needed. Line 9-11 show the loop construct

that is need for E-SSB 1 to read a synchronized variable. The loop will keep spinning

until the memory location has been marked as full by the producer. This requirement

to check the return code to make sure that the data is available makes the overall

construct blocking. The code actually takes advantage of this blocking behavior. The

following load instructions in line 12-15 would all requires synchronization too, but by

making sure that the synchronization is successful first before the execution continues,

it is guaranteed that the following load instruction are reading the correct values. This

is because the producer that creates these values writers first all the unsynchronized

values and then the synchronized value last (see line 34 - 36). The characteristics of

this first mode are that both, the write and the read operation, are blocking. That

means the processor cannot continue operation until the result comes back, which is a

full round-trip through the crossbar for this code example. The impact for code size is

minimal, since only one additional branch instruction is required to check for the result

of the operation. There is more crossbar tra�c for two reasons. First there might be

more tra�c if the read fails, because it has to be repeated. Second, the synchronized

56

write also receives a return code back. A normal store instruction would not receive

any data, so there is also one more crossbar return package.

The blocking behavior is not a direct e↵ect of the E-SSB 1 instruction itself, but

how it is being used. The code in Figure 8.2 uses optimistic speculation. Instead of

checking the return code right away, the code first issues all the required load instruc-

tions (line 11-14) and then checks the return code (line 15). If the return indicates

success, then all the data returned from the load instructions contain the correct data.

If not, then all the operations have to be repeated. The code size in this particu-

lar example does not increase, but more sophisticated compiler generate code might

schedule also other instructions that could update loop induction variables before the

return code is checked. In this case an alternative code path must be taken to undo

the changes already made or do not repeat them. This allows even further specula-

tion and overlap of instructions, but also negatively a↵ects code size and makes code

generation and scheduling more di�cult. Another more important issue to consider is

the potential increase in memory tra�c. Every time the synchronization fails all of the

memory operation have to be repeated in this example. This puts additional burden

on the crossbar network and the memory controllers. It could lead to congestion in the

network or exacerbate it. If power is a concern then network tra�c should be limited

or avoided, since most of the power is used by memory operations [44].

Figure 8.3 displays the code for the same kernel, but using E-SSB 2 instructions

for synchronization. The approach is very similar to E-SSB 1 instructions, but addi-

tional return code handling is required to send the processor to sleep (line 15) or wake

up another processor (lines 46 - 49). The additional instruction overhead is no longer

neglectable and can negatively a↵ect instruction caches and the additional branching

can lead to more branch mispredictions, since the outcome is not predictable.

The code in Figure 8.4 looks almost identical to a serial implementation of the

code. All the load operations that require synchronization are replaced by E-SSB 3 load

instructions. The same applies to all store operations. This approach does not require

any additional instructions, so it does not a↵ect the instruction cache. It also does

57

1 N <� problem s i z e
2 OOT <� 1/3
3 r11 <� 1
4 r13 <� a [i �1] [j]
5 r14 <� a [i] [j]
6
7 loop head :
8 ldd r15 ,�8(r13) # a [i �1] [j �1]
9 l oop sws r1 rd :
10 swsr1 rd r16 , r13 # a [i �1] [j]
11 bne r16 , l oop sws r1 rd
12 ldd r18 , 8(r13) # a [i �1] [j +1]
13 ldd r19 , 1 6 (r13) # a [i �1] [j +2]
14 ldd r20 , 2 4 (r13) # a [i �1] [j +3]
15 ldd r21 ,�8(r14) # a [i] [j �1]
16 addi r13 , r13 , 32
17 addi r11 , r11 , 4 # j += 4
18 cmplt r26 , r11 ,N # j < N
19 faddd r22 , r15 , r17
20 faddd r23 , r17 , r18
21 faddd r24 , r18 , r19
22 faddd r25 , r19 , r20
23 faddd r22 , r22 , r21
24 fmuld r22 , r22 ,OOT
25 faddd r23 , r23 , r22
26 fmuld r23 , r23 ,OOT
27 faddd r24 , r24 , r23
28 std r23 , 8(r14)
29 fmuld r24 , r24 ,OOT
30 faddd r25 , r25 , r24
31 std r24 , 16(r14)
32 fmuld r25 , r25 ,OOT
33 std r25 , 24(r14)
34 loop swsr1 wd :
35 swsr1 wd r16 , r14 , r22
36 bne r16 , loop swsr1 wd
37 addi r14 , r14 , 32
38 bt r26 , loop head

Figure 8.1: Assembly Code of the Wavefront Kernel using E-SSB 1

58

1 N <� problem s i z e
2 OOT <� 1/3
3 r11 <� 1
4 r13 <� a [i �1] [j]
5 r14 <� a [i] [j]
6
7 loop head :
8 ldd r15 ,�8(r13) # a [i �1] [j �1]
9 l oop sws r1 rd :
10 swsr1 rd r16 , r13 # a [i �1] [j]
11 ldd r18 , 8(r13) # a [i �1] [j +1]
12 ldd r19 , 1 6 (r13) # a [i �1] [j +2]
13 ldd r20 , 2 4 (r13) # a [i �1] [j +3]
14 ldd r21 ,�8(r14) # a [i] [j �1]
15 bne r16 , l oop sws r1 rd
16 addi r13 , r13 , 32
17 addi r11 , r11 , 4 # j += 4
18 cmplt r26 , r11 ,N # j < N
19 faddd r22 , r15 , r17
20 faddd r23 , r17 , r18
21 faddd r24 , r18 , r19
22 faddd r25 , r19 , r20
23 faddd r22 , r22 , r21
24 fmuld r22 , r22 ,OOT
25 faddd r23 , r23 , r22
26 fmuld r23 , r23 ,OOT
27 faddd r24 , r24 , r23
28 std r23 , 8(r14)
29 fmuld r24 , r24 ,OOT
30 faddd r25 , r25 , r24
31 std r24 , 16(r14)
32 fmuld r25 , r25 ,OOT
33 std r25 , 24(r14)
34 loop swsr1 wd :
35 swsr1 wd r16 , r14 , r22
36 bne r16 , loop swsr1 wd
37 addi r14 , r14 , 32
38 bt r26 , loop head

Figure 8.2: Assembly Code of the Wavefront Kernel using E-SSB 1 and Optimistic
Speculation

59

1 N <� problem s i z e
2 OOT <� 1/3
3 r11 <� 1
4 r13 <� a [i �1] [j]
5 r14 <� a [i] [j]
6
7 loop head :
8 ldd r15 ,�8(r13) # a [i �1] [j �1]
9 l oop sws r2 rd :
10 swsr2 rd r16 , r13
11 cmpieq r18 , r16 ,�1
12 bt r18 , l o op sws r2 rd
13 cmpine r18 , r16 ,�2
14 bt r18 , swsr2 rd done
15 s l e e p r0
16 b l oop sws r2 rd
17 swsr2 rd done :
18 ldd r18 , 8(r13) # a [i �1] [j +1]
19 ldd r19 , 1 6 (r13) # a [i �1] [j +2]
20 ldd r20 , 2 4 (r13) # a [i �1] [j +3]
21 ldd r21 ,�8(r14) # a [i] [j �1]
22 addi r13 , r13 , 32
23 addi r11 , r11 , 4 # j += 4
24 cmplt r26 , r11 ,N # j < N
25 faddd r22 , r15 , r17
26 faddd r23 , r17 , r18
27 faddd r24 , r18 , r19
28 faddd r25 , r19 , r20
29 faddd r22 , r22 , r21
30 fmuld r22 , r22 ,OOT
31 faddd r23 , r23 , r22
32 fmuld r23 , r23 ,OOT
33 faddd r24 , r24 , r23
34 std r23 , 8(r14)
35 fmuld r24 , r24 ,OOT
36 faddd r25 , r25 , r24
37 std r24 , 16(r14)
38 fmuld r25 , r25 ,OOT
39 std r25 , 24(r14)

Figure 8.3: Assembly Code of the Wavefront Kernel using E-SSB 2

60

40 loop swsr2 wd :
41 swsr2 wd r16 , r14 , r22
42 cmpieq r17 , r16 ,�1
43 bt r17 , loop swsr2 wd
44 cmpieq r17 , r16 ,�2
45 bt r17 , swsr2 wd done
46 s h l i r17 , r16 , 4
47 o r i r17 , r17 , 0 x4002
48 s h l i r17 , r17 , 16
49 std r0 , 0 (r17)
50 swsr2 wd done :
51 addi r14 , r14 , 32
52 bt r26 , loop head

Figure 8.3: Assembly Code of the Wavefront Kernel using E-SSB 2 (continued)

not introduce any additional branches that could lead to flushes of the pipeline due to

branch misprediction. The instructions are also not blocking and there is no additional

overhead for the crossbar either. But this does not come for free. The instructions

are no longer blocking, therefore all instructions need now to be synchronized, which

increasing the pressure on the E-SSB.

Figure 8.5 illustrates the advantages of the non-strict behavior of an E-SSB 3

load operation. Even if the load operation is outstanding, other operations can still

be issued in-order until a register dependency is met. The register dependencies are

enforced by the scoreboard. An E-SSB 3 load or store operation produces the exact

same number of crossbar packages as their regular memory load and store counterparts.

This means no additional crossbar overhead and possible congestion is introduced by

using these operations.

61

1 N <� problem s i z e
2 OOT <� 1/3
3 r11 <� 1
4 r13 <� a [i �1] [j]
5 r14 <� a [i] [j]
6
7 loop head :
8 ldd r15 ,�8(r13) # a [i �1] [j �1]
9 ldds r17 , 0(r13) # a [i �1] [j]
10 ldds r18 , 8(r13) # a [i �1] [j +1]
11 ldds r19 , 1 6 (r13) # a [i �1] [j +2]
12 ldds r20 , 2 4 (r13) # a [i �1] [j +3]
13 ldd r21 ,�8(r14) # a [i] [j �1]
14 addi r13 , r13 , 32
15 addi r14 , r14 , 32
16 addi r11 , r11 , 4 # j += 4
17 cmplt r26 , r11 ,N # j < N
18 faddd r22 , r15 , r17
19 faddd r23 , r17 , r18
20 faddd r24 , r18 , r19
21 faddd r25 , r19 , r20
22 faddd r22 , r22 , r21
23 fmuld r22 , r22 ,OOT
24 faddd r23 , r23 , r22
25 s td s r22 ,�32(r14)
26 fmuld r23 , r23 ,OOT
27 faddd r24 , r24 , r23
28 s td s r23 ,�24(r14)
29 fmuld r24 , r24 ,OOT
30 faddd r25 , r25 , r24
31 s td s r24 ,�16(r14)
32 fmuld r25 , r25 ,OOT
33 s td s r25 , �8(r14)
34 bt r26 , loop head

Figure 8.4: Assembly Code of the Wavefront Kernel using E-SSB 3

62

F
ig
u
re

8
.5
:
E
-S
S
B

3
E
xa

m
p
le

63

Chapter 9

E-SSB EXPERIMENTAL TESTBED

For experimental performance evaluation the proposed Extended Synchroniza-

tion State Bu↵er (E-SSB) is implemented at the Hardware Description Language

(HDL) level of the Cyclops-64 (C64) architecture. Moreover, the Delaware Enhanced

Emulation Platform (DEEP) [45] is used to emulate this many-core architecture. This

emulation platform is fast and gate-level accurate compared to available software based

methods. It is capable of emulating the whole many-core design with a relatively small

number of FPGAs (32 Altera Stratix II) thanks to the Delaware Iterative Multipro-

cessor Emulation System (DIMES) mode.

9.1 DEEP: FPGA-based Emulation System

In this section we describe the hardware platform, the emulation methodology

and the debugging support of the system. DEEP has been developed in order to both

validate the Cyclops-64 architecture features and test its software stack. In the context

of this thesis its use has been extended for benchmarking and performance evaluation.

Figure 9.1 shows a frontal-view of the hardware platform. The challenge and cost in

testing new hardware designs lies in the di�culty of verifying whether a circuit will work

under real-world conditions. Software-based simulators can get close to the behavior of

the real circuit, but take much longer to execute than the actual hardware. Therefore,

it is unrealistic to run a great variety or larger benchmarks for a whole chip on existing

software-based logic simulators to verify hardware design and/or test its software stack.

Many concurrency related bugs are discovered by running real-world applications using

full system emulation. While high emulation speed is required, it is very important to

quickly respond to logic design changes, especially, at the early stage of logic design.

64

Although the amount of bugs at the early stages of development are usually high, they

are easily found using simple synthetic test cases or small kernel benchmark. That

means turn-around time regarding logic changes is more important than emulation

speed - at least during early stages of development. The major objectives of DEEP are

to support all design and test stages, to realize good turn-around time for the early

stages and high emulation speed for the later stages, to do the whole chip emulation

as well as to provide an e�cient debugging environment.

9.2 DEEP Hardware Platform

The hardware platform of DEEP is comprised of a host system and a custom

made system with a series of highly connected FPGAs. The host system can be any o↵-

the-shelf PC with an Ethernet connection to run the control- and debugging software.

Figure 9.2 shows a block diagram of DEEP. Inside the cabinet is a big backplane

with power supply circuitry. 16 FPGA boards are plugged into the backplane which

provides not only power, but also the global clock (100MHz) and interconnection to

all FPGA boards. There are three di↵erent type of FPGA boards. The top and

bottom row of FPGA boards are the processing boards. The most left one is the

root board and the remaining boards in the middle row are the switching boards.

The root board has two Altera Stratix II 2S90 FPGAs and a daughter board for the

Ethernet connection to the host system. The Ethernet daughter board has additional

logic, which allows the remote programming of all FPGAs in the system via Ethernet.

The FPGAs on the root board are used to implement the root node of a tree. The

remaining FPGAs in the system are connected in a tree like fashion to the root board.

This allows the host system to communicate with all FPGAs. The processing board

has five FPGAs. One Cyclone 1C4 FPGA for the tree node, two Stratix II 2S90

FPGAs for the emulation logic, and two Cyclone II 2C35 FPGAs for interfacing logic

to the DIMMs. These additional FPGAs for the memory interface are required to

refresh the memory while reprogramming the emulation logic in the other FPGA. The

switching board has two Stratix II 2S90 FPGAs which are used to implement the

65

Figure 9.1: DEEP: The emulation platform consists of 32 Altera Stratix II FPGAs;
20 for processing units, 10 for switches, and 2 for host communication.

66

switching logic for the emulation system. The processing boards are connected to the

switching boards. These connections are used during emulation to pass data between

the di↵erent processing boards. The tree is only used by the host for communication

with the FPGAs. Overall, only 20 Stratix II 2S90 FPGAs can be used for emulating

user logic.

9.3 DEEP Emulation Methodology

In order to achieve its main objective DEEP supports two di↵erent modes:

simulation mode and emulation mode. The simulation mode is a logic processor based

logic simulation methodology. In this mode, the original logic design is translated

into logic programs, and then these logic programs are run on a large number of

logic processors. Usually, a logic design consists of a netlist of gates and memory

cells including Flip-Flops (FF). It can always be mapped to a series of primitive logic

operations such as AND, OR, etc.. Figure 9.3 shows the translation of a logic design

into a logic program.

DEEP can quickly generate logic programs from an original logic design, due

to simple translation. For instance, the Cyclops-64 combinatorial logic design (around

43 million gates) can be translated into logic programs within two minutes. Logic

programs generated from an original design are executed on a huge number of logic

processors, which are implemented on the processing FPGAs. Each processing FPGA

has 20 logic processors, and one instruction queue is shared by all processors in one

FPGA. Therefore, at most 20 di↵erent submodules in a design can be simulated in this

system. If one submodule has more than 20 instances, multiple processing FPGAs are

utilized for it. The simulation mode is available on a general workstation as well, so

logic simulation can be done anywhere without the hardware, although the simulation

speed is much slower.

On the other hand, the emulation mode design is based on an iterative emulation

methodology [46]. Since the whole many-core architecture design cannot fit into a single

FPGA of DEEP, or any current available FPGA on the market, the architectural design

67

Figure 9.2: Block Diagram of DEEP: The figure shows the tree-like connections be-
tween the DEEP FPGAs and the di↵erent board types - root board,
processing boards, and switching boards.

68

Figure 9.3: DEEP Simulation Mode: User Logic to Logic Program mapping. The
logic primitives (A-L) shown in the original logic design on the left are
translated into instructions for the logic processor shown on the right.

is separated into submodules, which can fit into a FPGA. Even though each submodule

fits into one FPGA, a lot of FPGAs would be still required to implement the entire chip

in the emulation system. Furthermore, many hardware resources would be required

for communication between submodules in di↵erent FPGAs. Instead of mapping each

submodule to a di↵erent FPGA, the emulation system adopts an iterative emulation

approach (see Figure 9.4).

Combinatorial logic equivalent submodules are implemented on only one (or a

few FPGAs), and then iteratively utilized to emulate all instances of the submodule.

This emulation method drastically reduces the necessary number of FPGAs. Each

submodule’s FFs and internal RAM blocks are isolated from the original logic design.

The content of the FFs and RAMs are independent of each submodule’s instance,

so they must be stored separately. The emulation system utilizes internal memories

for FFs and external memories for RAM blocks, and only the combinatorial logic is

implemented in the FPGA. The flow described above is done by the DEEP software

69

automatically. By adopting the iterative emulation methodology, huge logic designs,

which cannot fit into an existing single FPGA, can be emulated in a few FPGAs.

Because a target logic design needs to be synthesized and mapped into a FPGA, it

takes much more preparation time than the simulation mode until the logic design is

ready to be emulated. However, after the logic design is mapped into the FPGA, it

runs at native combinatorial logic speed of the FPGA even though it is required to

emulate the logic iteratively. In case of the Cyclops-64 design (with E-SSB extension)

the average emulation speed of the whole chip is around 20k cycles/sec.

Figure 9.4: DEEP Emulation Mode: User Logic to Iterative Emulation mapping.
FFs and RAMs are extracted from the original logic design on the left
and mapped to instance addressable memory blocks in the FPGA. The
remaining combinatorial logic is used iteratively in the FPGA.

70

9.4 DEEP Debugging Support

In simulation mode, it is easy to check any signals since all logic is executed

as logic programs. If inputs, outputs and contents of FFs/RAM blocks need to be

observed, the DEEP host directly accesses an external memory where the data is

stored. For other signals, additional processing is required, because all intermediate

signals are overwritten in the local temporary memory of a logic processor which is

unreachable from the host. First, the host sets a breakpoint in the debugging special-

purpose register of the logic processor. Second, the logic processor starts execution

until the PC reaches the breakpoint. Third, the debugging control unit issues several

logic instructions to move the debugged signal to the external memory of the FPGA.

Finally, the host loads the data. For this debugging feature, there are 16 special

purpose registers reserved. If more than 16 signals in one submodule are necessary to

be observed at the same time, the host needs to repeat this process for every set of 16

signals. Moreover, not only simple signal tracing is possible, but also program tracing

is supported when a processor is simulated. Using program tracing, correctness of a

target benchmarks can be easily confirmed. If an error is discovered, the system can

switch to signal tracing or use both tracing strategies although simulation speed slows

down considerably. The key feature of this simulation mode is fast translation into

logic programs and good debugging support.

Next, the debugging support is also necessary in the emulation mode because

such support is very helpful to locate a bug for long running benchmarks. The software

simulator is used in conjunction with the hardware emulator to obtain signals inside

combinatorial logic. In this mode, all combinatorial logic is mapped into a FPGA, so

it cannot be observed directly. Fortunately, the content of FFs and memory blocks is

reachable because they are stored in memories of the FPGAs. Being able to read this

data from the emulation hardware, all signals can be observed by simulating combina-

torial logic on the DEEP host workstation.

71

Chapter 10

E-SSB EXPERIMENTAL EVALUATION

This section presents the results obtained from the experimental testbed, using

the wavefront computation kernel and selected SPEC OpenMP kernel loops.

10.1 Wavefront Computation

The wavefront computation kernel is implemented in six di↵erent versions. The

di↵erent versions are serial, barrier, signal-wait, and E-SSB Modes 1 to 3. All ker-

nels are hand-coded in assembly. In all versions the inner loop is unrolled four times

to reduce the overhead of the synchronization and to allow for a better overlapping

of memory operations and arithmetic computation. The benchmark are run on the

emulation system for problem sizes starting at 16x16 elements at increments of 16 up

to the maximum supported problem size of 512x512 elements. For each problem size,

the wavefront benchmark is run with di↵erent number of threads, starting with one

thread and going up by increments of one to 159 threads. The architecture supports

up to 160 hardware threads, but only 159 can be used, because the OS kernel is run-

ning on the first thread unit. In the real system this number is even further reduced,

because additional thread units are dedicated by the OS for inter-chip communication.

Furthermore, with such large chips it is possible that not all thread units are working

properly due to manufacturing faults and are therefore disabled.

The runtime is calculated only for the kernel and the speedup is calculated

based on the results of the serial version. Figure 10.1 shows the speedups of the

di↵erent parallel versions.

72

10.1.1 Barrier

Even though the hardware-enabled barrier is very e�cient, the speedup of the

application is limited. The weakest link is the slowest thread. All other threads have

to wait for it before they can continue doing useful work. Using barriers for these kinds

of workloads is not necessarily a good choice, and dynamic scheduling approaches have

achieved better results. Nevertheless, the barrier implementation is still considered for

two important reasons. First, the barrier is supported in hardware and this study is

supposed to compare di↵erent hardware supported synchronization constructs. Sec-

ond, from a programming point of view the barrier seems to be an easy and e�cient

construct, because the work for each thread is the same. This show that this think-

ing cannot be applied anymore to many-core architectures and that congestion, bank

conflicts, etc., can have unpredictable impacts on a thread’s execution. The barrier

version of the benchmark achieves a maximum speedup of 24x.

10.1.2 Signal-Wait

The signal-wait version can be implemented very e�ciently on the Cyclops-64

architecture by taking advantage of the extensive atomic memory operation support

and the local, low-latency scratch pad memory resulting in a speedup of 72x. Fig-

ure 3.29 illustrates the synchronization delay of the di↵erent benchmark versions. For

all examples in this illustration, Thread 1 (consumer) always tries to read the shared

data, whereas Thread 2 (producer) is producing this shared data. The first example

shows the synchronization delay for signal-wait. The dashed arrows represent accesses

to scratch pad memory via the back-door each thread unit has to its own scratch

pad memory. This access is much faster, because it does not have to go through the

crossbar. Solid arrows represent memory operations that go through the crossbar and

therefore take more time. Since the consumer spins on its own local synchronization

variable, changes to this variable are observed with little delay. Once the signal from

the producer arrives, the consumer can continue execution without any further synchro-

nization related stalls. This allows the overlap of computation and memory operations

73

after the wait. The producer does not need to stall at all. This makes signal-wait a

very e�cient synchronization construct on Cyclops-64.

10.1.3 Fine-grain In-Memory Synchronization

The di↵erent SSB versions of the benchmark achieve speedups of 60x, 50x and

94x respectively. A closer look at the benchmarks by using performance counters shows

that they are not memory bound. The SSB 1 (busy-wait) version has a synchronization

failure rate of 150%. That means every synchronizing load operation has to be repeated

1.5 times on average, because the data has not been written yet by the producer.

The SSB 2 (sleep-wakeup) version on the other hand has a failure rate of only 1-

2%. Nevertheless, the SSB 1 (busy-wait) approach still achieves better speedups. The

second approach generates fewer memory operations and also saves power, but the price

is a longer synchronization delay, which hinders parallelism and therefore performance.

The SSB 3 (non-strict) version has a failure rate of 25%, but that only means that

the load arrived before the store. No additional overhead or memory transactions

were required to correct this, because the memory controller has already taken care of

it. The second illustration in Figure 10.2 shows that SSB 1 employs a similar busy-

waiting approach as signal-wait, but it has to go through the crossbar every time.

Furthermore, the producer and the consumer have to stall and cannot overlap any

other computation or memory operations until the memory operation on their side has

successfully completed. The SSB 2 sleep-wakeup approach in the next example even

further aggravates this problem, because now the producer has to wake up the consumer

and the synchronization delay increases further. The last SSB mode solves all the

problems of the previous versions by performing the synchronization completely in the

memory controller. No further action is required from the producer or the consumer.

In this mode synchronizing memory operations act like normal memory operations for

the thread unit and the synchronization is transparent to them. This allows aggressive

scheduling of synchronizing and non-synchronizing memory operations and arithmetic

instructions.

74

















       
















(a) Wavefront (16x16)

















     
















(b) Wavefront (32x32)

Figure 10.1: Wavefront Speedup

75

















     

















(a) Wavefront (64x64)















     

















(b) Wavefront (128x128)

Figure 10.1: Wavefront Speedup (continued)

76















      

















(c) Wavefront (256x256)














      

















(d) Wavefront (512x512)

Figure 10.1: Wavefront Speedup (continued)

77

F
ig
u
re

1
0
.2
:
S
yn

ch
ro
n
iz
at
io
n
D
el
ay

Il
lu
st
ra
ti
on

78

10.2 SPEC OpenMP Kernel Loops

The kernel loops are extracted from SPEC OpenMP benchmarks, such as 314.mgrid

and 318.galgel. As in the original SSB paper, this work compares the E-SSB versions

against the software-based approaches proposed by Kejariwal et al. [47]. All loops ex-

hibit the same characteristics, namely, that dependencies between loop iterations are

positive and constant. They also fulfill the requirement of Single-Writer-Single-Reader,

such that the E-SSB synchronization constructs can be applied. Figure 10.3 shows the

speedup of the di↵erent parallel versions against the sequential version. E-SSB 3 clearly

outperforms all other versions, both software and hardware based. Another interesting

aspect is that there is no performance loss when the number of threads increases. K1’s

and K2’s speedups are severely limited, but this is understandable and expected. K1

only performs a single arithmetic operation in the loop and therefore the speedup is

clearly limited by it and the only form of parallelism can be obtained from the number

of iterations that can be performed in parallel without dependence. K2’s story is even

worse, because the iteration dependence is 1. That means none of the iterations can

be performed in parallel. Nevertheless, E-SSB 3 is still able to obtain instruction level

parallelism between iterations through its fine-grain non-strict behavior and does not

su↵er any performance degradation as the other approaches. K3, K4 and K5 do not

only provide su�cient iteration level parallelism due to a larger dependence distance

of 8, but also a larger kernel that provides a great source of cross-iteration instruction

level parallelism that can only be leveraged by E-SSB 3.

10.3 Analysis Breakdown

This section takes an in-depth look at the di↵erent versions of the tested wave-

front benchmarks. This in-depth look consists of breaking down the collected infor-

mation into di↵erent important activities and overheads such as cycles spent on useful

work, synchronization overhead, loop overhead, arithmetic stalls, and stalls due to

synchronized and unrelated memory operations, among others. The program tracing

feature on the emulation engine is enabled to obtain detailed traces of all 160 thread

79

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

SYS MAP MYS SSB 2 SSB 3

S
p
e
e
d
u
p

2
4
8

16
32
64

128

(a) K1

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1.1

SYS MAP MYS SSB 2 SSB 3

S
p
e
e
d
u
p

2
4
8

16
32
64

128

(b) K2

Figure 10.3: SPEC OpenMP Loops Speedup

80

 0

 10

 20

 30

 40

 50

 60

 70

SYS MAP MYS SSB 2 SSB 3

S
p
e
e
d
u
p

2
4
8

16
32
64

128

(a) K3

 0

 20

 40

 60

 80

 100

 120

SYS MAP MYS SSB 2 SSB 3

S
p
e
e
d
u
p

2
4
8

16
32
64

128

(b) K4

Figure 10.3: SPEC OpenMP Loops Speedup (continued)

81

 0

 10

 20

 30

 40

 50

 60

 70

SYS MAP MYS SSB 2 SSB 3

S
p
e
e
d
u
p

2
4
8

16
32
64

128

(c) K5

Figure 10.3: SPEC OpenMP Loops Speedup (continued)

82

units instruction mix. Figure 10.4 shows a break down of the instruction mix of the dif-

ferent benchmark versions. The maximum problem size (512x512) for the benchmark

is used to fully utilize the whole system. The histogram shows the accumulated cycles

spent by all thread units to complete the work. The serial version uses of course only

one thread unit, whereas all the other versions use 159 thread units. To obtain the

actual execution time, each version has to be divided by the number of threads used.

“Work” contains all instructions necessary to perform the actual required computa-

tion. This includes the arithmetic instructions and the memory operations to obtain

the data. “Stall Arithmetic” contains all the stall cycles in the kernel due to depen-

dence on an unfinished arithmetic instruction. “Stall Arithmetic” can be seen as part

of “Work”, because it depends on the given schedule and the arithmetic instruction

latency of the architecture. “Loop Overhead” contains pointer increments, loop exit

checks, branches and branch delays. “Stall Memory” contains all the stall cycles inside

the kernel due to instructions waiting on data to return from memory. “Synchroniza-

tion Overhead” contains all the additional instructions, stalls and branch delays which

are required to perform the actual synchronization. “Function Overhead” contains all

the instructions, stall cycles, etc, which are not part of the kernel code, but the sur-

rounding setup code of the function. “Stall Misc” contains stalls due to the fact that

the crossbar port and the floating-point unit are shared between two thread units and

other architecture related stall cycles. “Function Overhead” and “Stall Misc” are so

small (less than 1%) that they are omitted in the figure.

The instruction mix break-down, overall, is predictable: “Work” and “Stall

Arithmetic” are uniform across all benchmarks. “Loop Overhead” should also be rather

constant across all benchmarks, but signal-wait and barrier have a much higher loop

overhead than the other versions. A detailed analysis shows that this increase is solely

due to branch delays for the signal-wait version, because the loop does not fit completely

in the instruction prefetch bu↵er. The barrier version su↵ers from the same problem,

but it also has more complex loop exit checks on top of that. The barrier version

also su↵ers a lot under a very large amount of memory related stall cycles. This is

83

due to the pathologic nature of programs that use barriers, which have normally three

distinct phases. During phase one, all threads try to obtain the data at the same time,

followed by the computation phase with almost no memory operations. Finally, in the

last phase the results are written back to memory. This behavior makes the first phase

a memory bound problem, which is responsible for the increase in memory related stall

cycles.

Due to the factors described above, the main components that determine per-

formance are the “Stall Memory” and the “Synchronization Overhead”. The E-SSB

3 method shows no “Synchronization Overhead”, because these cycles are hidden in

the memory stall cycles. Thus, for a fair comparison, both of these components must

be used together to evaluate our synchronization methods. Under these conditions, E-

SSB 3 still clearly outperforms all other methods, even the highly optimized signal-wait

version.

84

 0

 5
e+

06

 1
e+

07

 1
.5

e+
07

 2
e+

07

Se
qu

en
tia

l
Ba

rr
ie

r
Si

gn
al

-W
ai

tE
-S

SB
 1

E-
SS

B
2

E-
SS

B
3

Cycles
W

av
ef

ro
nt

 In
st

ru
ct

io
n

M
ix

3.
2e

+
07

W
or

k
St

al
l A

rit
hm

et
ic

Lo
op

 O
ve

rh
ea

d
St

al
l M

em
or

y
Sy

nc
hr

on
iz

at
io

n
Ov

er
he

ad

F
ig
u
re

1
0
.4
:
W
av
ef
ro
nt

E
xe
cu
ti
on

R
u
nt
im

e
B
re
ak

d
ow

n
:
T
h
is

h
is
to
gr
am

sh
ow

s
a
b
re
ak

d
ow

n
of

cy
cl
es

sp
en
t
on

ce
rt
ai
n

im
p
or
ta
nt

as
p
ec
ts

of
th
e
p
ro
gr
am

.
T
h
e
S
eq
u
en
ti
al

ve
rs
io
n
sh
ow

s
cy
cl
es

sp
en
t
by

a
si
n
gl
e
th
re
ad

,
w
h
er
ea
s

th
e
ot
h
er

ve
rs
io
n
s
sh
ow

th
e
ac
cu
m
u
la
te
d
cy
cl
es

sp
en
t
by

al
l
15
9
th
re
ad

s.

85

Chapter 11

INTEL’S CONCURRENT COLLECTIONS (CNC)

Intel’s Concurrent Collections (CnC) is a programming model that extends ex-
isting (sequential) programming languages to turn them into inherently parallel pro-
gramming languages. This greatly simplifies the programming for the user, because
they do not have to add parallelism to their programs or design for parallelism. CnC
adds new constructs and certain restrictions to a programming language to achieve
this. As long as the programmer follows the rules and writes valid CnC programs,
parallelism is inherent and data-race free, deterministic programs are guaranteed. Fur-
thermore, CnC strictly separates the specification of the parallel program, called CnC
Specification Graph, from the tuning. This greatly simplifies the process of writing
applications for several architectures or retargeting applications to a new architecture.
Ideally domain experts only concentrate on optimizing their algorithms without a par-
ticular architecture in mind, while tuning experts do not require any knowledge of the
algorithm to perform their optimization task. CnC provides three new constructs to a
programming language: Step Collections, Item Collections and Tag Collections.

• Step Collections: A step collection is a set of step instances of a particular step.
A CnC program can consist of one or more steps and each step has its own
step collection. A step is like a blueprint - it has all the information how a step
works, but it cannot be executed or run. It requires a tag collection - the factory
- that uses the blueprint to create a step instance with a specific tag - serial
number - assigned to it. A step instance does not have any visible state and its
outputs only depend on its inputs. This is also known as a pure function. Since
the output only depends on the inputs and the inputs are always the same for
a given tag, the whole execution of a step is deterministic. This requires that
all ”get” operations (reading data from an item collection) have to be executed
before the first ”put” operation(writing data to an item collection).

• Item Collections: In an item collection each tag has a unique immutable value
assigned to it once it has been ”put” into the item collection. Subsequent ”put”s
to the same tag are not allowed and every ”get” will always return the same value
for the same tag. Item collections guarantee that only values can be obtained
that have been put there before. If a step instance tries to obtain a value that has
not been ”put” yet, then the step instance is suspended until the data element
becomes available. Item collections enforce the order between steps - the when,
but not the if.

86

• Tag Collections: Tag collections are the control part of every CnC graph/pro-
gram. For each tag that is placed into the tag collection a step instance for each
prescribed step is created. A tag collection can prescribe more than one step
collection. A tag collection defines if, but not when a step instance is executed.

The combination of only these three constructs allows the creation of correct and

valid CnC programs. The CnC runtime knows everything about the static connection of

components of a CnC graph, but it does not know anything about its dynamic behavior.

As a result, the performance might vary with each run of the program. The runtime

needs further information to better utilize the resources available to it and to guide

the execution of the whole application. This information is provided in the form of a

tuning specification. Each of the three basic building blocks of the CnC language can be

optimized by this tuning specification without changing the original CnC graph of the

program. There can be several di↵erent tuning specifications for many architectures,

using all the same CnC program graph specification. The tuning specification can, for

instance, specify how to partition the tag space, where and when to schedule the step

instances, which data storage to use, etc. The current tuning language still requires a

human to create it, but it should be already possible with today’s compiler technology

or other tools to generate this tuning specification automatically. The tuning language

is currently rather simple, but already very powerful in its e↵ects. Future architectures

will require an even more powerful tuning language. This chapter focuses on the tuning

feature for item collections. The new proposed approach for meta-data tracking can

be enabled by using the new dense data item collection type.

87

Chapter 12

DATA AVAILABILITY TRACKING IN SOFTWARE

With the advent of current many-core architectures new possibilities and great

challenges are on the horizon. These new challenges have awakened new interest for

fine-grain, asynchronous execution models. One such challenge is the need to e�ciently

keep track of the availability of data. The heterogeneity and dynamics of new many-

core architectures exacerbate this problem for a number of reasons: (1) reassignment of

cores to other programs, (2) change of priority, (3) power, (4) heat, and (5) hardware

failures, to just list a few. As a result, future systems will contain an ever changing

architecture even during the execution of a single program. This requires a more flex-

ible software stack from the programming language all the way down to the operating

system, which is capable to adapt during execution. A fine-grain, asynchronous exe-

cution model provides a base framework for dealing with such challenges dynamically,

but there are still fundamental open questions that need to be solved. Among them is

data book keeping (meta-data which is used to keep track of the availability, location

and other intrinsic properties of the data block like access pattern, footprint, etc).

The seemingly simple task of keeping this metadata up-to-date to ensure a

semantically correct program execution is still an ongoing research problem even today.

Keeping track of the availability of data seems to be one of the hardest tasks that the

bookkeeping system must take care of. There exist hardware solutions that stem from

the dataflow world which solve this task with very fine grain-level data. However,

the associated hardware costs prevented wide adoption in general purpose computing.

Some of these hardware solutions are the I-structure [20], the full/empty bit of the

Tera MTA/Cray XMT machines [43], and the Extended-Synchronization State Bu↵er

(E-SSB) [48] as described in the previous chapters. Current software solutions are

88

adequate (but far from optimal) or not suitable for general use without hardware

support (e.g. Software Transactional Memory). They have been originally designed

for smaller systems which could be easily statically scheduled and partitioned. These

solutions become ill adapted or right out unusable when scaling out from hundreds to

thousands of cores because of the dynamic behavior that these systems exhibit.

Thus, static approaches will not work well with such dynamic systems and

a more flexible approach is required that allows for example hierarchical tiling and

dynamic partitioning and therefore variable tile sizes during runtime.

This chapter propose a new dependency tracking method and describes its im-

plementation as a proof-of-concept in the Concurrent Collections (CnC) programming

language [36] from Intel. Although this method is investigated under the CnC model,

this method should be applicable to other fine-grain parallel programming and execu-

tion models.

12.1 Problem Formulation

Many real world problems consist of a large amount of dense data. In such

problems, keeping track of the data’s di↵erent states becomes cumbersome when a

large number of fine grained actors are involved. Moreover, the e�cient management of

such states is especially important for dynamic runtime systems in which optimization

parameters are updated during the execution of the target application. Such runtimes

require an e�cient method to keep track of the new/available data as the computation

progresses. Furthermore, a fast query method is needed so that this information can

be collected and processed by the runtime internal optimization engine to steer the

computation for a given set of constraints (i.e. power, performance, memory footprint,

etc). An example of this is to e�ciently query and update n-dimensional tiles of

arbitrary size in applications and architectures in which locality can greatly a↵ect the

total execution time. In summary, how to implement an e�cient data tracking and

querying system is a major concern among dynamic runtime system writers and their

users.

89

12.2 CnC Item Collections

The original item collection provided by CnC is a hash map based container.

That means every insertion or retrieval of a data element requires the usual access

procedures and overhead of a concurrent hash map. As long as the work performed in

a step instance and the size of the data stored for every data element is large enough, the

overhead of an access to the item collection is negligible. If there is a dense distribution

of tags it is possible to use a vector based item collection1. This eliminates the cost of

the concurrent hash map to access an element, but it does not reduce the meta-data

associated with each data element.

One way to alleviate this problem is to tile the dense data and work on tiles

instead of single data elements. This is in most cases the desired way of working on

dense data arrays anyways. Unfortunately, this requires the programmers to perform

this task by themselves and it also locks them into a fixed tile size. Moreover, since the

tile size is now part of the CnC program specification and not the tuning specification,

it violates the idea of separation of concerns and it makes the tuning for di↵erent

architectures more di�cult.

Another aspect is the requirements of di↵erent steps working with the same

item collection. The tile size requirements might be di↵erent, as we will show in the

gaussian blur filter example in Section 15.2, and a fixed tile size does not fit all. In the

following chapter I propose a new data structure that meets the needs of arbitrary tile

sizes with low storage overhead for meta-data.

1 new construct as of CnC version 0.7

90

Chapter 13

RD-TREE

In this chapter a tree-based data structure - the RD-Tree - is proposed to keep
track of the availability of data and also to store the data itself. The data structure
has to provide the following properties and capabilities:

• Single Assignment: Each data element can only be assigned once and the value
is immutable thereafter. Multiple assignments to the same data element have to
be recognized by the data structure and signaled back to the user as errors.

• Availability: Provide information if a data element has already been written and
is available.

• Serve Data: Provide the requested data if and only if all elements are available

• Dependency Tracking: Keep a list of suspended steps that are waiting for data
to become available and resume them once all their requested data becomes
available.

• Memory Management: Keep a get counter of the data elements and deallocate
the data if no longer needed.

13.1 Data Structures

The basic data structure the RD-Tree is working with are called tiles. There

are two type of tiles - data tiles and waiting tiles. Data tiles contain the actual data,

a n-dimensional bounding box, and a get counter. The bounding box describes the

location and shape of the data in n-dimensional space. The get counter indicates how

often the tile will be read. The waiting tiles does not contain any data, because they

serve a di↵erent purpose. They describe on which data a particular step instance is

waiting on. They also use the same bounding box to describe the requested data and

a counter indicating how many outstanding elements are left.

91

The tree itself uses two data structures for its nodes - internal nodes and leaf

nodes. Internal nodes have two child pointers that can point to either inner nodes or

leaf nodes. Furthermore there is a selector that indicates the dimension this node is

splitting, a upper left bound, and a lower right bound. Leaf nodes are just fixed size

containers that hold tiles.

13.2 Splitting Strategy

Initially the root of the RD-Tree is just a leaf node. Once that node has been

filed up with tiles the node has to be split. The partition strategy only looks at a single

dimension to split the node. This allows the fanout to be independent of the number of

dimensions. Although the RD-Tree only allows single assignment of data elements, the

bounding boxes of waiting tiles can overlap with other tiles. This makes it sometimes

impossible to find a single point to split the tiles into two distinct regions. Instead an

upper left bound and a lower right bound are used to describe two regions that can

overlap. The split algorithm searches all dimensions first and selects the dimension

with the smallest overlap.

13.3 Insertion Algorithms

The insertion algorithm starts at the root of the tree. If the root is a inner node

it checks if the tile fit either in the left or right subtree. If it fits in neither, then the

tile is added to the subtree that creates the smallest increase in overlap. Although the

tile is inserted only in one branch of the tree, the algorithm still might also visit the

other branch of the tree. This only happens if both sub-regions overlap and the tile

intersects with the other sub-region. This done to inform potential waiting tile that

this data is available now. Therefore it is important to minimize overlaps as much

as possible when splitting nodes and inserting new tiles. This algorithm is invoked

recursively until a leaf node is reached. First all waiting tiles in the leaf node are

checked if they overlap with the new data tile and updated if required. This update is

very e�cient in the RD-Tree due to its single assignment property. The algorithm has

92

only to check the intersection of the data tile’s and waiting tile’s bounding box and

substract the number of intersection elements from the counter. The counter has been

originally initialized to the number of requested elements. Should all data of a waiting

tile have become available (that means the counter has reached zero), the suspended

step instance is rescheduled and the waiting tile is removed from the leaf node. After

all the wait tile have been processed the data tile is added to the leaf node. If the leaf

node is full the splitting algorithm is invoked to split the leaf node if necessary.

13.4 Query Algorithm

The query algorithm initializes a counter with the number of requested elements

and starts at the root node of the tree. If the root node is a inner node it has to check if

the requested bounding box intersects with the left and the right sub-tree and traverse

each subtree in turn. Once a leaf node is reached all data tiles that intersect with the

requested bounding box marked in a work list and the number of intersecting elements

is subtracted from the counter. After the algorithm has walked the tree and the counter

has reached zero it knows that all the data is available. In this case it will create a

new data tile and copy all the partial elements from the work list into that new data

tile and return it. If not all elements are available a waiting tile is initialized with the

counter value, the step instance and inserted into the tree.

13.5 Memory Management

This algorithm traverses the same way as the query algorithm the tree. In

every leaf node it checks if a data tile intersect with the provided bounding box and

decrements the get counter for that tile. If a tiles get counter reaches zero the data

tile is deallocated and removed from the tree. If a leaf node goes below the minimum

utilization threshold, then its tiles are inserted into the neighboring sub-tree and the

leaf node and inner node are deleted. This could also lead to a split if the neighboring

sub-tree’s leaf node overflows.

93

Chapter 14

RD-TREE IMPLEMENTATION

To test the concept of the RD-Tree the CnC item collection is extended to allow

the storage and retrieval of tiles, otherwise known as blocked ranges in CnC. For this

purpose a new item collection tuner that is intended for dense data arrays and that uses

the RD-Tree is added. A blocked range is a description of a dense linear n-dimensional

tuple space in the terms of a start point and an end point. This implementation

of blocked ranges is based on the idea of TBB’s blocked ranges, but is much more

flexible. It uses variadic templates to implement an universal implementation for n-

dimensional rectangles. The programmer can request or insert any size n-dimensional

blocked ranges. The item collection is responsible for enforcing data dependencies and

element storage. This means that no read request can be completed successful before

all the requested elements have been written.

Two new application programming interfaces (APIs) are provided to the pro-

grammer to use this new item collection: “put range” and “get range”. There are

two di↵erent versions of each interface. The first version returns a copy of the re-

quested data in a C++ Standard Template Library (STL) container like std::vector for

“get range” or takes a STL container as input for “put range” and copies the data to

the item collection. The second uses the new move semantics of the C++11 standard

and performs a destructive put of the data. This means that the data copy into the

item collection comes for free, since no actual copy operation is performed. But this

also means that the vector that originally contained the user data is empty now. In

most programs this is not a problem, because the data is not used afterwards anyways.

94

Chapter 15

RD-TREE EVALUATION

15.1 Testbed

All experiments were performed on a 48 core system. The quad socket system is

equipped with 12 core AMD Opteron 6234 processors (Interlagos) running at 2.4 GHz

and a total of 128 GB system memory.

15.2 Gaussian Blur Filter

This benchmark is a Gaussian blur filter that is applied iteratively on an image.

In this algorithm the new value of each pixel in the image depends not only on its

own value, but also on its surrounding pixels. Each of the participating pixels is

weighted based on the Gaussian distribution and summed up to the new value. To

take advantage of the cache it is beneficial to tile the computation. To calculate one

new tile, the computation depends not only on the data of the previous tile, but also on

the data of the surrounding tiles. A fixed tile size can be used, but is not optimal due

to the di↵erent tile size requirements. It might also have negative impact on the cache

usage, since more data is requested than actually used. Another interesting aspect is

the runtime overhead. Instead of requesting just a single tile, each step has to request

a total of nine tiles before it can start its computation. If no tuning is used at all this

could result in the suspension of each step instance for nine times, before it can finish

its execution successful. This is a big scheduling overhead and it can be avoided by

using tuning. But the runtime overhead of requesting nine separate tiles cannot be

avoided with the currently provided CnC item collections. Here it shows that this new

framework has several benefits. Even if no tuning is used, a step instance has only

to be suspended at most once. With tuning the same result will be achieved, but at

95

lower cost, because there is only one pending request that has to be maintained and

not nine. This also means that the runtime overhead of each step has been reduced,

because only one request has to be processed by the item collection instead of nine.

Figures 15.1 , 15.2 and 15.3 show the runtime and speedup results for seven

di↵erent implementations of the Gaussian blur filter benchmark. The first two version

are sequential and do not use CnC at all. The first sequential version uses blocking to

improve cache e�ciency, but uses one big single array. The second sequential version

uses tiling. The tiled sequential version is used as baseline for the speedup calculations.

The third version uses the hash map implementation of the item collection to store

every data element (one pixel) separately. This is a very ine�cient approach and only

shown for educational purposes. The fourth version uses the vector implementation of

the item collection to store every data element (one pixel) separately. This allows the

use of completely dynamic tile sizes, but every element has to be requested separately.

CnC programmers are not encouraged to ever do this, due to the storage overhead and

runtime overhead. The fifth version uses the hash map implementation, but instead

of storing each element separately a whole tile is used now. The sixth version uses the

vector implementation and also applies manual tiling. The seventh version uses the

RD-Tree.

The third and fourth benchmark version perform considerably worse than the

sequential version if only one thread is used, but the forth performs on par for larger

tile sizes. Nevertheless, its scalability is severely limited and does not perform well

with increasing number of threads. This was an expected result and as we mentioned

above, this is not how this item collection should be used and it was never intended

so by its creators. Although, these are the only version that allows dynamic tile sizes

using the existing features of CnC.

The version that use manual tiling show similar performance numbers for all

benchmarks. This shows that there is no significant di↵erence between the vector item

collection and the hash map item collection for well balanced steps. They are also as

expected the best performing versions, since the tiling has been implemented manually

96

��

��

��

��

��

��

��

�	

�

��

���

� � � �
 �� �� �� �� �

�
��
���

��
	

�

�
������

�����������������������������������
�������������

 �!�������
 �!�������"�����

#��
$�%
&�'�(�

#��
$�%"�����
&�'�(�"�����

�� �� �� �� �� �� �� �� ��

)*�����

��

��

���

���

���

���

���

� � � � �	 �� �� �� ��

�
��
���

��
	

�

��
����

������������������
���������������������������
��

������ !
"�#� ������ $
��
� !
"�#�$
��
� %&�
�

Figure 15.1: Gaussian Blur Filter Results for Problem Size 1024x1024

97

��

��

��

��

��

��

��

�	

�

��

���

� � � �
 �� �� �� �� �

�
��
���

��
	

�

�
������

�����������������������������������
�������������

 �!�������
 �!�������"�����

#��
$�%
&�'�(�

#��
$�%"�����
&�'�(�"�����

�� �� �� �� �� �� �� �� ��

)*�����

��

��

���

���

���

���

���

� � � � �	 �� �� �� ��

�
��
���

��
	

�

��
����

������������������
������������������	��	�����
��

������ !
"�#� ������ $
��
� !
"�#�$
��
� %&�
�

Figure 15.1: Gaussian Blur Filter Results for Problem Size 1024x1024 (continued)

98

��

��

��

��

��

��

��

�	

�

��

���

� � � �
 �� �� �� �� �

�
��
���

��
	

�

�
������

�����������������������������������
���
���
�������

 �!�������
 �!�������"�����

#��
$�%
&�'�(�

#��
$�%"�����
&�'�(�"�����

�� �� �� �� �� �� �� �� ��

)*�����

��

��

���

���

���

���

���

� � � � �	 �� �� �� ��

�
��
���

��
	

�

��
����

������������������
�����������������������������
��

������ !
"�#� ������ $
��
� !
"�#�$
��
� %&�
�

Figure 15.1: Gaussian Blur Filter Results for Problem Size 1024x1024 (continued)

99

��

��

��

��

��

��

��

�	

�

��

���

� � � �
 �� �� �� �� �

�
��
���

��
	

�

�
������

�����������������������������������
���������������

 �!�������
 �!�������"�����

#��
$�%
&�'�(�

#��
$�%"�����
&�'�(�"�����

��� �� �� �� �� �� �� �� ��

)*�����

��

��

��

��

��

���

���

���

���

� � � � �� �� �� �� ��

�
��
���

��
	

�

	
��
���

�
����
����������������������������
���������������

�
�
�
 !�"�#� �
�
�
 $	���� !�"�#�$	���� %&�	���

Figure 15.1: Gaussian Blur Filter Results for Problem Size 1024x1024 (continued)

100

��

��

��

���

���

���

���

���

���

���

���

� � � � � �� �� �� �� ��

�
��
���

��
	

�

	
��
���

�
����
����������������������������
�������������

��������
�
��������
��	����

�
!
"
#�$�%�

�
!
"�	����
#�$�%��	����

��� ��� ��� ��� ��� ��� ��� ��� ���

&'�	���

��

��

���

���

���

���

���

���

� � � � �	 �� �� �� ��

�
��
���

��
	

�

��
����

������������������
���������������������������
��

������ !
"�#� ������ $
��
� !
"�#�$
��
� %&�
�

Figure 15.2: Gaussian Blur Filter Results for Problem Size 2048x2048

101

��

��

��

���

���

���

���

���

���

���

���

� � � � � �� �� �� �� ��

�
��
���

��
	

�

	
��
���

�
����
����������������������������
�������������

��������
�
��������
��	����

�
!
"
#�$�%�

�
!
"�	����
#�$�%��	����

��� ��� ��� ��� ��� ��� ��� ��� ���

&'�	���

��

��

���

���

���

���

���

���

� � � � �	 �� �� �� ��

�
��
���

��
	

�

��
����

������������������
������������������	��	�����
��

������ !
"�#� ������ $
��
� !
"�#�$
��
� %&�
�

Figure 15.2: Gaussian Blur Filter Results for Problem Size 2048x2048 (continued)

102

��

��

��

���

���

���

���

���

���

���

���

� � � � � �� �� �� �� ��

�
��
���

��
	

�

	
��
���

�
����
����������������������������
���������������

��������
�
��������
��	����

�
!
"
#�$�%�

�
!
"�	����
#�$�%��	����

��� ��� ��� ��� ��� ��� ��� ��� ���

&'�	���

��

��

���

���

���

���

���

���

� � � � �	 �� �� �� ��

�
��
���

��
	

�

��
����

������������������
�����������������������������
��

������ !
"�#� ������ $
��
� !
"�#�$
��
� %&�
�

Figure 15.2: Gaussian Blur Filter Results for Problem Size 2048x2048 (continued)

103

��

��

��

���

���

���

���

���

���

���

���

� � � � � �� �� �� �� ��

�
��
���

��
	

�

	
��
���

�
����
����������������������������
���������������

��������
�
��������
� 	����

!
�
"
#
$�%�&�

!
�
"
# 	����
$�%�&� 	����

��� ��� ��� ��� ��� ��� ��� ��� ��	

'(�	���

��

��

���

���

���

���

���

� � � � �	 �� �� �� ��

�
��
���

��
	

�

��
����

������������������
��������������������	���	����
��

������ !
"�#� ������ $
��
� !
"�#�$
��
� %&�
�

Figure 15.2: Gaussian Blur Filter Results for Problem Size 2048x2048 (continued)

104

��

���

���

���

���

���

�	�

����

����

����

����

� � � � � �� �� �� �� ��

�
��
���

��
	

�

��
����

������������������
����	����	�����������������
��

�
��
�����
�
��
�����
��
�

!���"�#
$
%�&�

!���"�#
��
�
$
%�&�
��
�

���� ���� ��	� ���� ���
 ���� ���� ���
 ��	�

'(�
�

��

��

���

���

���

���

���

���

� � � � �	 �� �� �� ��

�
��
���

��
	

�

��
����

������������������
�����	����	����������������
��

���� �! "
#�$� ���� �!%
��
� "
#�$�%
��
� &'�
�

Figure 15.3: Gaussian Blur Filter Results for Problem Size 4096x4096

105

��

���

���

���

���

���

�	�

����

����

����

����

� � � � � �� �� �� �� ��

�
��
���

��
	

�

��
����

������������������
����	����	�����������������
��

�
��
�����
�
��
�����
��
�

!���"�#
$
%�&�

!���"�#
��
�
$
%�&�
��
�

���� ���� ���� �	�� ���� ���� ��	� ���� ����

'(�
�

��

��

���

���

���

���

���

���

� � � � �	 �� �� �� ��

�
��
���

��
	

�

��
����

������������������
�����	����	�������	��	�����
��

���� �! "
#�$� ���� �!%
��
� "
#�$�%
��
� &'�
�

Figure 15.3: Gaussian Blur Filter Results for Problem Size 4096x4096 (continued)

106

��

���

���

���

���

���

�	�

����

����

����

����

� � � � � �� �� �� �� ��

�
��
���

��
	

�

��
����

������������������
����	����	�������������������
��

�
��
�����
�
��
�����
��
�

!���"�#
$
%�&�

!���"�#
��
�
$
%�&�
��
�

���� ���� ���� ���� ���	 ��	� ���� ���� ����

'(�
�

��

��

���

���

���

���

���

���

� � � � �	 �� �� �� ��

�
��
���

��
	

�

��
����

������������������
�����	����	������������������
��

���� �! "
#�$� ���� �!%
��
� "
#�$�%
��
� &'�
�

Figure 15.3: Gaussian Blur Filter Results for Problem Size 4096x4096 (continued)

107

��

���

���

���

���

���

�	�

����

����

����

����

� � � � � �� �� �� �� ��

�
��
���

��
	

�

��
����

������������������
����	����	�������������������
��

�
 �
�����
�
 �
�����!
��
�

"���#�$
%
&�'�

"���#�$!
��
�
%
&�'�!
��
�

���� ���� ���� ���� ���� �	�� ���
 ���
 ���

()�
�

��

��

���

���

���

���

���

���

� � � � �	 �� �� �� ��

�
��
���

��
	

�

��
����

������������������
�����	����	���������	���	����
��

���� �! "
#�$� ���� �!%
��
� "
#�$�%
��
� &'�
�

Figure 15.3: Gaussian Blur Filter Results for Problem Size 4096x4096 (continued)

108

and uses fixed tile sizes.

The performance of the RD-Tree version is comparable with the manual tiled

versions and does not show any major regressions.

109

Chapter 16

RELATED WORK

This research for the hardware based approach was greatly influenced by pre-

vious work on fine-grain synchronization constructs by academia and industry. This

includes research on dataflow constructs like the I-Structure [20], the Synchronization

State Bu↵er (SSB) [42], and the Tera MTA/Cray XMT [25, 43]. The use of tagged

memory, full/empty bits, and I-Structure have been explained in Chapter 2. E-SSB

di↵ers in the following aspect from previous work: It enables ”virtual tagging” of the

whole memory space like SSB; it also supports all data sizes of the architecture and it is

not limited to double-word synchronization. Furthermore, it has been enhanced to sup-

port non-strict synchronization, which is the most crucial part in obtaining great and

scalable performance. It has the benefits of SSB, which means using fewer hardware

resources, and the non-strict behavior of I-Structures.

Another approach that gained momentum in recent years is Transactional Mem-

ory (TM) [49, 50], which also employs a non-blocking synchronization approach. The

major di↵erence with this approach is that in Transactional Memory, if a transaction

fails, all changes done inside a transaction must be rolled back and the transaction has

to be restarted. This results in unnecessary computation every time a transaction has

to be restarted. The fine-grain in-memory synchronization approach does not require

this. The Transactional Memory approach works very well if there is little to no con-

flicts and transactions don’t have to be restarted. If it is used for heavily concurrently

accessed memory regions this approach falls apart and transactions will have a high

failure rate [51].

An extensive collection of papers have been publish in the area of tree-based data

structures, but very little of them were designed for the purpose of data availability

110

tracking. There was early work in dataflow [52, 53] that uses the idea to represent arrays

as trees. Unfortunately all these approaches assume an implementation in hardware or

the overhead of storing every single elements as a leaf node would defeat the purpose

of tiling and generate too much storage overhead. The Fresh Breeze memory model

[54, 55], which also has its roots in dataflow, is more suited, because it work on chucks

of data that encourage the use of tiling. There is also a myriad of spatial data structures

that have strong similarities with the RD-Tree. The R-Tree family [56, 57, 58] of data

structures can work with higher dimensional data, but all dimensions are considered

during splitting and that can lead to a very low fan out. K-d tree [59] uses only one

dimesion for splitting, but does not allow for overlap. The K-D-B Tree [60], the Spatial

kd Tree[61], the Hybrid Tree [62], and the SH Tree [63] has the closest similarity with

the RD-Tree in the aspect that they allow overlap of regions and split nodes on a single

dimension. Most of these spatial data structures were designed for e�cient queries of

large data sets on disk, but non of them were designed with the properties that were

required for this work in mind.

111

Chapter 17

CONCLUSIONS AND FUTURE WORK

This dissertation highlighted two separate approaches - one at the hardware

level and one at the software level - to tackle the issue of synchronization in a massive

parallel environment. Both approaches are not exclusive and could be combined to get

the benefits from both worlds.

At the architectural level this dissertation presented a new design for a dataflow-

like fine-grain synchronization, based on the Synchronization State Bu↵er (SSB) [42],

and its implementation at the Hardware Description Level (HDL) of the Cyclops-64

many-core architecture. The experiments were performed on an emulation engine with

gate-level accuracy. The results surpassed expectations and show very good scalability

for even small problem sizes. Even for larger problem sizes, the non-strict synchro-

nization approach surpasses all other synchronization constructs, such as barriers with

hardware support and signal-wait. The most noticeable result is the scalability beyond

the 100 core barrier all the way up to the maximum core count of 160 cores.

At the language level this dissertation proposes a new item collection, which

facilitates the automatic tiling and synchronization between threads to enforce the

correct order of memory operations to prevent data races. A prototype implementation

- the RD-Tree - shows that this method could promise e�cient data tracking and

querying for dense data arrays. It also comes with several additional benefits. The

tile size is no longer fixed and can be a tuning parameter, which in turn enables the

separation of concerns model. It also greatly reduces the coding e↵ort, because the

item collection does all the tiling work automatically. On a broader scale, this means

that runtime systems and execution model implementations that employ this method

112

will be able to support fine-grain task granularity, exhibit less data movement overall,

and see increased performance.

Although the results are already very promising, there are still several open

questions that haven’t been answered in this dissertation and provide a great opportu-

nity of future work to further improve the performance and applicability of this idea.

One interesting idea that has been proposed is regarding the tree data structure itself.

Currently the tree allows overlap of subregions and this requires query and insertion

algorithms to traverse both branches of a tree node if the overlapping region is within

the search space. Sometimes this might turn out as unnecessary, because the required

data is only in one of the sub-trees. The proposed solution is to further subdivide the

tree until there are only regions that are guarantied to overlap or not overlap at all.

This could reduce unnecessary traversals of sub-trees and improve the performance of

the algorithm.

The current prototype is a proof-of-concept implementation that is limited to

dense n-dimensional data arrays with rectangular n-dimensional tiling. One possible

extension would be to add support for di↵erent types of shapes to enable a wider

variety of stencil-like applications. Another possible extension would be to support

sparse data arrays. Graph-based applications on the other side wouldn’t be a good

match and would require a separate optimized item collection designed and tuned for

graph creation, traversal, and update.

There are also certain limitations that cannot be addressed by this approach.

The algorithm still has to be written with tiling in mind by the programmer. Fur-

thermore the programmer has to ensure that the tiling that is created and guided by

the tuning specification is a legal tiling for the algorithm. The item collection cannot

verify or ensure this property, because it doesn’t know anything about the access pat-

tern within a tile or across tiles. It only maintains data provided to it and serves it

when requested. A compiler that can analyze loop dependencies would be required to

perform these checks and to create and ensure a legal tiling.

113

BIBLIOGRAPHY

[1] Gordon E. Moore. Cramming more components onto integrated circuits. Elec-
tronics, 38(8), April 1965.

[2] Gordon E. Moore. Progress in digital integrated electronics. In Electron Devices
Meeting, 1975 International, volume 21, pages 11–13, 1975.

[3] Tse-Yu Yeh and Yale N Patt. Two-Level Adaptive Training Branch Prediction.
In Proceedings of the 24th Annual International Symposium on Microarchitecture,
pages 51–61. ACM, 1991.

[4] Hubert Kaeslin. Digital Integrated Circuit Design: From VLSI Architectures to
CMOS Fabrication. Cambridge University Press, 2008.

[5] MS Hrishikesh, Doug Burger, Norman P Jouppi, Stephen W Keckler, Keith I
Farkas, and Premkishore Shivakumar. The optimal logic depth per pipeline stage
is 6 to 8 fo4 inverter delays. In ACM SIGARCH Computer Architecture News,
volume 30, pages 14–24. IEEE Computer Society, 2002.

[6] Sheng Sun, Yi Han, Xinyu Guo, Kian Haur Chong, Larry McMurchie, and Carl
Sechen. 409ps 4.7 fo4 64b adder based on output prediction logic in 0.18 um
cmos. In VLSI, 2005. Proceedings. IEEE Computer Society Annual Symposium
on, pages 52–58. IEEE, 2005.

[7] Dean M Tullsen, Susan J Eggers, and Henry M Levy. Simultaneous Multithread-
ing: Maximizing On-Chip Parallelism. In ACM SIGARCH Computer Architecture
News, volume 23, pages 392–403. ACM, 1995.

[8] Susan J Eggers, Joel S Emer, Henry M Leby, Jack L Lo, Rebecca L Stamm, and
Dean M Tullsen. Simultaneous Multithreading: A Platform for Next-Generation
Processors. Micro, IEEE, 17(5):12–19, 1997.

[9] Wm A Wulf and Sally A McKee. Hitting the Memory Wall: Implications of the
Obvious. ACM SIGARCH Computer Architecture News, 23(1):20–24, 1995.

[10] Sally A McKee. Reflections on the Memory Wall. In Proceedings of the 1st Con-
ference on Computing Frontiers, pages 162–167. ACM, 2004.

114

[11] Nam Sung Kim, Todd Austin, D Baauw, Trevor Mudge, Krisztián Flautner, Jie S
Hu, Mary Jane Irwin, Mahmut Kandemir, and Vijaykrishnan Narayanan. Leakage
Current: Moore’s Law Meets Static Power. Computer, 36(12):68–75, 2003.

[12] Hadi Esmaeilzadeh, Emily Blem, Renee St Amant, Karthikeyan Sankaralingam,
and Doug Burger. Dark Silicon and the End of Multicore Scaling. In Computer
Architecture (ISCA), 2011 38th Annual International Symposium on, pages 365–
376. IEEE, 2011.

[13] Mark Bohr. A 30 Year Retrospective on Dennard’s MOSFET Scaling Paper.
Solid-State Circuits Newsletter, IEEE, 12(1):11–13, 2007.

[14] Himanshu Kaul, Mark Anders, Steven Hsu, Amit Agarwal, Ram Krishnamurthy,
and Shekhar Borkar. Near-Threshold Voltage (NTV) Design: Opportunities and
Challenges. In Proceedings of the 49th Annual Design Automation Conference,
pages 1153–1158. ACM, 2012.

[15] Vikas Agarwal, MS Hrishikesh, Stephen W Keckler, and Doug Burger. Clock
Rate versus IPC: The End of the Road for Conventional Microarchitectures. ACM
SIGARCH Computer Architecture News, 28(2):248–259, 2000.

[16] G. Almasi, C. Caşcaval, J.G. Castanos, M. Denneau, D. Lieber, J.E. Moreira,
and H.S. Warren Jr. Dissecting Cyclops: A detailed analysis of a multithreaded
architecture. ACM SIGARCH Computer Architecture News, 31(1):38, 2003.

[17] Elliot Waingold, Michael Taylor, Devabhaktuni Srikrishna, Vivek Sarkar, Walter
Lee, Victor Lee, Jang Kim, Matthew Frank, Peter Finch, Rajeev Barua, et al.
Baring it all to software: Raw machines. Computer, 30(9):86–93, 1997.

[18] David Wentzla↵, Patrick Gri�n, Henry Ho↵mann, Liewei Bao, Bruce Edwards,
Carl Ramey, Matthew Mattina, Chyi-Chang Miao, John F Brown, and Anant
Agarwal. On-chip interconnection architecture of the tile processor. Micro, IEEE,
27(5):15–31, 2007.

[19] Michael B Taylor, Walter Lee, Jason E Miller, David Wentzla↵, Ian Bratt, Ben
Greenwald, Henry Ho↵mann, Paul R Johnson, Jason S Kim, James Psota, et al.
Tiled multicore processors. In Multicore Processors and Systems, pages 1–33.
Springer, 2009.

[20] R.S.N. Arvind, R.S. Nikhil, and K. Pingali. I-Structures: Data Structures for
Parallel Computing. TOPLAS, 11(4):598–632, 1989.

[21] Arvind and Rishiyur Nikhil. Executing a program on the MIT Tagged-Token
Dataflow architecture. In PARLE Parallel Architectures and Languages Europe,
volume 259 of Lecture Notes in Computer Science, pages 1–29. 1987.

115

[22] P. Barth and R. Nikhil. M-Structures: Extending a Parallel, Non-strict, Func-
tional Language with State. In Functional Programming Languages and Computer
Architecture, pages 538–568. Springer.

[23] Burton J. Smith. A Pipelined, Shared Resource MIMD Computer. In Proceedings
of the 1978 International Conference on Parallel Processing, pages 6–8, 1978.

[24] Michael J. Flynn. Some Computer Organizations and Their E↵ectiveness. IEEE
Transactions on Computers, C-21(9):948–960, 1972.

[25] Robert Alverson, David Callahan, Daniel Cummings, Brian Koblenz, Allan
Porterfield, and Burton Smith. The Tera Computer System. In Proceedings of
the 4th International Conference on Supercomputing, pages 1–6. ACM, 1990.

[26] Gail Alverson, Robert Alverson, David Callahan, Brian Koblenz, Allan Porterfield,
and Burton Smith. Exploiting Heterogeneous Parallelism on a Multithreaded Mul-
tiprocessor. In Proceedings of the 6th International Conference on Supercomputing,
pages 188–197. ACM, 1992.

[27] James T. Kuehn and Burton J. Smith. The Horizon Supercomputing System:
Architecture and Software. In Proceedings of the 1988 ACM/IEEE Conference on
Supercomputing, pages 28–34. IEEE Computer Society Press, 1988.

[28] Mark R. Thistle and Burton J. Smith. A Processor Architecture for Horizon. In
Proceedings of the 1988 ACM/IEEE Conference on Supercomputing, pages 35–41.
IEEE Computer Society Press, 1988.

[29] Frank Pittelli and David Smitley. Analysis of a 3D Toroidal Network for a Shared
Memory Architecture. In Proceedings of the 1988 ACM/IEEE Conference on
Supercomputing, pages 42–46. IEEE Computer Society Press, 1988.

[30] R.D. Blumofe, C.F. Joerg, B.C. Kuszmaul, C.E. Leiserson, K.H. Randall, and
Y. Zhou. Cilk: An E�cient Multithreaded Runtime System, volume 30. ACM,
1995.

[31] Kevin Bryan Theobald. EARTH: An E�cient Architecture for Running Threads.
PhD thesis, McGill University, 1999.

[32] S. Zuckerman, J. Suetterlein, R. Knauerhase, and G.R. Gao. Position Paper: Using
a ”Codelet” Program Execution Model for Exascale Machines. In Proceedings of
the 1st International Workshop on Adaptive Self-Tuning Computing Systems for
the Exaflop Era, pages 64–69. ACM, 2011.

[33] Guang R. Gao, Joshua Suetterlein, and Stephane Zuckerman. Toward an Execu-
tion Model for Extreme-Scale Systems-Runnemede and Beyond. Technical Report
UD-CAPSL-TM 104, University of Delaware, April 2011.

116

[34] W. Thies, M. Karczmarek, and S. Amarasinghe. Streamit: A language for stream-
ing applications. In Compiler Construction, pages 49–84. Springer, 2002.

[35] W. Kim and M. Voss. Multicore desktop programming with intel threading build-
ing blocks. Software, IEEE, 28(1):23–31, 2011.

[36] Michael Burke, Kathleen Knobe, Ryan Newton, and Vivek Sarkar. The Concur-
rent Collections Programming Model. Technical Report RU-CS-TR 10-12, Rice
University, December 2010.

[37] B.L. Chamberlain, D. Callahan, and H.P. Zima. Parallel programmability and the
chapel language. International Journal of High Performance Computing Applica-
tions, 21(3):291–312, 2007.

[38] C. Coarfa, Y. Dotsenko, J. Mellor-Crummey, F. Cantonnet, T. El-Ghazawi, A. Mo-
hanti, Y. Yao, and D. Chavarŕıa-Miranda. An evaluation of global address space
languages: co-array fortran and unified parallel c. In Proceedings of the tenth
ACM SIGPLAN symposium on Principles and practice of parallel programming,
pages 36–47. ACM, 2005.

[39] V. Cavé, J. Zhao, J. Shirako, and V. Sarkar. Habanero-java: the new adventures
of old x10. In Proceedings of the 9th International Conference on the Principles
and Practice of Programming in Java (PPPJ), 2011.

[40] G.R. Gao, T. Sterling, R. Stevens, M. Hereld, and W. Zhu. Parallex: A study of
a new parallel computation model. In Parallel and Distributed Processing Sympo-
sium, 2007. IPDPS 2007. IEEE International, pages 1–6. IEEE, 2007.

[41] Frances Allen, G Almasi, Wanda Andreoni, D Beece, Bruce J. Berne, A Bright,
Jose Brunheroto, Calin Cascaval, J Castanos, Paul Coteus, et al. Blue Gene: A
vision for protein science using a petaflop supercomputer. IBM Systems Journal,
40(2):310–327, 2001.

[42] W. Zhu, V.C. Sreedhar, Z. Hu, and G.R. Gao. Synchronization State Bu↵er:
Supporting E�cient Fine-Grain Synchronization on Many-Core Architectures. In
Proceedings of the 34th Annual International Symposium on Computer Architec-
ture, page 45. ACM, 2007.

[43] J. Feo, D. Harper, S. Kahan, and P. Konecny. Eldorado. In Proceedings of the
2nd Conference on Computing Frontiers, page 34. ACM, 2005.

[44] Elkin Garcia, Daniel Orozco, and Guang R. Gao. Energy e�cient tiling on a
Many-Core Architecture. In Proceedings of 4th Workshop on Programmability
Issues for Heterogeneous Multicores (MULTIPROG-2011), pages 53–66, 2011.

117

[45] J. Ributzka, Y. Hayashi, F. Chen, and G.R. Gao. DEEP: An Iterative FPGA-
based Many-core Emulation System for Chip Verification and Architecture Re-
search. In Proceedings of the 19th ACM/SIGDA International Symposium on
Field Programmable Gate Arrays, pages 115–118. ACM, 2011.

[46] H. Sakane, L. Yakay, V. Karna, C. Leung, and GR Gao. DIMES: An Iterative
Emulation Platform for Multiprocessor-System-On-Chip Designs. In 2003 IEEE
International Conference on Field-Programmable Technology (FPT), 2003. Pro-
ceedings, pages 244–251, 2003.

[47] A. Kejariwal, H. Saito, X. Tian, M. Girkar, W. Li, U. Banerjee, A. Nicolau,
and C.D. Polychronopoulos. Lightweight Lock-Free Synchronization Methods for
Multithreading. In Proceedings of the 20th Annual International Conference on
Supercomputing, pages 361–371. ACM, 2006.

[48] J. Ributzka, Y. Hayashi, J.B. Manzano, and G.R. Gao. The Elephant and the
Mice: The Role of Non-Strict Fine-Grain Synchronization for Modern Many-Core
Architectures. In Proceedings of the International Conference on Supercomputing,
pages 338–347. ACM, 2011.

[49] M. Herlihy and J.E.B. Moss. Transactional Memory: Architectural Support for
Lock-Free Data Structures. In Proceedings of the 20th Annual International Sym-
posium on Computer Architecture, page 300. ACM, 1993.

[50] B.D. Carlstrom, A. McDonald, H. Chafi, J.W. Chung, C.C. Minh, C. Kozyrakis,
and K. Olukotun. The Atomos Transactional Programming Language. ACM
SIGPLAN Notices, 41(6):13, 2006.

[51] Vladimir Gajinov, Ferad Zyulkyarov, Osman S Unsal, Adrian Cristal, Eduard
Ayguade, Tim Harris, and Mateo Valero. QuakeTM: Parallelizing a Complex
Sequential Application using Transactional Memory. In Proceedings of the 23rd
International Conference on Supercomputing, pages 126–135. ACM, 2009.

[52] Kim P Gostelow and Robert E Thomas. A view of dataflow. In afips, page 629.
IEEE Computer Society, 1899.

[53] William B Ackerman. A structure memory for data flow computers. Technical
report, DTIC Document, 1977.

[54] Jack B Dennis. Fresh breeze: a multiprocessor chip architecture guided by modular
programming principles. ACM SIGARCH Computer Architecture News, 31(1):7–
15, 2003.

[55] Jack B Dennis, Guang R Gao, and Xiao X Meng. Experiments with the fresh
breeze tree-based memory model. Computer Science-Research and Development,
26(3-4):325–337, 2011.

118

[56] A. Guttman. R-Trees: A Dynamic Index Structure for Spatial Searching, vol-
ume 14. ACM, 1984.

[57] Norbert Beckmann, Hans-Peter Kriegel, Ralf Schneider, and Bernhard Seeger.
The R*-Tree: An E�cient and Robust Access Method for Points and Rectangles,
volume 19. ACM, 1990.

[58] Stefan Berchtold, Daniel A Keim, and Hans-Peter Kriegel. The X-Tree: An Index
Structure for High-Dimensional Data. Readings in multimedia computing and
networking, page 451, 2001.

[59] Jon Louis Bentley. Multidimensional Binary Search Trees Used for Associative
Searching. Communications of the ACM, 18(9):509–517, 1975.

[60] John T Robinson. The kdb-tree: a search structure for large multidimensional dy-
namic indexes. In Proceedings of the 1981 ACM SIGMOD international conference
on Management of data, pages 10–18. ACM, 1981.

[61] Beng Chin Ooi, Ken J McDonell, and Ron Sacks-Davis. Spatial kd-tree: An in-
dexing mechanism for spatial databases. In Proc. IEEE COMPSAC Conf., Tokyo,
pages 433–438, 1987.

[62] Kaushik Chakrabarti and Sharad Mehrotra. The hybrid tree: An index structure
for high dimensional feature spaces. In Data Engineering, 1999. Proceedings., 15th
International Conference on, pages 440–447. IEEE, 1999.

[63] Beomseok Nam and Alan Sussman. A comparative study of spatial indexing
techniques for multidimensional scientific datasets. In Scientific and Statisti-
cal Database Management, 2004. Proceedings. 16th International Conference on,
pages 171–180. IEEE, 2004.

119

Appendix A

CYCLOPS-64

A.1 Instruction Format

Table A.1: X1: Fix-Point Instruction Format

Primary Target Source Source unused Extended
Opcode Register Register 1 Register 2 Opcode

4 6 6 6 1 9
OP RT RA RB 0 XO

Table A.2: X2: Floating-Point Instruction Format

Primary Target Source Source Precision Extended
Opcode Register Register 1 Register 2 (single/double) Opcode

4 6 6 6 1 9
OP RT RA RB p XO

Table A.3: X3: Logic and Compare Instruction Format

Primary Target Source Source Logic/Condition Extended
Opcode Register Register 1 Register 2 Code Opcode

4 6 6 6 6 4
OP RT RA RB UU/CC XO

120

Table A.4: X4: Bit Field Instruction Format

Primary Target/Source Source Immediate 1 Immediate 2 Extended
Opcode Register Register Opcode

4 6 6 6 6 4
OP RT RA M N XO

Table A.5: X5: Move Special Purpose Register Instruction Format

Primary Target Special Purpose Source unused Extended
Opcode Register Register Register Opcode

4 6 6 6 1 9
OP RT SPR RB 0 XO

Table A.6: EX: Extended Synchronization State Bu↵er Instruction Format

Primary Target Source Source E-SSB Size Signed unused
Opcode Register Register 1 Register 2 Code

4 6 6 6 6 2 1 1
OP RT RA RB EE Sz S 0

Table A.7: C: Compare and Trap Immediate Instruction Format

Primary Target Source Integer Immediate
Opcode Register Register Condition Codes

4 6 6 4 12
OP RT RA VV IM

121

Table A.8: D: Memory Instruction Format

Primary Target/Source Address Size O↵set
Opcode Register Register

4 6 6 2 14
OP RT/RS RA Sz D

Table A.9: I: Fix-Point Immediate Instruction Format

Primary Target Source Immediate
Opcode Register Register

4 6 6 16
OP RT RA IMM

Table A.10: BC: Conditional Branch Instruction Format

Primary Condition Source Prediction Displacement
Opcode Code Register

4 6 6 1 15
OP CC RA P DISP

Table A.11: B: Branch and Link Instruction Format

Primary Target Displacement
Opcode Register

4 6 22
OP RT DISP

122

A.2 E-SSB Instructions

A.2.1 Read Lock

rlockb RT,RA Read Lock Byte Sz=0, S=1
rlockh RT,RA Read Lock Half Sz=1, S=1
rlockw RT,RA Read Lock Word Sz=2, S=1

rlockbu RT,RA Read Lock Byte Unsigned Sz=0, S=0
rlockhu RT,RA Read Lock Half Unsigned Sz=1, S=0
rlockwu RT,RA Read Lock Word Unsigned Sz=2, S=0
rlockd RT,RA Read Lock Double Unsigned Sz=3, S=0

Primary Target Source Source E-SSB Size Signed unused

Opcode Register Register 1 Register 2 Code

4 6 6 6 6 2 1 1

0x0 RT RA 0x00 0x00 Sz S 0

The instruction tries to obtain a read lock on the memory location defined in

register RA. This instruction implicitly writes to two registers. The return code is

written to register RT and the return value is written to register RT+1. A value of

0 in register RT means SUCCESS and a value of -1 means FAIL. If the read lock

was successfully acquired, then the value of the memory location is available in register

RT+1.

A.2.2 Write Lock

wlockb RT,RA Write Lock Byte Sz=0, S=1
wlockh RT,RA Write Lock Half Sz=1, S=1
wlockw RT,RA Write Lock Word Sz=2, S=1

wlockbu RT,RA Write Lock Byte Unsigned Sz=0, S=0
wlockhu RT,RA Write Lock Half Unsigned Sz=1, S=0

123

wlockwu RT,RA Write Lock Word Unsigned Sz=2, S=0
wlockd RT,RA Write Lock Double Unsigned Sz=3, S=0

Primary Target Source Source E-SSB Size Signed unused

Opcode Register Register 1 Register 2 Code

4 6 6 6 6 2 1 1

0x0 RT RA 0x00 0x01 Sz S 0

The instruction tries to obtain a write lock on the memory location defined in

register RA. This instruction implicitly writes to two registers. The return code is

written to register RT and the return value is written to register RT+1. A value of

0 in register RT means SUCCESS and a value of -1 means FAIL. If the read lock

was successfully acquired, then the value of the memory location is available in register

RT+1.

A.2.3 Unlock

unlockb RT,RA Write Lock Byte Sz=0
unlockh RT,RA Write Lock Half Sz=1
unlockw RT,RA Write Lock Word Sz=2
unlockd RT,RA Write Lock Double Sz=3

Primary Target Source Source E-SSB Size Signed unused

Opcode Register Register 1 Register 2 Code

4 6 6 6 6 2 1 1

0x0 RT RA 0x00 0x02 Sz 0 0

The instruction tries to unlock a previously acquired read or write lock for the

memory location defined in register RA. The return code is written to register RT. A

value of 0 in register RT means SUCCESS and a value of -1 means FAIL.

124

A.2.4 Single-Writer-Single-Reader Mode 1 Read

swsr1_rb RT,RA SWSR1 Read Byte Sz=0, S=1
swsr1_rh RT,RA SWSR1 Read Half Sz=1, S=1
swsr1_rw RT,RA SWSR1 Read Word Sz=2, S=1

swsr1_rbu RT,RA SWSR1 Read Byte Unsigned Sz=0, S=0
swsr1_rhu RT,RA SWSR1 Read Half Unsigned Sz=1, S=0
swsr1_rwu RT,RA SWSR1 Read Word Unsigned Sz=2, S=0
swsr1_rd RT,RA SWSR1 Read Double Unsigned Sz=3, S=0

Primary Target Source Source E-SSB Size Signed unused

Opcode Register Register 1 Register 2 Code

4 6 6 6 6 2 1 1

0x0 RT RA 0x00 0x03 Sz S 0

This instructions tries to read a value from the memory location defined in

register RA. This instruction implicitly writes to two registers. The return code is

written to register RT and the return value is written to register RT+1. A value of 0

in RT means SUCCESS and a value of -1 means FAIL. If the read was successful,

then the value of the memory location is available in RT+1.

A.2.5 Single-Writer-Single-Reader Mode 1 Write

swsr1_wb RT,RA,RB SWSR1 Write Byte Sz=0
swsr1_wh RT,RA,RB SWSR1 Write Half Sz=1
swsr1_ww RT,RA,RB SWSR1 Write Word Sz=2
swsr1_wd RT,RA,RB SWSR1 Write Double Sz=3

125

Primary Target Source Source E-SSB Size Signed unused

Opcode Register Register 1 Register 2 Code

4 6 6 6 6 2 1 1

0x0 RT RA 0x00 0x04 Sz 0 0

This instructions tries to write the value specified in register RB to the memory

location defined in register RA. The return code is written to register RT. A value of

0 in register RT means SUCCESS and a value of -1 means FAIL.

A.2.6 Single-Writer-Single-Reader Mode 2 Read

swsr2_rb RT,RA SWSR2 Read Byte Sz=0, S=1
swsr2_rh RT,RA SWSR2 Read Half Sz=1, S=1
swsr2_rw RT,RA SWSR2 Read Word Sz=2, S=1

swsr2_rbu RT,RA SWSR2 Read Byte Unsigned Sz=0, S=0
swsr2_rhu RT,RA SWSR2 Read Half Unsigned Sz=1, S=0
swsr2_rwu RT,RA SWSR2 Read Word Unsigned Sz=2, S=0
swsr2_rd RT,RA SWSR2 Read Double Unsigned Sz=3, S=0

Primary Target Source Source E-SSB Size Signed unused

Opcode Register Register 1 Register 2 Code

4 6 6 6 6 2 1 1

0x0 RT RA 0x00 0x05 Sz S 0

This instructions tries to read a value from the memory location defined in

register RA. This instruction implicitly writes to two registers. The return code is

written to register RT and the return value is written to register RT+1. A value of

0 in register RT means SUCCESS and a value of -2 means WAIT. If the read was

successful, then the value of the memory location is available in register RT+1.

126

A.2.7 Single-Writer-Single-Reader Mode 2 Write

swsr2_wb RT,RA,RB SWSR2 Write Byte Sz=0
swsr2_wh RT,RA,RB SWSR2 Write Half Sz=1
swsr2_ww RT,RA,RB SWSR2 Write Word Sz=2
swsr2_wd RT,RA,RB SWSR2 Write Double Sz=3

Primary Target Source Source E-SSB Size Signed unused

Opcode Register Register 1 Register 2 Code

4 6 6 6 6 2 1 1

0x0 RT RA 0x00 0x06 Sz 0 0

This instructions tries to write the value specified in register RB to the memory

location defined in register RA. This instruction implicitly writes to two registers. The

return code is written to register RT and the thread id (TID) to register RT+1. A

value of 0 in register RT means SUCCESS, a value of -1 means FAIL, and a value

of -2 means NO WAITING THREAD.

A.2.8 Single-Writer-Single-Reader Mode 3 Read

swsr3_rb RT,RA SWSR3 Read Byte Sz=0, S=1
swsr3_rh RT,RA SWSR3 Read Half Sz=1, S=1
swsr3_rw RT,RA SWSR3 Read Word Sz=2, S=1

swsr3_rbu RT,RA SWSR3 Read Byte Unsigned Sz=0, S=0
swsr3_rhu RT,RA SWSR3 Read Half Unsigned Sz=1, S=0
swsr3_rwu RT,RA SWSR3 Read Word Unsigned Sz=2, S=0
swsr3_rd RT,RA SWSR3 Read Double Unsigned Sz=3, S=0

127

Primary Target Source Source E-SSB Size Signed unused

Opcode Register Register 1 Register 2 Code

4 6 6 6 6 2 1 1

0x0 RT RA 0x00 0x07 Sz S 0

ldbs RT,D(RA) SWSR3 Read Byte Sz=0, OP=0x6
ldhs RT,D(RA) SWSR3 Read Half Sz=1, OP=0x6
ldws RT,D(RA) SWSR3 Read Word Sz=2, OP=0x6

ldbus RT,D(RA) SWSR3 Read Byte Unsigned Sz=0, OP=0x8
ldhus RT,D(RA) SWSR3 Read Half Unsigned Sz=1, OP=0x8
ldwus RT,D(RA) SWSR3 Read Word Unsigned Sz=2, OP=0x8
ldds RT,D(RA) SWSR3 Read Double Unsigned Sz=3, OP=0x8

Primary Target/Source Address Size O↵set

Opcode Register Register

4 6 6 2 14

OP RT RA Sz D

The Single-Writer-Single-Reader Mode 3 instructions allow to be encoded in

two separate formats, but they still provide the same memory semantics. The second

format is the same format that is used by regular load and store instructions. This

way SWSR3 load/store instructions can be used as drop-in replacement for regular

load/store instructions without any changes. This instructions tries to read a value

from the memory location defined in register RA. The load operation will wait in the

memory controller if the location is empty until it is set to full. Once the location has

been set to full the value is returned to register RT and the location is set empty again.

128

A.2.9 Single-Writer-Single-Reader Mode 3 Write

swsr3_wb RA,RB SWSR3 Write Byte Sz=0
swsr3_wh RA,RB SWSR3 Write Half Sz=1
swsr3_ww RA,RB SWSR3 Write Word Sz=2
swsr3_wd RA,RB SWSR3 Write Double Sz=3

Primary Target Source Source E-SSB Size Signed unused

Opcode Register Register 1 Register 2 Code

4 6 6 6 6 2 1 1

0x0 0x00 RA RB 0x08 Sz 0 0

stbs RS,D(RA) SWSR3 Write Byte Sz=0
sths RS,D(RA) SWSR3 Write Half Sz=1
stws RS,D(RA) SWSR3 Write Word Sz=2
stds RS,D(RA) SWSR3 Write Double Sz=3

Primary Target/Source Address Size O↵set

Opcode Register Register

4 6 6 2 14

0x7 RS RA Sz D

This instructions writes the value specified in register RB to the memory location

defined in register RA and sets the memory location to full.

129

Appendix B

COPYRIGHT INFORMATION

This dissertation contains figures, tables and text that also have been published

in conference proceedings or are available in the public domain.

B.1 Wikipedia

Figure 1.2 has been obtained from Wikipedia. The figure has been released by

its author into the public domain and the author also granted the right to use it for

any purpose without any restrictions.

B.2 ACM License Agreement

The papers about fine-grain synchronization [48] and the emulation system [45]

have been used in this dissertation and the required permissions have been obtained

from ACM under license agreements 3203440929960 and 3203441115225.

130

ASSOCIATION FOR COMPUTING MACHINERY, INC. LICENSE
TERMS AND CONDITIONS

Aug 07, 2013

This is a License Agreement between Juergen Ributzka ("You") and Association for
Computing Machinery, Inc. ("Association for Computing Machinery, Inc.") provided by
Copyright Clearance Center ("CCC"). The license consists of your order details, the terms and
conditions provided by Association for Computing Machinery, Inc., and the payment terms
and conditions.

All payments must be made in full to CCC. For payment instructions, please see
information listed at the bottom of this form.

License Number 3203440929960

License date Aug 07, 2013

Licensed content publisher Association for Computing Machinery, Inc.

Licensed content publication Proceedings of the international conference on Supercomputing

Licensed content title The elephant and the mice: the role of non-­strict fine-­grain
synchronization for modern many-­core architectures

Licensed content author Juergen Ributzka, et al

Licensed content date May 31, 2011

Type of Use Thesis/Dissertation

Requestor type Author of this ACM article

Is reuse in the author's own
new work?

Yes

Format Print and electronic

Portion Full article

Will you be translating? No

Order reference number

Title of your
thesis/dissertation

Concurrency and Synchronization in the Modern Many-­Core Era:
Challenges and Opportunities

Expected completion date Aug 2013

Estimated size (pages) 150

Billing Type Invoice

Billing address 20800 Homestead Rd

 Apt 7B

 Cupertino, DE 95014

 United States

Total 8.00 USD

Terms and Conditions

Rightslink Terms and Conditions for ACM Material

1. The publisher of this copyrighted material is Association for Computing Machinery, Inc.
(ACM). By clicking "accept" in connection with completing this licensing transaction, you
agree that the following terms and conditions apply to this transaction (along with the Billing
and Payment terms and conditions established by Copyright Clearance Center, Inc. ("CCC"),
at the time that you opened your Rightslink account and that are available at any time at).

2. ACM reserves all rights not specifically granted in the combination of (i) the license details
provided by you and accepted in the course of this licensing transaction, (ii) these terms and
conditions and (iii) CCC's Billing and Payment terms and conditions.

3. ACM hereby grants to licensee a non-exclusive license to use or republish this ACM-
copyrighted material* in secondary works (especially for commercial distribution) with the
stipulation that consent of the lead author has been obtained independently. Unless otherwise
stipulated in a license, grants are for one-time use in a single edition of the work, only with a
maximum distribution equal to the number that you identified in the licensing process. Any
additional form of republication must be specified according to the terms included at the time
of licensing.

*Please note that ACM cannot grant republication or distribution licenses for embedded third-
party material. You must confirm the ownership of figures, drawings and artwork prior to use.

4. Any form of republication or redistribution must be used within 180 days from the date
stated on the license and any electronic posting is limited to a period of six months unless an
extended term is selected during the licensing process. Separate subsidiary and subsequent
republication licenses must be purchased to redistribute copyrighted material on an extranet.
These licenses may be exercised anywhere in the world.

5. Licensee may not alter or modify the material in any manner (except that you may use,
within the scope of the license granted, one or more excerpts from the copyrighted material,
provided that the process of excerpting does not alter the meaning of the material or in any
way reflect negatively on the publisher or any writer of the material).

6. Licensee must include the following copyright and permission notice in connection with
any reproduction of the licensed material: "[Citation] © YEAR Association for Computing
Machinery, Inc. Reprinted by permission." Include the article DOI as a link to the definitive
version in the ACM Digital Library. Example: Charles, L. "How to Improve Digital Rights
Management," Communications of the ACM, Vol. 51:12, © 2008 ACM, Inc.
http://doi.acm.org/10.1145/nnnnnn.nnnnnn (where nnnnnn.nnnnnn is replaced by the actual
number).

7. Translation of the material in any language requires an explicit license identified during the
licensing process. Due to the error-prone nature of language translations, Licensee must
include the following copyright and permission notice and disclaimer in connection with any
reproduction of the licensed material in translation: "This translation is a derivative of ACM-
copyrighted material. ACM did not prepare this translation and does not guarantee that it is an
accurate copy of the originally published work. The original intellectual property contained in
this work remains the property of ACM."

8. You may exercise the rights licensed immediately upon issuance of the license at the end of
the licensing transaction, provided that you have disclosed complete and accurate details of
your proposed use. No license is finally effective unless and until full payment is received
from you (either by CCC or ACM) as provided in CCC's Billing and Payment terms and
conditions.

9. If full payment is not received within 90 days from the grant of license transaction, then any
license preliminarily granted shall be deemed automatically revoked and shall be void as if
never granted. Further, in the event that you breach any of these terms and conditions or any
of CCC's Billing and Payment terms and conditions, the license is automatically revoked and
shall be void as if never granted.

10. Use of materials as described in a revoked license, as well as any use of the materials
beyond the scope of an unrevoked license, may constitute copyright infringement and
publisher reserves the right to take any and all action to protect its copyright in the materials.

11. ACM makes no representations or warranties with respect to the licensed material and
adopts on its own behalf the limitations and disclaimers established by CCC on its behalf in its
Billing and Payment terms and conditions for this licensing transaction.

12. You hereby indemnify and agree to hold harmless ACM and CCC, and their respective
officers, directors, employees and agents, from and against any and all claims arising out of
your use of the licensed material other than as specifically authorized pursuant to this license.

13. This license is personal to the requestor and may not be sublicensed, assigned, or
transferred by you to any other person without publisher's written permission.

14. This license may not be amended except in a writing signed by both parties (or, in the case
of ACM, by CCC on its behalf).

15. ACM hereby objects to any terms contained in any purchase order, acknowledgment,
check endorsement or other writing prepared by you, which terms are inconsistent with these
terms and conditions or CCC's Billing and Payment terms and conditions. These terms and
conditions, together with CCC's Billing and Payment terms and conditions (which are
incorporated herein), comprise the entire agreement between you and ACM (and CCC)
concerning this licensing transaction. In the event of any conflict between your obligations
established by these terms and conditions and those established by CCC's Billing and Payment
terms and conditions, these terms and conditions shall control.

16. This license transaction shall be governed by and construed in accordance with the laws of
New York State. You hereby agree to submit to the jurisdiction of the federal and state courts
located in New York for purposes of resolving any disputes that may arise in connection with
this licensing transaction.

17. There are additional terms and conditions, established by Copyright Clearance Center, Inc.
("CCC") as the administrator of this licensing service that relate to billing and payment for
licenses provided through this service. Those terms and conditions apply to each transaction as
if they were restated here. As a user of this service, you agreed to those terms and conditions at
the time that you established your account, and you may see them again at any time at
http://myaccount.copyright.com

18. Thesis/Dissertation: This type of use requires only the minimum administrative fee. It is not

a fee for permission. Further reuse of ACM content, by ProQuest/UMI or other document
delivery providers, or in republication requires a separate permission license and fee.
Commercial resellers of your dissertation containing this article must acquire a separate license.

Special Terms:
If you would like to pay for this license now, please remit this license along with your
payment made payable to "COPYRIGHT CLEARANCE CENTER" otherwise you will be
invoiced within 48 hours of the license date. Payment should be in the form of a check
or money order referencing your account number and this invoice number
RLNK501084859.
Once you receive your invoice for this order, you may pay your invoice by credit card.
Please follow instructions provided at that time.

Make Payment To:
Copyright Clearance Center
Dept 001
P.O. Box 843006
Boston, MA 02284-­3006

For suggestions or comments regarding this order, contact RightsLink Customer
Support: customercare@copyright.com or +1-­877-­622-­5543 (toll free in the US) or +1-­
978-­646-­2777.

Gratis licenses (referencing $0 in the Total field) are free. Please retain this printable
license for your reference. No payment is required.

mailto:customercare@copyright.com

ASSOCIATION FOR COMPUTING MACHINERY, INC. LICENSE
TERMS AND CONDITIONS

Aug 07, 2013

This is a License Agreement between Juergen Ributzka ("You") and Association for
Computing Machinery, Inc. ("Association for Computing Machinery, Inc.") provided by
Copyright Clearance Center ("CCC"). The license consists of your order details, the terms and
conditions provided by Association for Computing Machinery, Inc., and the payment terms
and conditions.

License Number 3203441115225

License date Aug 07, 2013

Licensed content publisher Association for Computing Machinery, Inc.

Licensed content publication Proceedings of the 19th ACM/SIGDA international symposium on

Field programmable gate arrays

Licensed content title DEEP: an iterative fpga-­based many-­core emulation system for chip

verification and architecture research

Licensed content author Juergen Ributzka, et al

Licensed content date Feb 27, 2011

Type of Use Thesis/Dissertation

Requestor type Author of this ACM article

Is reuse in the author's own

new work?

Yes

Format Print and electronic

Portion Full article

Will you be translating? No

Order reference number

Title of your

thesis/dissertation

Concurrency and Synchronization in the Modern Many-­Core Era:

Challenges and Opportunities

Expected completion date Aug 2013

Estimated size (pages) 150

Billing Type Credit Card

Credit card info Master Card ending in 7624

Credit card expiration 06/2015

Total 8.00 USD

Terms and Conditions

Rightslink Terms and Conditions for ACM Material

1. The publisher of this copyrighted material is Association for Computing Machinery, Inc.

(ACM). By clicking "accept" in connection with completing this licensing transaction, you
agree that the following terms and conditions apply to this transaction (along with the Billing
and Payment terms and conditions established by Copyright Clearance Center, Inc. ("CCC"),
at the time that you opened your Rightslink account and that are available at any time at).

2. ACM reserves all rights not specifically granted in the combination of (i) the license details
provided by you and accepted in the course of this licensing transaction, (ii) these terms and
conditions and (iii) CCC's Billing and Payment terms and conditions.

3. ACM hereby grants to licensee a non-exclusive license to use or republish this ACM-
copyrighted material* in secondary works (especially for commercial distribution) with the
stipulation that consent of the lead author has been obtained independently. Unless otherwise
stipulated in a license, grants are for one-time use in a single edition of the work, only with a
maximum distribution equal to the number that you identified in the licensing process. Any
additional form of republication must be specified according to the terms included at the time
of licensing.

*Please note that ACM cannot grant republication or distribution licenses for embedded third-
party material. You must confirm the ownership of figures, drawings and artwork prior to use.

4. Any form of republication or redistribution must be used within 180 days from the date
stated on the license and any electronic posting is limited to a period of six months unless an
extended term is selected during the licensing process. Separate subsidiary and subsequent
republication licenses must be purchased to redistribute copyrighted material on an extranet.
These licenses may be exercised anywhere in the world.

5. Licensee may not alter or modify the material in any manner (except that you may use,
within the scope of the license granted, one or more excerpts from the copyrighted material,
provided that the process of excerpting does not alter the meaning of the material or in any
way reflect negatively on the publisher or any writer of the material).

6. Licensee must include the following copyright and permission notice in connection with
any reproduction of the licensed material: "[Citation] © YEAR Association for Computing
Machinery, Inc. Reprinted by permission." Include the article DOI as a link to the definitive
version in the ACM Digital Library. Example: Charles, L. "How to Improve Digital Rights
Management," Communications of the ACM, Vol. 51:12, © 2008 ACM, Inc.
http://doi.acm.org/10.1145/nnnnnn.nnnnnn (where nnnnnn.nnnnnn is replaced by the actual
number).

7. Translation of the material in any language requires an explicit license identified during the
licensing process. Due to the error-prone nature of language translations, Licensee must
include the following copyright and permission notice and disclaimer in connection with any
reproduction of the licensed material in translation: "This translation is a derivative of ACM-
copyrighted material. ACM did not prepare this translation and does not guarantee that it is an
accurate copy of the originally published work. The original intellectual property contained in
this work remains the property of ACM."

8. You may exercise the rights licensed immediately upon issuance of the license at the end of
the licensing transaction, provided that you have disclosed complete and accurate details of
your proposed use. No license is finally effective unless and until full payment is received
from you (either by CCC or ACM) as provided in CCC's Billing and Payment terms and
conditions.

9. If full payment is not received within 90 days from the grant of license transaction, then any
license preliminarily granted shall be deemed automatically revoked and shall be void as if
never granted. Further, in the event that you breach any of these terms and conditions or any
of CCC's Billing and Payment terms and conditions, the license is automatically revoked and
shall be void as if never granted.

10. Use of materials as described in a revoked license, as well as any use of the materials
beyond the scope of an unrevoked license, may constitute copyright infringement and
publisher reserves the right to take any and all action to protect its copyright in the materials.

11. ACM makes no representations or warranties with respect to the licensed material and
adopts on its own behalf the limitations and disclaimers established by CCC on its behalf in its
Billing and Payment terms and conditions for this licensing transaction.

12. You hereby indemnify and agree to hold harmless ACM and CCC, and their respective
officers, directors, employees and agents, from and against any and all claims arising out of
your use of the licensed material other than as specifically authorized pursuant to this license.

13. This license is personal to the requestor and may not be sublicensed, assigned, or
transferred by you to any other person without publisher's written permission.

14. This license may not be amended except in a writing signed by both parties (or, in the case
of ACM, by CCC on its behalf).

15. ACM hereby objects to any terms contained in any purchase order, acknowledgment,
check endorsement or other writing prepared by you, which terms are inconsistent with these
terms and conditions or CCC's Billing and Payment terms and conditions. These terms and
conditions, together with CCC's Billing and Payment terms and conditions (which are
incorporated herein), comprise the entire agreement between you and ACM (and CCC)
concerning this licensing transaction. In the event of any conflict between your obligations
established by these terms and conditions and those established by CCC's Billing and Payment
terms and conditions, these terms and conditions shall control.

16. This license transaction shall be governed by and construed in accordance with the laws of
New York State. You hereby agree to submit to the jurisdiction of the federal and state courts
located in New York for purposes of resolving any disputes that may arise in connection with
this licensing transaction.

17. There are additional terms and conditions, established by Copyright Clearance Center, Inc.
("CCC") as the administrator of this licensing service that relate to billing and payment for
licenses provided through this service. Those terms and conditions apply to each transaction as
if they were restated here. As a user of this service, you agreed to those terms and conditions at
the time that you established your account, and you may see them again at any time at
http://myaccount.copyright.com

18. Thesis/Dissertation: This type of use requires only the minimum administrative fee. It is not
a fee for permission. Further reuse of ACM content, by ProQuest/UMI or other document
delivery providers, or in republication requires a separate permission license and fee.
Commercial resellers of your dissertation containing this article must acquire a separate license.

Special Terms:

If you would like to pay for this license now, please remit this license along with your
payment made payable to "COPYRIGHT CLEARANCE CENTER" otherwise you will be
invoiced within 48 hours of the license date. Payment should be in the form of a check
or money order referencing your account number and this invoice number
RLNK501084861.
Once you receive your invoice for this order, you may pay your invoice by credit card.
Please follow instructions provided at that time.

Make Payment To:
Copyright Clearance Center
Dept 001
P.O. Box 843006
Boston, MA 02284-­3006

For suggestions or comments regarding this order, contact RightsLink Customer
Support: customercare@copyright.com or +1-­877-­622-­5543 (toll free in the US) or +1-­
978-­646-­2777.

Gratis licenses (referencing $0 in the Total field) are free. Please retain this printable
license for your reference. No payment is required.

mailto:customercare@copyright.com

	Table of Contents
	List of Tables
	List of Figures
	Abstract
	1 Introduction
	1.1 History of Microprocessor Architecture
	1.2 Instruction Level Parallelism Wall
	1.3 Memory Wall
	1.4 Frequency Wall
	1.5 Power Wall
	1.6 Wire Delay Wall
	1.7 The Era of Many-Core begins

	2 Background
	2.1 Hardware Synchronization Methods
	2.2 I-Structures
	2.3 M-Structure
	2.4 Heterogeneous Element Processor (HEP)
	2.5 Tera MTA / Cray XMT
	2.6 Tilera Tile Architecture
	2.7 Fine-Grain Asynchronous Programming and Execution Models

	3 IBM Cyclops-64
	3.1 System Architecture
	3.2 Chip Architecture
	3.3 Microarchitecture

	4 Fine-Grain Non-Strict Synchronization in Hardware
	4.1 Motivation Example
	4.2 Problem Formulation
	4.3 Extended Synchronization State Buffer (E-SSB): An Overview
	4.4 SSB: A Recap

	5 Design of the Extended Synchronization State Buffer (E-SSB)
	6 Implementation of the Extended Synchronization State Buffer (E-SSB)
	6.1 Logic Resource Usage of the Extended Synchronization State Buffer

	7 E-SSB Case Study: Wavefront Computation
	7.1 Wavefront Computation with Barriers
	7.2 Wavefront Computation with Signal-Wait
	7.3 Wavefront with Fine-Grain In-Memory Synchronization

	8 The Advantages and Disadvantages of Non-strict Synchronization
	9 E-SSB Experimental Testbed
	9.1 DEEP: FPGA-based Emulation System
	9.2 DEEP Hardware Platform
	9.3 DEEP Emulation Methodology
	9.4 DEEP Debugging Support

	10 E-SSB Experimental Evaluation
	10.1 Wavefront Computation
	10.1.1 Barrier
	10.1.2 Signal-Wait
	10.1.3 Fine-grain In-Memory Synchronization

	10.2 SPEC OpenMP Kernel Loops
	10.3 Analysis Breakdown

	11 Intel's Concurrent Collections (CnC)
	12 Data Availability Tracking in Software
	12.1 Problem Formulation
	12.2 CnC Item Collections

	13 RD-Tree
	13.1 Data Structures
	13.2 Splitting Strategy
	13.3 Insertion Algorithms
	13.4 Query Algorithm
	13.5 Memory Management

	14 RD-Tree Implementation
	15 RD-Tree Evaluation
	15.1 Testbed
	15.2 Gaussian Blur Filter

	16 Related Work
	17 Conclusions and Future Work
	Bibliography
	A Cyclops-64
	A.1 Instruction Format
	A.2 E-SSB Instructions
	A.2.1 Read Lock
	A.2.2 Write Lock
	A.2.3 Unlock
	A.2.4 Single-Writer-Single-Reader Mode 1 Read
	A.2.5 Single-Writer-Single-Reader Mode 1 Write
	A.2.6 Single-Writer-Single-Reader Mode 2 Read
	A.2.7 Single-Writer-Single-Reader Mode 2 Write
	A.2.8 Single-Writer-Single-Reader Mode 3 Read
	A.2.9 Single-Writer-Single-Reader Mode 3 Write

	B Copyright Information
	B.1 Wikipedia
	B.2 ACM License Agreement

